Journal articles on the topic 'Runaway Electron'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Runaway Electron.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Breizman, B. N., and D. I. Kiramov. "Marginal stability constraint on runaway electron distribution." Physics of Plasmas 30, no. 2 (February 2023): 022301. http://dx.doi.org/10.1063/5.0130558.
Full textVlainic, Milos, Ondrej Ficker, Jan Mlynar, and Eva Macusova. "Experimental Runaway Electron Current Estimation in COMPASS Tokamak." Atoms 7, no. 1 (January 16, 2019): 12. http://dx.doi.org/10.3390/atoms7010012.
Full textYANG, JIN-WEI, YI-PO ZHANG, XU LI, XIAN-YING SONG, GUO-LIANG YUAN, MIN LIAO, LI-QUN HU, SHI-YAO LIN, and QING-WEI YANG. "Suppression of runaway electrons during electron cyclotron resonance heating on HL-2A tokamak." Journal of Plasma Physics 76, no. 1 (September 10, 2009): 75–85. http://dx.doi.org/10.1017/s0022377809990250.
Full textPankratov, Igor M., and Volodymyr Y. Bochko. "Nonlinear Cone Model for Investigation of Runaway Electron Synchrotron Radiation Spot Shape." 3, no. 3 (September 28, 2021): 18–24. http://dx.doi.org/10.26565/2312-4334-2021-3-02.
Full textLisenkov, V. V., Yu I. Mamontov, and I. N. Tikhonov. "Numerical investigation of a high-pressure gas medium preionization by runaway electrons." Journal of Physics: Conference Series 2064, no. 1 (November 1, 2021): 012021. http://dx.doi.org/10.1088/1742-6596/2064/1/012021.
Full textKOMIRENKO, S. M., K. W. KIM, V. A. KOCHELAP, and M. A. STROSCIO. "HIGH-FIELD ELECTRON TRANSPORT CONTROLLED BY OPTICAL PHONON EMISSION IN NITRIDES." International Journal of High Speed Electronics and Systems 12, no. 04 (December 2002): 1057–81. http://dx.doi.org/10.1142/s0129156402001927.
Full textCerovsky, J., O. Ficker, V. Svoboda, E. Macusova, J. Mlynar, J. Caloud, V. Weinzettl, and M. Hron. "Progress in HXR diagnostics at GOLEM and COMPASS tokamaks." Journal of Instrumentation 17, no. 01 (January 1, 2022): C01033. http://dx.doi.org/10.1088/1748-0221/17/01/c01033.
Full textZubarev, Nikolay M., Olga V. Zubareva, and Michael I. Yalandin. "Features of Electron Runaway in a Gas Diode with a Blade Cathode." Electronics 11, no. 17 (September 2, 2022): 2771. http://dx.doi.org/10.3390/electronics11172771.
Full textZhang, Cheng, Jianwei Gu, Ruexue Wang, Hao Ma, Ping Yan, and Tao Shao. "Simulation of runaway electron inception and breakdown in nanosecond pulse gas discharges." Laser and Particle Beams 34, no. 1 (November 23, 2015): 43–52. http://dx.doi.org/10.1017/s0263034615000944.
Full textBabich, Leonid P. "Relativistic runaway electron avalanche." Uspekhi Fizicheskih Nauk 190, no. 12 (April 2020): 1261–92. http://dx.doi.org/10.3367/ufnr.2020.04.038747.
Full textCarnevale, D., M. Ariola, G. Artaserse, F. Bagnato, W. Bin, L. Boncagni, T. Bolzonella, et al. "Runaway electron beam control." Plasma Physics and Controlled Fusion 61, no. 1 (November 27, 2018): 014036. http://dx.doi.org/10.1088/1361-6587/aaef53.
Full textShao, Tao, Victor F. Tarasenko, Cheng Zhang, Evgeni KH Baksht, Ping Yan, and Yuliya V. Shut'Ko. "Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation." Laser and Particle Beams 30, no. 3 (May 25, 2012): 369–78. http://dx.doi.org/10.1017/s0263034612000201.
