Journal articles on the topic 'RPC'

To see the other types of publications on this topic, follow the link: RPC.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'RPC.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cardarelli, R. "Future RPC developments." Journal of Instrumentation 16, no. 05 (May 1, 2021): C05004. http://dx.doi.org/10.1088/1748-0221/16/05/c05004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vinoski, S. "RPC under fire." IEEE Internet Computing 9, no. 5 (September 2005): 93–95. http://dx.doi.org/10.1109/mic.2005.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aielli, G., P. Camarri, R. Cardarelli, R. de Asmundis, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, E. Pastori, and R. Santonico. "RPC ageing studies." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 478, no. 1-2 (February 2002): 271–76. http://dx.doi.org/10.1016/s0168-9002(01)01770-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rolia, J. A., M. Starkey, and G. Boersma. "Modeling RPC performance." ACM SIGMETRICS Performance Evaluation Review 22, no. 1 (May 1994): 282–83. http://dx.doi.org/10.1145/183019.183053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Yongwei, Teng Ma, Maomeng Su, Mingxing Zhang, Kang Chen, and Zhenyu Guo. "RF-RPC: Remote Fetching RPC Paradigm for RDMA-Enabled Network." IEEE Transactions on Parallel and Distributed Systems 30, no. 7 (July 1, 2019): 1657–71. http://dx.doi.org/10.1109/tpds.2018.2889718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Zhiming, Zhenhua Duan, and Guangzhong Ba. "Effects of an Applied Load on the Chloride Penetration of Concrete with Recycled Aggregates and Recycled Powder." Advances in Civil Engineering 2019 (May 14, 2019): 1–15. http://dx.doi.org/10.1155/2019/1340803.

Full text
Abstract:
Recycled aggregate (RA) and recycled powder (RP) are the primary products of the reclamation of construction and demolition (C&D) wastes, and the question of how to use them to prepare recycled aggregate concrete (RAC) and recycled powder concrete (RPC) has been a hot topic in the construction industry in China. As concrete structures are frequently subjected to the effects of both applied loads and chloride attacks, it is necessary to examine their effects on both RAC and RPC, which have received little consideration in previous investigations. In this study, RAC and RPC were firstly prepared by using RA and RP, respectively, to replace natural coarse aggregate and cement by weight. For each type of recycled concrete, sustained load and repeated load tests were then conducted, followed by a chloride diffusion experiment after unloading. The results indicated that the chloride penetration increased with the loading degree as well as the repeated load cycles. As the RP used in this study has high fineness and activity, the chloride penetration of RPC was lower than that of natural concrete, while the opposite result was found in RAC. Besides, the correlation between the chloride diffusivity and the imposed loading damage was also established in this study.
APA, Harvard, Vancouver, ISO, and other styles
7

Paoloni, Alessandro. "The OPERA RPC system." Journal of Instrumentation 9, no. 10 (October 1, 2014): C10003. http://dx.doi.org/10.1088/1748-0221/9/10/c10003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schroeder, M., and M. Burrows. "Performance of Firefly RPC." ACM SIGOPS Operating Systems Review 23, no. 5 (November 1989): 83–90. http://dx.doi.org/10.1145/74851.74859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Kwanghoon, James Cheney, Simon Fowler, and Sam Lindley. "A polymorphic RPC calculus." Science of Computer Programming 197 (October 2020): 102499. http://dx.doi.org/10.1016/j.scico.2020.102499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petrovici, M., N. Herrmann, K. D. Hildenbrand, G. Augustinski, M. Ciobanu, I. Cruceru, M. Duma, et al. "Multistrip multigap symmetric RPC." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, no. 1-2 (August 2003): 75–78. http://dx.doi.org/10.1016/s0168-9002(03)01280-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chiodini, G., M. Bianco, E. Gorini, F. Grancagnolo, R. Perrino, M. Primavera, and S. Spagnolo. "ATLAS RPC thermal studies." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 572, no. 1 (March 2007): 36–37. http://dx.doi.org/10.1016/j.nima.2006.10.161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Altieri, S., G. Belli, G. Bruno, G. Gianini, M. Merlo, S. P. Ratti, C. Riccardi, et al. "RPC γ sensitivity simulation." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 456, no. 1-2 (December 2000): 99–102. http://dx.doi.org/10.1016/s0168-9002(00)00971-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zallo, A. "The BaBar RPC system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 456, no. 1-2 (December 2000): 117–20. http://dx.doi.org/10.1016/s0168-9002(00)00975-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lu, Changguo. "RPC electrode material study." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602, no. 3 (May 2009): 761–65. http://dx.doi.org/10.1016/j.nima.2008.12.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lippmann, Christian, and Werner Riegler. "Detailed RPC avalanche simulations." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 533, no. 1-2 (November 2004): 11–15. http://dx.doi.org/10.1016/j.nima.2004.06.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Masquelet, A. C. "Chirurgie, RPC et EBM." Journal de Chirurgie Viscérale 150, no. 2 (April 2013): 167–68. http://dx.doi.org/10.1016/j.jchirv.2012.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Huang, Jianfeng, Bodi Zheng, Yingyi Lu, Xiaoya Gu, Hong Dai, and Tong Chen. "Quantification of Microvascular Density of the Optic Nerve Head in Diabetic Retinopathy Using Optical Coherence Tomographic Angiography." Journal of Ophthalmology 2020 (April 29, 2020): 1–5. http://dx.doi.org/10.1155/2020/5014035.

