Dissertations / Theses on the topic 'Running coupling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Running coupling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ho, Andy C. T. "Imaginary charge quantum electrodynamics : a running coupling analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/NQ34551.pdf.
Full textHillenbach, Mark. "Local gauge coupling running in supersymmetric gauge theories on orbifolds." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984665277.
Full textSharkey, Kieran James. "An investigation of the running coupling and meson masses in lattice QCD." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343926.
Full textAnderson, Kevin David. "Borel singularities in the high energy limit of QCD." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/393576/.
Full textDierks, Tracy Allan. "Kinematics and joint coupling in runners with patellofemoral pain during a prolonged run." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 8.83 Mb., 176 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200532.
Full textFischer, Christian S. "Non-perturbative propagators, running coupling and dynamical mass generation in ghost-antighost symmetric gauges in QCD." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967191424.
Full textBrown, Allison M. "The Effects of Fatigue on Pathomechanics and Electromyography in Female Runners with Iliotibial Band Syndrome." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/123697.
Full textPh.D.
The etiology of iliotibial band syndrome (ITBS) is not fully understood, however, dysfunction at the hip and decreased resistance to fatigue have been suggested to contribute to development of the syndrome. The objective of this study was to investigate differences in hip abductor strength and fatigue resistance, hip muscle activation timing and hip joint kinematic, kinetic and joint coupling patterns in female runners with and without ITBS. In addition, this study examined the effects of a run to exertion on these variables. Twelve female runners with ITBS and 20 healthy female runners participated in this study. Gluteus medius strength and electromyographic (EMG) data were collected during isometric testing. In addition, EMG data from the gluteus medius and tensor fascia latae muscles as well as 3-dimensional kinematic, kinetic and joint coupling data were collected during overground running. All data were collected prior-to and following a run to exertion. Prior to the run to exertion, with runners in a "fresh" state, there were no differences in hip abductor strength, kinematic joint coupling and terminal swing phase muscle activation timing between runners with ITBS and healthy runners. In a "fresh" state, ITBS runners demonstrated less resistance to fatigue at their gluteus medius muscle than did the healthy runners. As a result of exertion, runners with ITBS demonstrated decreased peak hip adduction angles during the stance phase of running gait. There were no group-by-exertion interactions for peak hip internal rotation angles, hip abductor and external rotator moments, kinematic joint coupling or hip abductor strength. There was a main effect of exertion for hip abductor moments, hip external rotator moments and hip abductor strength whereby both healthy and injured runners demonstrated 3.8, 4.2 and 7.3% decreases respectively following the run to exertion. In addition, there was a main effect of exertion on hip frontal/knee transverse plane kinematic joint coupling during the first half of loading where runners demonstrated a 7.3% increase in joint coupling values following the run to exertion. Our data did not detect group-by-exertion interactions or main effects of group or exertion with respect to terminal swing muscle activation timing. There was a significant group-by-exertion interaction when examining fatigue resistance. In a fresh-state, runners with ITBS demonstrated less resistance to fatigue than their healthy counterparts. Following the run to exertion, these differences did not exist. The results of this study suggest that currently symptomatic runners with ITBS demonstrate a potentially compensatory pattern of decreased stance phase hip adduction as compared with healthy runners. Hip internal rotation, abductor moments, external rotator moments or kinematic joint coupling do not appear to discriminate between the two groups. The results of this study also suggest that hip abductor strength may not be as large of a factor in the development of ITBS as previously thought. Instead, this muscle's endurance, or its ability to resist fatigue may play a larger role.
Temple University--Theses
Tekin, Fatih. "The strong coupling constant of QCD with four flavors." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16247.
Full textIn this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient csw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Lambda parameter is determined in units of a technical scale Lmax which is an unambiguously defined length in the hadronic regime. The coupling alpha_SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors.
Riad, Stella. "Studies of effective theories beyond the Standard Model." Licentiate thesis, KTH, Teoretisk partikelfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154048.
Full textQC 20141020
Riad, Stella. "Phenomenology of neutrino properties, unification, and Higgs couplings beyond the Standard Model." Doctoral thesis, KTH, Teoretisk partikelfysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202311.
Full textQC 20170221
Ronqui, Caique Meira. "Hierarquia e naturalidade, uma visão completa do problema e suas possíveis soluções." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/153392.
Full textApproved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-04-05T16:59:15Z (GMT) No. of bitstreams: 1 ronqui_cm_me_ift.pdf: 19390845 bytes, checksum: a1c62d106479845bd9047a91fbad6b1f (MD5)
Made available in DSpace on 2018-04-05T16:59:15Z (GMT). No. of bitstreams: 1 ronqui_cm_me_ift.pdf: 19390845 bytes, checksum: a1c62d106479845bd9047a91fbad6b1f (MD5) Previous issue date: 2018-02-05
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Elaboramos uma revisão de como o problema da hierarquia aparece na teoria Eletrofraca, pois entendemos que esse assunto ganhou importância e merece atenção especial. Apesar disso, notamos que muitos conceitos necessários para compreender a origem do problema encontram-se espalhados em diferentes livros e artigos, dificultando o acesso à informação. Por isso, apresentamos neste trabalho esses principais conceitos de maneira consolidada.
We develop a review on how the hierarchy problem appears in the Electroweak theory. Nowadays we think that this problem is greater in importance than it was in the past, so it deserves special attention, but we noticed several concepts needed to understand the problem are scattered in different books and papers, which hinders full access to information. Therefore, we intend to present the key subjects in a single document, because we didn't find similar work in previous studies.
2015/19572-0
Hillenbach, Mark [Verfasser]. "Local gauge coupling running in supersymmetric gauge theories on orbifolds / vorgelegt von Mark Hillenbach." 2007. http://d-nb.info/984665277/34.
Full textPohl, M. B., and John G. Buckley. "Changes in foot and shank coupling due to alterations in foot strike pattern during running." 2007. http://hdl.handle.net/10454/15848.
Full textThe purpose of this article is determining if and how the kinematic relationship between adjacent body segments changes when an individual’s gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10–15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.
Pohl, M. B., N. Messenger, and John G. Buckley. "Changes in foot and lower limb coupling due to systematic variations in step width." 2005. http://hdl.handle.net/10454/15849.
Full textMotion at the midfoot joints can contribute significantly to overall foot motion during gait. However, there is little information regarding the kinematic coupling relationship at the midfoot. The purpose of the present study was to determine whether the coupling relationship at the midfoot and subtalar joints was affected when step width was manipulated during running. Twelve subjects ran over-ground at self-selected speeds using three different step widths (normal, wide, cross-over). Coupling at the midfoot (forefoot relative to rearfoot) and subtalar (rearfoot relative to shank) joints was assessed using cross-correlation techniques. Rearfoot kinematics were significantly different from normal running in cross-over running (P < 0.05) but not in wide running. However, coupling between rearfoot eversion/inversion and shank rotation was consistently high (r > 0.917), regardless of step width. This was also the case for coupling between rearfoot frontal plane motion and forefoot sagittal plane (r < 0.852) and forefoot transverse plane (r > 0.946) motion. There was little evidence of coupling between rearfoot frontal plane motion and forefoot frontal plane motion in any of the conditions. Forefoot frontal plane motion appeared to have little effect on rearfoot frontal plane motion and thus, had no effect on motion at the subtalar joint. The strong coupling of forefoot sagittal and transverse plane motions with rearfoot frontal plane motion suggests that forefoot motion exerts an important influence on subtalar joint kinematics.
MacLean, Christopher Lawrence. "Influence of a custom foot orthotic intervention on lower extremity dynamics and intra-limb coupling during running." 2007. https://scholarworks.umass.edu/dissertations/AAI3275752.
Full textFischer, Christian S. [Verfasser]. "Non-perturbative propagators, running coupling and dynamical mass generation in ghost-antighost symmetric gauges in QCD / vorgelegt von Christian S. Fischer." 2003. http://d-nb.info/967191424/34.
Full text