Full textБелоплотов, Д. В., В. Ф. Тарасенко, Д. А. Сорокин, and В. А. Шкляев. "Формирование двух импульсов тока пучка убегающих электронов." Журнал технической физики 91, no. 4 (2021): 589. http://dx.doi.org/10.21883/jtf.2021.04.50621.292-20.
Full textKulkov, S., M. Marcisovsky, P. Svihra, M. Tunkl, M. van Beuzekom, J. Caloud, J. Cerovsky, et al. "Detection of runaway electrons at the COMPASS tokamak using a Timepix3-based semiconductor detector." Journal of Instrumentation 17, no. 02 (February 1, 2022): P02030. http://dx.doi.org/10.1088/1748-0221/17/02/p02030.
Full textFarnik, Michal, Jakub Urban, Jaromir Zajac, Ondrej Bogar, Ondrej Ficker, Eva Macusova, Jan Mlynar, et al. "Runaway electron diagnostics for the COMPASS tokamak using EC emission." EPJ Web of Conferences 203 (2019): 03006. http://dx.doi.org/10.1051/epjconf/201920303006.
Full textTarasenko, Victor, Dmitriy Beloplotov, Dmitriy Sorokin, and Evgeniy Baksht. "Modes of runaway electron beams during formation of diffuse discharges in air and nitrogen." ADVANCES IN APPLIED PHYSICS 9, no. 3 (August 3, 2021): 202–15. http://dx.doi.org/10.51368/2307-4469-2021-9-3-202-215.
Full textCanright, G. S., and G. D. Mahan. "Hot electrons in one dimension: Electron velocity runaway." Physical Review B 36, no. 5 (August 15, 1987): 2870–72. http://dx.doi.org/10.1103/physrevb.36.2870.
Full textGuo, L., H. W. Zhang, and H. C. Wu. "High-frequency radio-wave emission by coherent transition radiation of runaway electrons produced by lightning stepped leaders." Physics of Plasmas 29, no. 9 (September 2022): 093102. http://dx.doi.org/10.1063/5.0102132.
Full textBabich, Leonid, and Evgeniĭ Bochkov. "Electron runaway rate in air." Journal of Physics D: Applied Physics 54, no. 46 (September 9, 2021): 465205. http://dx.doi.org/10.1088/1361-6463/ac1886.
Full textWongrach, K., K. H. Finken, S. S. Abdullaev, O. Willi, L. Zeng, and Y. Xu. "Runaway electron studies in TEXTOR." Nuclear Fusion 55, no. 5 (April 16, 2015): 053008. http://dx.doi.org/10.1088/0029-5515/55/5/053008.
Full textEsposito, B., L. Boncagni, P. Buratti, D. Carnevale, F. Causa, M. Gospodarczyk, JR Martin-Solis, et al. "Runaway electron generation and control." Plasma Physics and Controlled Fusion 59, no. 1 (November 16, 2016): 014044. http://dx.doi.org/10.1088/0741-3335/59/1/014044.
Full textDMITRIEV, ALEXANDER, VALENTIN KACHOROVSKI, MICHAEL S. SHUR, and MICHAEL STROSCIO. "ELECTRON DRIFT VELOCITY OF THE TWO-DIMENSIONAL ELECTRON GAS IN COMPOUND SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 10, no. 01 (March 2000): 103–10. http://dx.doi.org/10.1142/s0129156400000131.
Full textKurzan, B., and K. H. Steuer. "Runaway electrons in a tokamak: A free-electron maser." Physical Review E 55, no. 4 (April 1, 1997): 4608–16. http://dx.doi.org/10.1103/physreve.55.4608.
Full textKurzan, B., K. H. Steuer, and W. Suttrop. "Runaway electrons in a Tokamak: A free-electron maser." Review of Scientific Instruments 68, no. 1 (January 1997): 423–26. http://dx.doi.org/10.1063/1.1148062.