Full text
Abstract:
Aims. To quantify the capillary density of the optic nerve head in healthy control eyes and different stages of diabetic retinopathy (DR) eyes and identify the parameters to detect eyes with or without DR using optical coherence tomographic angiography (OCTA). Methods. In this cross-sectional study, 211 eyes of 121 participants with type 2 diabetes with different stages of DR or without DR and 73 eyes of 38 healthy age-matched controls were imaged by OCTA. Radial peripapillary capillary (RPC) plexus density and retinal nerve fiber layer (RNFL) thickness were examined. The mixed model binary logistic regression model was used to identify the parameters to detect eyes with or without DR. The area under the receiver operating characteristic (ROC) curve was calculated. Results. RPC density decreased significantly in diabetic patients without DR compared with the healthy controls, and it was negatively correlated with the severity of DR (P<0.01). RPC density was a significant parameter to distinguish diabetic eyes with or without DR (P<0.01). The area under the ROC curve was 0.743. Conclusions. Quantification of RPC density by OCTA provides evidence of microvascular changes in the optic nerve in diabetic patients. RPC density can serve as a possible biomarker in detecting eyes with DR. Larger cohort studies need to support this statement.
APA, Harvard, Vancouver, ISO, and other styles
18

Meredith, Beau. "PHENIX RPC R&D for the fast RPC muon trigger upgrade." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602, no. 3 (May 2009): 766–70. http://dx.doi.org/10.1016/j.nima.2008.12.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

André, F., S. Delaloge, J. M. Guinebretière, T. Petit, J. Y. Pierga, D. Zarca, and K. Zarca. "Prolifération des cancers du sein et biomarqueurs décisionnels en pratique RPC (RPC 2013)." Oncologie 15, no. 12 (December 2013): 594–604. http://dx.doi.org/10.1007/s10269-013-2341-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jassim, Nidaa Qassim, and Husain Khalaf Jarallah. "Performance Enhancement of R.C. Beams with Large Web Openings by Using Reactive Powder Composite: An Experimental Study." Al-Nahrain Journal for Engineering Sciences 21, no. 3 (September 1, 2018): 405–16. http://dx.doi.org/10.29194/njes.21030405.

Full text
Abstract:
In this paper an experimental works conducted to study the behavior of R.C. beam with large web opening at different locations and fortified with reactive powder composite (RPC) at the extreme tension zone (bottom edge of opening) and/or extreme compression zone (Top edge of opening). The experimental study is investigate the behavior of twelve beams and study the ability of using normal strength concrete together with RPC in the same section to exploit the advantages of these two materials in optimal way. The main variables are RPC layers locations in tension zone and/or in compression zone and the locations of openings. The ultimate loads, load mid-span deflection behavior and strain for steel and concrete were discussed. The experimental results showed that the ultimate strength was decreased with increasing number of opening about 4% for beams with two openings located in shear zone and 21% for beams with three openings, thus indicating that the stiffness decreases accordingly. The using RPC layers effectively enhanced performance of hybrid beams when compared with using the normal strength concrete layers only. The using RPC layers in compression and tension zones increased the ultimate load about 47 % for beams with two opening located in shear zone, when using RPC in the tension zone and normal strength concrete in the compression zone the ultimate flexural load and ultimate deflection increase little compared with normal concrete.
APA, Harvard, Vancouver, ISO, and other styles
21

Michalek, Peter, Jakub Kralovanec, and Jan Bujnak. "Composite Steel and RPC Testing." Pollack Periodica 15, no. 3 (November 7, 2020): 144–49. http://dx.doi.org/10.1556/606.2020.15.3.14.

