Journal articles on the topic 'RUDDLESDEN-POPPER STRUCTURE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'RUDDLESDEN-POPPER STRUCTURE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tian, Jiyu, Eli Zysman-Colman, and Finlay D. Morrison. "Azetidinium Lead Halide Ruddlesden–Popper Phases." Molecules 26, no. 21 (October 27, 2021): 6474. http://dx.doi.org/10.3390/molecules26216474.
Full textUrushihara, Daisuke, Kenta Nakajima, Ariki Nakamura, Koichiro Fukuda, Hodaka Sugai, Shinya Konishi, Katsuhisa Tanaka, and Toru Asaka. "Unique octahedral rotation pattern in the oxygen-deficient Ruddlesden–Popper compound Gd3Ba2Fe4O12." Acta Crystallographica Section C Structural Chemistry 77, no. 6 (May 26, 2021): 286–90. http://dx.doi.org/10.1107/s2053229621005258.
Full textSong, Jia, De Ning, Bernard Boukamp, Jean-Marc Bassat, and Henny J. M. Bouwmeester. "Structure, electrical conductivity and oxygen transport properties of Ruddlesden–Popper phases Lnn+1NinO3n+1 (Ln = La, Pr and Nd; n = 1, 2 and 3)." Journal of Materials Chemistry A 8, no. 42 (2020): 22206–21. http://dx.doi.org/10.1039/d0ta06731h.
Full textGareeva, Zukhra, Anatoly Zvezdin, Konstantin Zvezdin, and Xiangming Chen. "Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics." Materials 15, no. 2 (January 13, 2022): 574. http://dx.doi.org/10.3390/ma15020574.
Full textTomkiewicz, Alex C., Mazin Tamimi, Ashfia Huq, and Steven McIntosh. "Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction." Journal of Materials Chemistry A 3, no. 43 (2015): 21864–74. http://dx.doi.org/10.1039/c5ta04193g.
Full textHAUCK, J., and K. MIKA. "STRUCTURAL RELATION BETWEEN SUPERCONDUCTING OXIDES, AURIVILLIUS PHASES ANDRUDDLESDEN-POPPER PHASES." International Journal of Modern Physics B 07, no. 19 (August 30, 1993): 3423–33. http://dx.doi.org/10.1142/s0217979293003309.
Full textYang, Chao, Yi Wang, Daniel Putzky, Wilfried Sigle, Hongguang Wang, Roberto A. Ortiz, Gennady Logvenov, Eva Benckiser, Bernhard Keimer, and Peter A. van Aken. "Ruddlesden–Popper Faults in NdNiO3 Thin Films." Symmetry 14, no. 3 (February 25, 2022): 464. http://dx.doi.org/10.3390/sym14030464.
Full textBarone, Matthew R., Myoungho Jeong, Nicholas Parker, Jiaxin Sun, Dmitri A. Tenne, Kiyoung Lee, and Darrell G. Schlom. "Synthesis of metastable Ruddlesden–Popper titanates, (ATiO3)nAO, with n ≥ 20 by molecular-beam epitaxy." APL Materials 10, no. 9 (September 1, 2022): 091106. http://dx.doi.org/10.1063/5.0101202.
Full textPutri, Yulia Eka, Hamsal Yusri, Hamsal Yusri, Zulhadjri, and Zulhadjri. "STUDI HANTARAN LISTRIK SENYAWA SRN+1TINO3N+1 (N = 1 DAN 2) FASA RUDDLESDEN-POPPER YANG DISINTESIS DENGAN METODE LELEHAN GARAM." Jurnal Riset Kimia 8, no. 2 (March 19, 2015): 176. http://dx.doi.org/10.25077/jrk.v8i2.237.
Full textArabpour Roghabadi, Farzaneh, Maryam Alidaei, Seyede Maryam Mousavi, Tahereh Ashjari, Ali Shokrolahzadeh Tehrani, Vahid Ahmadi, and Seyed Mojtaba Sadrameli. "Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX3 to 2D Ruddlesden–Popper perovskite absorbers." Journal of Materials Chemistry A 7, no. 11 (2019): 5898–933. http://dx.doi.org/10.1039/c8ta10444a.
Full textLiang, Jianghu, Zhanfei Zhang, Qi Xue, Yiting Zheng, Xueyun Wu, Ying Huang, Xin Wang, Chaochao Qin, Zhenhua Chen, and Chun-Chao Chen. "A finely regulated quantum well structure in quasi-2D Ruddlesden–Popper perovskite solar cells with efficiency exceeding 20%." Energy & Environmental Science 15, no. 1 (2022): 296–310. http://dx.doi.org/10.1039/d1ee01695d.
Full textCortecchia, D., S. Neutzner, J. Yin, T. Salim, A. R. Srimath Kandada, A. Bruno, Y. M. Lam, J. Martí-Rujas, A. Petrozza, and C. Soci. "Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites." APL Materials 6, no. 11 (November 2018): 114207. http://dx.doi.org/10.1063/1.5045782.
Full textGreenblatt, M. "Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties." Current Opinion in Solid State and Materials Science 2, no. 2 (April 1997): 174–83. http://dx.doi.org/10.1016/s1359-0286(97)80062-9.
Full textPan, Yiyi, Haoliang Wang, Xiaoguo Li, Xin Zhang, Fengcai Liu, Meng Peng, Zejiao Shi, et al. "Detection range extended 2D Ruddlesden–Popper perovskite photodetectors." Journal of Materials Chemistry C 8, no. 10 (2020): 3359–66. http://dx.doi.org/10.1039/c9tc06109f.
Full textChen, Wei-Tin, Chris Ablitt, Nicholas C. Bristowe, Arash A. Mostofi, Takashi Saito, Yuichi Shimakawa, and Mark S. Senn. "Negative thermal expansion in high pressure layered perovskite Ca2GeO4." Chemical Communications 55, no. 20 (2019): 2984–87. http://dx.doi.org/10.1039/c8cc09614g.
Full textYao, Yunpeng, Bo Kou, Yu Peng, Zhenyue Wu, Lina Li, Sasa Wang, Xinyuan Zhang, Xitao Liu, and Junhua Luo. "(C3H9NI)4AgBiI8: a direct-bandgap layered double perovskite based on a short-chain spacer cation for light absorption." Chemical Communications 56, no. 21 (2020): 3206–9. http://dx.doi.org/10.1039/c9cc07796k.
Full textZhang, Wenrui, Alessandro R. Mazza, Elizabeth Skoropata, Debangshu Mukherjee, Brianna Musico, Jie Zhang, Veerle M. Keppens, et al. "Applying Configurational Complexity to the 2D Ruddlesden–Popper Crystal Structure." ACS Nano 14, no. 10 (September 15, 2020): 13030–37. http://dx.doi.org/10.1021/acsnano.0c04487.
Full textAbdulaeva, Liliya, Oleg Silyukov, Irina Zvereva, and Yu Petrov. "Soft Chemistry Synthesis of Complex Oxides Using Protonic Form of Titanates HLnTiO4 (Ln=La, Nd)." Solid State Phenomena 194 (November 2012): 213–16. http://dx.doi.org/10.4028/www.scientific.net/ssp.194.213.
Full textГареева, З. В., А. К. Звездин, Н. В. Шульга, Т. Т. Гареев, and С. М. Чен. "Механизмы магнитоэлектрических эффектов в оксидных мультиферроиках с прафазой перовскита." Физика твердого тела 64, no. 9 (2022): 1338. http://dx.doi.org/10.21883/ftt.2022.09.52830.43hh.
Full textGareeva Z. V., Zvezdin A. K., Shulga N. V., Gareev T. T., and Chen X. M. "Mechanisms of magnetoelectric effects in oxide multiferroics with a perovskite praphase." Physics of the Solid State 64, no. 9 (2022): 1324. http://dx.doi.org/10.21883/pss.2022.09.54175.43hh.
Full textMarkovski, Mishel R., Dmitri O. Charkin, Oleg I. Siidra, and Diana O. Nekrasova. "Copper hydroselenite nitrates (A+NO3)n [Cu(HSeO3)2] (A=Rb+, Cs+ and Tl+, n=1, 2) related to Ruddlesden – Popper phases." Zeitschrift für Kristallographie - Crystalline Materials 234, no. 11-12 (December 18, 2019): 749–56. http://dx.doi.org/10.1515/zkri-2019-0036.
Full textTobías, G., J. Oró-Solé, D. Beltrán-Porter, and A. Fuertes. "Synthesis and crystal structure of novel Ruddlesden–Popper strontium niobium oxynitrides." Crystal Engineering 5, no. 3-4 (September 2002): 479–85. http://dx.doi.org/10.1016/s1463-0184(02)00059-x.
Full textTarasova, N., and I. Animitsa. "Protonic transport in oxyfluorides Ba2InO3F and Ba3In2O5F2 with Ruddlesden–Popper structure." Solid State Ionics 275 (July 2015): 53–57. http://dx.doi.org/10.1016/j.ssi.2015.03.025.
Full textTobías, Gerard, Daniel Beltrán-Porter, Oleg I. Lebedev, Gustaaf Van Tendeloo, Juan Rodríguez-Carvajal, and Amparo Fuertes. "Anion Ordering and Defect Structure in Ruddlesden−Popper Strontium Niobium Oxynitrides." Inorganic Chemistry 43, no. 25 (December 2004): 8010–17. http://dx.doi.org/10.1021/ic049236k.
Full textBattle, Peter D., and Matthew J. Rosseinsky*. "Synthesis, structure, and magnetic properties of n=2 Ruddlesden–Popper manganates." Current Opinion in Solid State and Materials Science 4, no. 2 (April 1999): 163–70. http://dx.doi.org/10.1016/s1359-0286(99)00012-1.
Full textGREENBLATT, M. "ChemInform Abstract: Ruddlesden-Popper Lnn+1NinO3n+1 Nickelates: Structure and Properties." ChemInform 28, no. 36 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199736287.
Full textTeranishi, Takashi, Sachi Takezawa, Kenji Toda, Hironori Ishikawa, Kenji Sato, Kazuyoshi Uematsu, and Mineo Sato. "Superconductivity of Layered Perovskite Synthesized by Soft Chemistry." Key Engineering Materials 350 (October 2007): 163–66. http://dx.doi.org/10.4028/www.scientific.net/kem.350.163.
Full textTitova, Yuriy A., Nadegda N. Belyavina, Mikola S. Slobodyanik, Olesya I. Nakonechna, and Nataliia Y. Strutynska. "Effect of size factor on the Ruddlesden-Popper single-slab compounds structure features." French-Ukrainian Journal of Chemistry 7, no. 1 (2019): 10–15. http://dx.doi.org/10.17721/fujcv7i1p10-15.
Full textTarasova, Nataliia, Anzhelika Galisheva, Irina Animitsa, Daniil Korona, Hala Kreimesh, and Irina Fedorova. "Protonic Transport in Layered Perovskites BaLanInnO3n+1 (n = 1, 2) with Ruddlesden-Popper Structure." Applied Sciences 12, no. 8 (April 18, 2022): 4082. http://dx.doi.org/10.3390/app12084082.
Full textLiebendorfer, Adam. "New links found between structure of Ruddlesden-Popper perovskites and optoelectronic properties." Scilight 2018, no. 48 (November 26, 2018): 480001. http://dx.doi.org/10.1063/1.5081127.
Full textHuang, Liang-Feng, Nathan Z. Koocher, Mingqiang Gu, and James M. Rondinelli. "Structure Dependent Phase Stability and Thermal Expansion of Ruddlesden–Popper Strontium Titanates." Chemistry of Materials 30, no. 20 (September 26, 2018): 7100–7110. http://dx.doi.org/10.1021/acs.chemmater.8b02944.
Full textSarjeant, Gregory M., Kevin B. Greenwood, Kenneth R. Poeppelmeier, Hong Zhang, Paul A. Salvador, Thomas O. Mason, and Laurence D. Marks. "Synthesis and Structure of LaSr2CuTiO6.5: A New Oxygen-Deficient Ruddlesden−Popper Phase." Chemistry of Materials 8, no. 12 (January 1996): 2792–98. http://dx.doi.org/10.1021/cm960279b.
Full textXiang, Guangbiao, Yanwen Wu, Yushuang Li, Chen Cheng, Jiancai Leng, and Hong Ma. "Structural and Optoelectronic Properties of Two-Dimensional Ruddlesden–Popper Hybrid Perovskite CsSnBr3." Nanomaterials 11, no. 8 (August 20, 2021): 2119. http://dx.doi.org/10.3390/nano11082119.
Full textTarasova, Nataliia, Irina Animitsa, and Anzhelika Galisheva. "Novel Proton-Conducting Oxygen-Deficient Complex Oxides: Synthesis, Hydration Processes, Transport Properties." Materials Science Forum 998 (June 2020): 209–14. http://dx.doi.org/10.4028/www.scientific.net/msf.998.209.
Full textBattle, Peter D., Stephen J. Blundell, Amalia I. Coldea, Edmund J. Cussen, Matthew J. Rosseinsky, John Singleton, Lauren E. Spring, and Jaap F. Vente. "Crystal structure and electronic properties of Ca4Mn2TiO9.93, an n = 3 Ruddlesden-Popper compound." Journal of Materials Chemistry 11, no. 1 (2001): 160–67. http://dx.doi.org/10.1039/b003189p.
Full textKhvostova, L. V., N. E. Volkova, L. Ya Gavrilova, and V. A. Cherepanov. "Crystal structure, oxygen nonstoichiometry and properties of novel Ruddlesden-Popper phase Sm1.8Sr1.2Fe2O7-δ." Materials Letters 213 (February 2018): 158–61. http://dx.doi.org/10.1016/j.matlet.2017.11.041.
Full textPoltavets, Viktor V., Konstantin A. Lokshin, Takeshi Egami, and Martha Greenblatt. "The oxygen deficient Ruddlesden–Popper La3Ni2O7−δ (δ=0.65) phase: Structure and properties." Materials Research Bulletin 41, no. 5 (May 2006): 955–60. http://dx.doi.org/10.1016/j.materresbull.2006.01.028.
Full textSirikanda, Nuansaeng, Hiroshige Matsumoto, and Tatsumi Ishihara. "Effect of Co doping on oxygen permeation in Sr3Ti2O7 with Ruddlesden-Popper structure." Solid State Ionics 192, no. 1 (June 2011): 599–601. http://dx.doi.org/10.1016/j.ssi.2010.04.018.
Full textFawcett, Ian D., Sunstrom, Martha Greenblatt, Mark Croft, and K. V. Ramanujachary. "Structure, Magnetism, and Properties of Ruddlesden−Popper Calcium Manganates Prepared from Citrate Gels." Chemistry of Materials 10, no. 11 (November 1998): 3643–51. http://dx.doi.org/10.1021/cm980380b.
Full textMcClure, Eric T., Abigail P. McCormick, and Patrick M. Woodward. "Four Lead-free Layered Double Perovskites with the n = 1 Ruddlesden–Popper Structure." Inorganic Chemistry 59, no. 9 (April 23, 2020): 6010–17. http://dx.doi.org/10.1021/acs.inorgchem.0c00009.
Full textNishimoto, Shunsuke, Motohide Matsuda, Stefanus Harjo, Akinori Hoshikawa, Takashi Kamiyama, Toru Ishigaki, and Michihiro Miyake. "Structure determination of n=1 Ruddlesden–Popper compound HLaTiO4 by powder neutron diffraction." Journal of the European Ceramic Society 26, no. 4-5 (January 2006): 725–29. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.07.001.
Full textYan, J., M. Greenblatt, A. Sahiner, D. Sills, and M. Croft. "Ruddlesden-Popper zirconium sulfides—a novel preparation method and characterization of electronic structure." Journal of Alloys and Compounds 229, no. 1 (October 1995): 216–22. http://dx.doi.org/10.1016/0925-8388(95)01678-3.
Full textZhang, Fei, So Yeon Park, Canglang Yao, Haipeng Lu, Sean P. Dunfield, Chuanxiao Xiao, Soňa Uličná, et al. "Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells." Science 375, no. 6576 (January 7, 2022): 71–76. http://dx.doi.org/10.1126/science.abj2637.
Full textSher, Falak, A. J. Williams, A. Venimadhev, Mark G. Blamire, and J. Paul Attfield. "Synthesis, Structure, and Properties of Two New Ruddlesden−Popper Phase Analogues of SFMO (Sr2FeMoO6)." Chemistry of Materials 17, no. 7 (April 2005): 1792–96. http://dx.doi.org/10.1021/cm0479178.
Full textMatvejeff, M., M. Lehtimäki, A. Hirasa, Y. H. Huang, H. Yamauchi, and M. Karppinen. "New Water-Containing Phase Derived from the Sr3Fe2O7-δPhase of the Ruddlesden−Popper Structure." Chemistry of Materials 17, no. 10 (May 2005): 2775–79. http://dx.doi.org/10.1021/cm050106z.
Full textZibouche, Nourdine, and M. Saiful Islam. "Structure–Electronic Property Relationships of 2D Ruddlesden–Popper Tin- and Lead-based Iodide Perovskites." ACS Applied Materials & Interfaces 12, no. 13 (March 11, 2020): 15328–37. http://dx.doi.org/10.1021/acsami.0c03061.
Full textTarasova, N., I. Animitsa, A. Galisheva, and V. Pryakhina. "Protonic transport in the new phases BaLaIn0.9M0.1O4.05 (M=Ti, Zr) with Ruddlesden-Popper structure." Solid State Sciences 101 (March 2020): 106121. http://dx.doi.org/10.1016/j.solidstatesciences.2020.106121.
Full textBhuvanesh, N. S. P., M. P. Crosnier-Lopez, O. Bohnke, J. Emery, and J. L. Fourquet. "Synthesis, Crystal Structure, and Ionic Conductivity of Novel Ruddlesden−Popper Related Phases, Li4Sr3Nb5.77Fe0.23O19.77and Li4Sr3Nb6O20." Chemistry of Materials 11, no. 3 (March 1999): 634–41. http://dx.doi.org/10.1021/cm980736j.
Full textNirala, Gurudeo, Dharmendra Yadav, and Shail Upadhyay. "Ruddlesden-Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties." Journal of Advanced Ceramics 9, no. 2 (March 26, 2020): 129–48. http://dx.doi.org/10.1007/s40145-020-0365-x.
Full textTarasova, N., I. Animitsa, and A. Galisheva. "Electrical properties of new protonic conductors Ba1 + хLa1–хInO4–0.5х with Ruddlesden-Popper structure." Journal of Solid State Electrochemistry 24, no. 7 (May 21, 2020): 1497–508. http://dx.doi.org/10.1007/s10008-020-04630-1.
Full text