Full textMesyats, Gennady, Vladislav Rostov, Konstantin Sharypov, Valery Shpak, Sergey Shunailov, Michael Yalandin, and Nikolay Zubarev. "Emission Features and Structure of an Electron Beam versus Gas Pressure and Magnetic Field in a Cold-Cathode Coaxial Diode." Electronics 11, no. 2 (January 13, 2022): 248. http://dx.doi.org/10.3390/electronics11020248.
Full textGuo, Zehua, Xian-Zhu Tang, and Christopher J. McDevitt. "Models of primary runaway electron distribution in the runaway vortex regime." Physics of Plasmas 24, no. 11 (November 2017): 112508. http://dx.doi.org/10.1063/1.5006917.
Full textGrasso, Daniela, Dario Borgogno, Lovepreet Singh, and Fabio Subba. "Stability of a weakly collisional plasma with runaway electrons." Journal of Physics: Conference Series 2397, no. 1 (December 1, 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2397/1/012004.
Full textScudder, Jack D. "The Origin of Persistently Nonthermal Solar Wind Electrons: the Steady Electron Runaway Model's Demonstration of Dreicer Bifurcation using Measured E∥ and Ion–Electron Coulomb Drag." Astrophysical Journal 944, no. 2 (February 1, 2023): 133. http://dx.doi.org/10.3847/1538-4357/acae26.
Full textBin, W., P. Buratti, A. Cardinali, C. Castaldo, F. Napoli, and O. Tudisco. "Measurement of electromagnetic waves from runaway electrons." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093516. http://dx.doi.org/10.1063/5.0101650.
Full textLiu, Chang, Dylan P. Brennan, Allen H. Boozer, and Amitava Bhattacharjee. "Adjoint method and runaway electron avalanche." Plasma Physics and Controlled Fusion 59, no. 2 (December 16, 2016): 024003. http://dx.doi.org/10.1088/1361-6587/59/2/024003.
Full textMesyats, G. A., M. I. Yalandin, A. G. Reutova, K. A. Sharypov, V. G. Shpak, and S. A. Shunailov. "Picosecond runaway electron beams in air." Plasma Physics Reports 38, no. 1 (January 2012): 29–45. http://dx.doi.org/10.1134/s1063780x11110055.
Full textHauff, T., and F. Jenko. "Runaway electron transport via tokamak microturbulence." Physics of Plasmas 16, no. 10 (October 2009): 102308. http://dx.doi.org/10.1063/1.3243494.
Full textKuznetsov, Yu K., R. M. O. Galvão, O. C. Usuriaga, S. I. Krasheninnikov, T. K. Soboleva, V. S. Tsypin, A. M. M. Fonseca, L. F. Ruchko, and E. K. Sanada. "Recombinative plasma in electron runaway discharge." Physics of Plasmas 12, no. 7 (July 2005): 072508. http://dx.doi.org/10.1063/1.1942498.
Full textSmith, H. M., T. Fehér, T. Fülöp, K. Gál, and E. Verwichte. "Runaway electron generation in tokamak disruptions." Plasma Physics and Controlled Fusion 51, no. 12 (November 10, 2009): 124008. http://dx.doi.org/10.1088/0741-3335/51/12/124008.
Full textBoozer, Allen H. "Magnetic surface loss and electron runaway." Plasma Physics and Controlled Fusion 61, no. 2 (January 7, 2019): 024002. http://dx.doi.org/10.1088/1361-6587/aaf293.
Full textOreshkin, E. V., S. A. Barengolts, V. I. Oreshkin, and G. A. Mesyats. "Parameters of a runaway electron avalanche." Physics of Plasmas 24, no. 10 (October 2017): 103505. http://dx.doi.org/10.1063/1.4990729.
Full textBesedin, N. T., and I. M. Pankratov. "Stability of a runaway electron beam." Nuclear Fusion 26, no. 6 (June 1, 1986): 807–12. http://dx.doi.org/10.1088/0029-5515/26/6/009.
Full textCausa, F., M. Gospodarczyk, P. Buratti, D. Carnevale, R. De Angelis, B. Esposito, A. Grosso, et al. "Runaway electron imaging spectrometry (REIS) system." Review of Scientific Instruments 90, no. 7 (July 2019): 073501. http://dx.doi.org/10.1063/1.5061833.
Full textBolt, H., A. Miyahara, M. Miyake, and T. Yamamoto. "Simulation of tokamak runaway-electron events." Journal of Nuclear Materials 151, no. 1 (December 1987): 48–54. http://dx.doi.org/10.1016/0022-3115(87)90054-7.
Full textYuan, Shaohua, Nizar Naitlho, Roman Samulyak, Bernard Pégourié, Eric Nardon, Eric Hollmann, Paul Parks, and Michael Lehnen. "Lagrangian particle simulation of hydrogen pellets and SPI into runaway electron beam in ITER." Physics of Plasmas 29, no. 10 (October 2022): 103903. http://dx.doi.org/10.1063/5.0110388.
Full textSurkov, V. V., and M. Hayakawa. "Underlying mechanisms of transient luminous events: a review." Annales Geophysicae 30, no. 8 (August 17, 2012): 1185–212. http://dx.doi.org/10.5194/angeo-30-1185-2012.
Full textKachlishvili, Z. S., and F. G. Chumburidze. "Transverse runaway of hot electrons and the electron-temperature approximation." Journal of Experimental and Theoretical Physics 86, no. 2 (February 1998): 380–82. http://dx.doi.org/10.1134/1.558439.
Full textMesyats, G. A., A. G. Reutova, K. A. Sharypov, V. G. Shpak, S. A. Shunailov, and M. I. Yalandin. "On the observed energy of runaway electron beams in air." Laser and Particle Beams 29, no. 4 (December 2011): 425–35. http://dx.doi.org/10.1017/s0263034611000541.
Full textKozyrev, Andrey, Vasily Kozhevnikov, and Natalia Semeniuk. "Why do Electrons with “Anomalous Energies” appear in High-Pressure Gas Discharges?" EPJ Web of Conferences 167 (2018): 01005. http://dx.doi.org/10.1051/epjconf/201816701005.
Full textZhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, and Yan Ping. "Runaway electron beams in nanosecond-pulse discharges." Acta Physica Sinica 63, no. 8 (2014): 085208. http://dx.doi.org/10.7498/aps.63.085208.
Full textNovotny, L., J. Cerovsky, P. Dhyani, O. Ficker, M. Havranek, M. Hejtmanek, Z. Janoska, et al. "Runaway electron diagnostics using silicon strip detector." Journal of Instrumentation 15, no. 07 (July 10, 2020): C07015. http://dx.doi.org/10.1088/1748-0221/15/07/c07015.
Full textEngland, A. C., G. L. Bell, R. H. Fowler, J. C. Glowienka, J. H. Harris, D. K. Lee, M. Murakami, et al. "Runaway electron studies in the ATF torsatron." Physics of Fluids B: Plasma Physics 3, no. 7 (July 1991): 1671–86. http://dx.doi.org/10.1063/1.859687.
Full textSmith, H. M., A. H. Boozer, and P. Helander. "Passive runaway electron suppression in tokamak disruptions." Physics of Plasmas 20, no. 7 (July 2013): 072505. http://dx.doi.org/10.1063/1.4813255.
Full textCelestin, Sebastien, and Victor P. Pasko. "Soft collisions in relativistic runaway electron avalanches." Journal of Physics D: Applied Physics 43, no. 31 (July 23, 2010): 315206. http://dx.doi.org/10.1088/0022-3727/43/31/315206.
Full textOreshkin, E. V., S. A. Barengolts, S. A. Chaikovsky, and V. I. Oreshkin. "Runaway electron beam in atmospheric pressure discharges." Journal of Physics: Conference Series 653 (November 11, 2015): 012158. http://dx.doi.org/10.1088/1742-6596/653/1/012158.
Full text