Full text
Abstract:
Reactive powder concretes are a set of ultrahigh-strength concrete reinforced with fibers. Their compressive strength is greater than 100 MPa. For assuring connection of steel beams and a concrete slab, steel stud connectors are used. The investigation of that kind of shear connection efficiency, in the case of this higher strength concrete deck using standard push-out test specimens has been executed. The experimental results are presented in the paper.
APA, Harvard, Vancouver, ISO, and other styles
22

Sivathanu, Muthian, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. "Evolving RPC for active storage." ACM SIGARCH Computer Architecture News 30, no. 5 (December 2002): 264–76. http://dx.doi.org/10.1145/635506.605425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sivathanu, Muthian, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. "Evolving RPC for active storage." ACM SIGOPS Operating Systems Review 36, no. 5 (December 2002): 264–76. http://dx.doi.org/10.1145/635508.605425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, R. Iuppa, B. Liberti, et al. "Improving the RPC rate capability." Journal of Instrumentation 11, no. 07 (July 19, 2016): P07014. http://dx.doi.org/10.1088/1748-0221/11/07/p07014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Teng, H. "CMS endcap RPC performance analysis." Journal of Instrumentation 9, no. 08 (August 13, 2014): C08007. http://dx.doi.org/10.1088/1748-0221/9/08/c08007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Goh, J., M. S. Kim, Y. Ban, J. Cai, Q. Li, S. Liu, S. Qian, et al. "CMS RPC tracker muon reconstruction." Journal of Instrumentation 9, no. 10 (October 21, 2014): C10027. http://dx.doi.org/10.1088/1748-0221/9/10/c10027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schroeder, Michael D., and Michael Burrows. "Performance of the Firefly RPC." ACM Transactions on Computer Systems 8, no. 1 (February 1990): 1–17. http://dx.doi.org/10.1145/77648.77653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Akindinov, A., J. Dreyer, X. Fan, B. Kämpfer, S. Kiselev, R. Kotte, A. Laso Garcia, et al. "Radiation hard ceramic RPC development." Journal of Physics: Conference Series 798 (January 2017): 012136. http://dx.doi.org/10.1088/1742-6596/798/1/012136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Arnaldi, R., E. Chiavassa, A. Colla, P. Cortese, G. Dellacasa, N. De Marco, A. Ferretti, et al. "RPC for thermal neutron detection." Journal of Physics: Conference Series 41 (May 1, 2006): 384–90. http://dx.doi.org/10.1088/1742-6596/41/1/042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Allman, Mark. "An evaluation of XML-RPC." ACM SIGMETRICS Performance Evaluation Review 30, no. 4 (March 2003): 2–11. http://dx.doi.org/10.1145/773056.773057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Naumann, L., R. Kotte, D. Stach, and J. Wüstenfeld. "Ceramics high rate timing RPC." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 628, no. 1 (February 2011): 138–41. http://dx.doi.org/10.1016/j.nima.2010.06.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Blanco, A., R. Ferreira-Marques, Ch Finck, P. Fonte, A. Gobbi, A. Policarpo, and M. Rozas. "A large area timing RPC." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 485, no. 3 (June 2002): 328–42. http://dx.doi.org/10.1016/s0168-9002(01)02119-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, E. Pastori, and R. Santonico. "RPC operation at high temperature." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, no. 1-2 (August 2003): 44–49. http://dx.doi.org/10.1016/s0168-9002(03)01275-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gui Wang, Jian. "RPC performance at KLM/BELLE." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 508, no. 1-2 (August 2003): 133–36. http://dx.doi.org/10.1016/s0168-9002(03)01335-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Couceiro, M., A. Blanco, Nuno C. Ferreira, R. Ferreira Marques, P. Fonte, and L. Lopes. "RPC–PET: Status and perspectives." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, no. 2 (October 2007): 915–18. http://dx.doi.org/10.1016/j.nima.2007.06.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aielli, G., P. Camarri, R. Cardarelli, A. Di Ciaccio, L. Di Stante, B. Liberti, A. Paoloni, and R. Santonico. "An RPC γ irradiation test." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 456, no. 1-2 (December 2000): 82–86. http://dx.doi.org/10.1016/s0168-9002(00)00967-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Antoniazzi, L., G. Introzzi, A. Lanza, G. Liguori, and P. Torre. "The E771 RPC muon detector." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 315, no. 1-3 (May 1992): 92–94. http://dx.doi.org/10.1016/0168-9002(92)90686-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Carr, C., E. Cupido, C. G. Y. Lee, A. Balogh, T. Beek, J. L. Burch, C. N. Dunford, et al. "RPC: The Rosetta Plasma Consortium." Space Science Reviews 128, no. 1-4 (February 1, 2007): 629–47. http://dx.doi.org/10.1007/s11214-006-9136-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yusheng Liu and Doan B Hoang. "OSI RPC model and protocol." Computer Communications 17, no. 1 (January 1994): 53–66. http://dx.doi.org/10.1016/0140-3664(94)90018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Santonico, R. "RPC understanding and future perspectives." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 533, no. 1-2 (November 2004): 1–6. http://dx.doi.org/10.1016/j.nima.2004.06.160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dalpee, M. J., and T. J. Cannaliato. "Beyond RPC: the Virtual Network." IEEE Parallel & Distributed Technology: Systems & Applications 1, no. 4 (November 1993): 41–57. http://dx.doi.org/10.1109/88.260292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sivathanu, Muthian, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. "Evolving RPC for active storage." ACM SIGPLAN Notices 37, no. 10 (October 2002): 264–76. http://dx.doi.org/10.1145/605432.605425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bergnoli, A., E. Borsato, R. Brugnera, E. Buccheri, A. Candela, E. Carrara, R. Ciesielski, et al. "Tests of OPERA RPC detectors." IEEE Transactions on Nuclear Science 52, no. 6 (December 2005): 2963–70. http://dx.doi.org/10.1109/tns.2005.862902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vieillard, M. H., J. Chiras, P. Clézardin, J. M. Ferrero, J. Barrière, and P. Beuzeboc. "Os, cible thérapeutique (RPC 2013)." Oncologie 15, no. 12 (December 2013): 673–86. http://dx.doi.org/10.1007/s10269-013-2353-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Antoniazzi, L., G. Bonomi, G. Introzzi, G. Liguori, P. Torre, G. Cataldi, P. Creti, et al. "FNAL E771 RPC muon trigger." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 360, no. 1-2 (June 1995): 334–39. http://dx.doi.org/10.1016/0168-9002(95)00103-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Aielli, G. "The RPC current time structure. Fast current peak measurement in the ATLAS RPC system." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 661 (January 2012): S201—S205. http://dx.doi.org/10.1016/j.nima.2010.09.166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tatar, Nurollāh, Mohammad Saadatsresht, and Hossein Arefi. "Outlier Detection and Relative RPC Modification of Satellite Stereo Images Using RANSAC+RPC Algorithm." Journal of Geospatial Information Technology 4, no. 3 (December 1, 2016): 43–56. http://dx.doi.org/10.29252/jgit.4.3.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Luo, Jun, Ziran Quan, Xudong Shao, Fangyuan Li, and Shangwen He. "Mechanical Performance of RPC and Steel–RPC Composite Structure with Different Fiber Parameters: Experimental and Theoretical Research." Polymers 14, no. 10 (May 10, 2022): 1933. http://dx.doi.org/10.3390/polym14101933.

Full text
Abstract:
This paper aims to explore the material properties of RPC and transverse-bending performance, as well as the crack-width-calculation theory of a densely reinforced steel–RPC composite structure with different fiber parameters. Two fiber types (straight fiber, hybrid fiber) and four fiber volume contents (2%, 2.5%, 3%, 3.5%) were selected to explore the mechanical properties of RPC materials, and the influences of fiber parameters on compressive strength, modulus of elasticity, flexural strength and axial tensile property were investigated. Eight steel–RPC composite plates with different design parameters (fiber type and reinforcement ratio) were conducted to study the transverse-bending performance of steel–RPC composite deck structures. The results show that the addition of 3.5% hybrid fibers to the RPC matrix leads to the optimum axial tensile and flexural properties. Furthermore, the failure mode, load–displacement curve, crack occurrence and propagation characteristics of the composite structure are analyzed in detail. Based on the experimental results, the calculation methods of reinforcement stress and crack width of densely reinforced steel–RPC composite structure are proposed. The calculated results of reinforcement stress and maximum crack width are in good agreement with the actual measured values, which can provide a reference for engineering design.
APA, Harvard, Vancouver, ISO, and other styles
49

Zeng, Jianxian, Shao-Fei Jiang, and Yanhai Wu. "Stress–Strain Relation Model of Core RPC and Its Application to RPC-Filled Steel Tubes." Advanced Science Letters 4, no. 3 (March 1, 2011): 720–25. http://dx.doi.org/10.1166/asl.2011.1679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Guangyao, Jiangxiong Wei, Qijun Yu, Haoliang Huang, and Fangxian Li. "Investigation of the Match Relation between Steel Fiber and High-Strength Concrete Matrix in Reactive Powder Concrete." Materials 12, no. 11 (May 29, 2019): 1751. http://dx.doi.org/10.3390/ma12111751.

Full text
Abstract:
This study investigated the strength and toughness of reactive powder concrete (RPC) made with various steel fiber lengths and concrete strengths. The results indicated that among RPC samples with strength of 150 MPa, RPC reinforced with long steel fibers had the highest compressive strength, peak strength, and toughness. Among the RPC samples with strength of 270 MPa, RPC reinforced with short steel fibers had the highest compressive strength, and peak strength, while RPC reinforced with medium-length steel fibers had the highest toughness. As a result of the higher bond adhesion between fibers and ultra-high-strength RPC matrix, long steel fibers were more effective for the reinforcement of RPC with strength of 150 MPa, while short steel fibers were more effective for the reinforcement of RPC with strength of 270 MPa.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography