To see the other types of publications on this topic, follow the link: Rotational hysteresis.

Journal articles on the topic 'Rotational hysteresis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rotational hysteresis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Elk, K. "Rotational Hysteresis Work and Rotational Hysteresis Integral of Polycrystalline Permanent Magnets." physica status solidi (b) 182, no. 2 (April 1, 1994): 453–60. http://dx.doi.org/10.1002/pssb.2221820223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elk, K., and V. Christoph. "Hysteresis and rotational hysteresis of textured polycrystalline magnets." Journal of Magnetism and Magnetic Materials 65, no. 1 (February 1987): 151–58. http://dx.doi.org/10.1016/0304-8853(87)90320-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keller, R., and E. Schmidbauer. "Magnetic hysteresis properties and rotational hysteresis losses of synthetic stress-controlled titanomagnetite (Fe2.4Ti0.6O4) particles-II. Rotational hysteresis losses." Geophysical Journal International 138, no. 2 (August 1999): 334–42. http://dx.doi.org/10.1046/j.1365-246x.1999.00853.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harrison, S. A., R. Street, J. R. Budge, and S. K. Jones. "Rotational hysteresis losses in isotropic media." IEEE Transactions on Magnetics 35, no. 5 (1999): 3962–64. http://dx.doi.org/10.1109/20.800722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, J. S., S. D. Bader, H. Kaper, G. K. Leaf, R. D. Shull, A. J. Shapiro, V. S. Gornakov, et al. "Rotational hysteresis of exchange-spring magnets." Journal of Physics D: Applied Physics 35, no. 19 (September 13, 2002): 2339–43. http://dx.doi.org/10.1088/0022-3727/35/19/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elk, K. "Rotational hysteresis of polycrystalline permanent magnets." Journal of Magnetism and Magnetic Materials 123, no. 1-2 (May 1993): 117–25. http://dx.doi.org/10.1016/0304-8853(93)90020-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muxworthy, A. R. "Magnetic hysteresis and rotational hysteresis properties of hydrothermally grown multidomain magnetite." Geophysical Journal International 149, no. 3 (May 26, 2002): 805–14. http://dx.doi.org/10.1046/j.1365-246x.2002.01685.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VAN DRENT, William, Eelco STERRINGA, Cock LODDER, Giancarlo BOTTONI, D. CANDOLFO, A. CECCHETTI, and F. MASOLI. "ROTATIONAL HYSTERESIS MEASUREMENTS ON ALUMITE PERPENDICULAR MEDIA." Journal of the Magnetics Society of Japan 15, S_2_PMRC_91 (1991): S2_951–957. http://dx.doi.org/10.3379/jmsjmag.15.s2_951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Louail, L., F. Djabou, D. Maouche, and H. Hachemi. "Rotational hysteresis energy in Co/Tb multilayers." Materials Chemistry and Physics 82, no. 1 (September 2003): 145–50. http://dx.doi.org/10.1016/s0254-0584(03)00202-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Callegaro, L., and E. Puppin. "Rotational hysteresis model for stressed ferromagnetic films." IEEE Transactions on Magnetics 33, no. 2 (1997): 1007–11. http://dx.doi.org/10.1109/20.558520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kedous-Lebouc, A., N. Nencib, B. Cornut, and S. Spornic. "A new hysteresis loop for rotational losses." Journal of Magnetism and Magnetic Materials 160 (July 1996): 45–46. http://dx.doi.org/10.1016/0304-8853(96)00104-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Keller, R., and E. Schmidbauer. "Magnetic hysteresis properties and rotational hysteresis losses of synthetic stress-controlled titanomagnetite (Fe2.4Ti0.6O4) particles-I. Magnetic hysteresis properties." Geophysical Journal International 138, no. 2 (August 1999): 319–33. http://dx.doi.org/10.1046/j.1365-246x.1999.00852.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ehrmann, Andrea, and Tomasz Blachowicz. "Asymmetric Hysteresis Loops in Co Thin Films." Condensed Matter 5, no. 4 (November 5, 2020): 71. http://dx.doi.org/10.3390/condmat5040071.

Full text
Abstract:
Asymmetric magnetic hysteresis loops are usually found in exchange bias (EB) systems, typically after field cooling a system below the Néel temperature of an antiferromagnet exchange coupled to a ferromagnet. Alternatively, asymmetric hysteresis loops may occur due to undetected minor loops or in systems with a rotational anisotropy. Here, we report on an exchange bias thin film system MgO(100)/Co/CoO, examined at room temperature, which is far above the blocking temperature, by the magneto-optical Kerr effect (MOKE). While the longitudinal hysteresis loops partly show steps which are well-known from diverse purely ferromagnetic systems, the transverse hysteresis loops exhibit clear asymmetries, similar to exchange biased systems at low temperatures, and unusual transverse magnetization values at saturation. Since minor loops and a rotational anisotropy can be excluded in this case, this asymmetry can possibly be a residue of the exchange bias coupling at lower temperatures.
APA, Harvard, Vancouver, ISO, and other styles
14

Cheng, Sun-Wen, and Wen-Jei Yang. "Hysteresis in Oil Flow through a Rotating Tube with Twin Exit Branches." International Journal of Rotating Machinery 3, no. 4 (1997): 249–58. http://dx.doi.org/10.1155/s1023621x97000237.

Full text
Abstract:
Oil enters a horizontal rotating tube through a radially-attached duct at one end. The tube with the other end closed is attached with radial twin exit branches permitting oil to exit into open air. Air begins to enter through one of the two branches into the tube when its rotational speed reaches certain critical values. An experimental study is performed to investigate this air-oil two-phase flow behavior. Both the tube and the branches are transparent to allow illumination and flow visualization during spin-up and spin-down processes. The branch-totube diameter ratio, rotational speed, and oil flow rate are varied. Changes in oil flow rates are measured as a function of rotational speed. A comparison is made between cases of a varying total oil flow rate due to rotation effects and a constant one under control. It is disclosed that cavitation in oil flow is induced by air entering the branches opposite to the ejecting oil flow. Subsequently air bubbles progress in the tube. The origin of this intrusion depends on the hydraulic head loss of the piping system. This study can be applied to oil lubrication analysis of rotating machinery, such as automotive transmission lines.
APA, Harvard, Vancouver, ISO, and other styles
15

Elk, K. "Determination of single particle coercivity from rotational hysteresis curves." Journal of Magnetism and Magnetic Materials 196-197 (May 1999): 794–95. http://dx.doi.org/10.1016/s0304-8853(98)00932-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nishio, Hiroaki, Hitoshi Taguchi, Fumihiko Hirata, and Taku Takeishi. "Analysis of Rotational Hysteresis Loss for Sr-ferrite Fine Particles." Journal of the Japan Society of Powder and Powder Metallurgy 41, no. 6 (1994): 701–4. http://dx.doi.org/10.2497/jjspm.41.701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Andrä, W., R. Hergt, W. Michalke, and K. Steenbeck. "Rotational hysteresis losses in sputtered rebco films of different structure." Physica C: Superconductivity 185-189 (December 1991): 2169–70. http://dx.doi.org/10.1016/0921-4534(91)91209-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Miyajima, H., N. Inaba, S. Taketomi, and S. Chikazumi. "ROTATIONAL HYSTERESIS FOR FIELD-COOLED MAGNETIC FLUIDS NEAR MELTING POINT." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–1843—C8–1844. http://dx.doi.org/10.1051/jphyscol:19888843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Templeton, T. L., and A. S. Arrott. "Rotational hysteresis and self-organized criticality in magnetic recording media." Journal of Applied Physics 79, no. 8 (1996): 4635. http://dx.doi.org/10.1063/1.361688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fiorillo, F., and A. M. Rietto. "Rotational versus alternating hysteresis losses in nonoriented soft magnetic laminations." Journal of Applied Physics 73, no. 10 (May 15, 1993): 6615–17. http://dx.doi.org/10.1063/1.352528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Keller, R., and E. Schmidbauer. "Rotational hysteresis and magnetization of elongated Fe-doped CrO2 particles." Journal of Magnetism and Magnetic Materials 187, no. 2 (August 1998): 160–68. http://dx.doi.org/10.1016/s0304-8853(98)00044-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bottoni, G., D. Candolfo, A. Cecchetti, and F. Masoli. "Analysis of the magnetization switching using the rotational hysteresis integral." Journal of Magnetism and Magnetic Materials 193, no. 1-3 (March 1999): 329–31. http://dx.doi.org/10.1016/s0304-8853(98)00448-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Soeya, Susumu, Shin Nakamura, Takao Imagawa, and Shinji Narishige. "Rotational hysteresis loss study on exchange coupled Ni81Fe19/NiO films." Journal of Applied Physics 77, no. 11 (June 1995): 5838–42. http://dx.doi.org/10.1063/1.359164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gyorgy, E. M., and L. R. Walker. "Effect of Au additions on the rotational hysteresis of Cu0.85Mn0.15." Journal of Applied Physics 57, no. 8 (April 15, 1985): 3395–97. http://dx.doi.org/10.1063/1.335493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schmidbauer, E. "Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4particles." Geophysical Research Letters 15, no. 5 (May 1988): 522–25. http://dx.doi.org/10.1029/gl015i005p00522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Templeton, T. L., and A. S. Arrott. "Rotational hysteresis in metal particle recording media: Remanent moment vectors." Journal of Applied Physics 81, no. 8 (April 15, 1997): 3797–99. http://dx.doi.org/10.1063/1.364773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McCurrie, R. A., and S. Jackson. "Rotational hysteresis in anisotropic barium and strontium ferrite permanent magnets." Journal of Applied Physics 62, no. 2 (July 15, 1987): 627–31. http://dx.doi.org/10.1063/1.339791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

McCurrie, R., and M. Viccary. "Rotational hysteresis in an anisotropic Mn-Al-C permanent magnet." IEEE Transactions on Magnetics 22, no. 6 (November 1986): 1849–58. http://dx.doi.org/10.1109/tmag.1986.1064699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, K., T. Kai, T. Zhao, H. Fujiwara, C. Hou, and M. T. Kief. "Rotational hysteresis of torque curves in polycrystalline ferro/antiferromagnetic systems." Journal of Applied Physics 89, no. 11 (June 2001): 7546–48. http://dx.doi.org/10.1063/1.1358833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bottoni, G. "Rotational hysteresis and magnetic anisotropy of particles for magnetic recording." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 2207–8. http://dx.doi.org/10.1016/0304-8853(94)00708-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Nan, and Shiling Wu. "Analysis of harmonic vibration synchronization for a nonlinear vibrating system with hysteresis force." Journal of Low Frequency Noise, Vibration and Active Control 39, no. 4 (August 3, 2019): 1087–101. http://dx.doi.org/10.1177/1461348419867515.

Full text
Abstract:
Harmonic vibration synchronization of the two excited motors is an important factor affecting the performance of the nonlinear vibration system driven by the two excited motors. From the point of view of the hysteresis force, the nonlinear dynamic models of the nonlinear vibration system driven by the two excited motors are presented for the analysis of the hysteresis force with the asymmetry. An approximate periodic solution for the nonlinear vibration system with the hysteresis force is investigated using the nonlinear models. The condition of harmonic vibration synchronization is theoretically analyzed using the rotor–rotation equations of the two excited motors in the nonlinear dynamic models and the stability condition of harmonic vibration synchronization also is theoretically analyzed using Jacobi matrix of the phase difference equation of two excited motors. Using Matlab/Simlink, harmonic vibration synchronization of the two excited motors and the stability of harmonic vibration synchronization for the nonlinear vibration system with the hysteresis force are analyzed through the selected parameters. Various synchronous processes of the nonlinear vibration system with the hysteresis force are obtained through the difference rates of the two excited motors (including the initial phase difference, the initial rotational speed difference, the difference of the motors parameters). It has been shown that the research results can provide theoretical basis for the design and research of the vibration system driven by the two-excited motors.
APA, Harvard, Vancouver, ISO, and other styles
32

Meeker, D. C., A. V. Filatov, and E. H. Maslen. "Effect of Magnetic Hysteresis on Rotational Losses in Heteropolar Magnetic Bearings." IEEE Transactions on Magnetics 40, no. 5 (September 2004): 3302–7. http://dx.doi.org/10.1109/tmag.2004.831664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pawlik, P., J. J. Wysłocki, and K. Dziliński. "Mechanism of Rotational Hysteresis Energy in Sm-Fe-N Permanent Magnets." Acta Physica Polonica A 101, no. 2 (February 2002): 267–77. http://dx.doi.org/10.12693/aphyspola.101.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dieny, B. "A viscous friction modeling of rotational hysteresis in random anisotropy systems." Journal de Physique 50, no. 12 (1989): 1445–53. http://dx.doi.org/10.1051/jphys:0198900500120144500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Yongjian, Jianguo Zhu, Qingxin Yang, Zhi Wei Lin, Youguang Guo, and Chuang Zhang. "Study on Rotational Hysteresis and Core Loss Under Three-Dimensional Magnetization." IEEE Transactions on Magnetics 47, no. 10 (October 2011): 3520–23. http://dx.doi.org/10.1109/tmag.2011.2153186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bottauscio, Oriano, and Mario Chiampi. "Laminated core modeling under rotational excitations including eddy currents and hysteresis." Journal of Applied Physics 89, no. 11 (June 2001): 6728–30. http://dx.doi.org/10.1063/1.1355324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yoshida, Y., T. L. Templeton, and A. S. Arrott. "Model calculations of rotational hysteresis for ferromagnetic particles with competing anisotropies." Journal of Applied Physics 75, no. 10 (May 15, 1994): 5695–97. http://dx.doi.org/10.1063/1.355640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Olszewski, J., J. Wójcik, R. Niedzeilski, B. Wysłocki, and S. Szymura. "Magnetic rotational hysteresis energy in low-cobalt Fe-Cr-Co alloys." Philosophical Magazine Letters 55, no. 5 (May 1987): 247–50. http://dx.doi.org/10.1080/09500838708203758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wyslocki, J. J., M. Leonowicz, and H. A. Davies. "Magnetic rotational hysteresis energy in rapidly solidified Nd-Fe-B magnets." IEEE Transactions on Magnetics 29, no. 6 (November 1993): 2806–8. http://dx.doi.org/10.1109/20.281059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bottoni, G. "Rotational hysteresis in particles for magnetic recording with different switching modes." Journal of Magnetism and Magnetic Materials 155, no. 1-3 (March 1996): 16–18. http://dx.doi.org/10.1016/0304-8853(96)00653-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mucha, J. M., L. Vatskichev, and M. Vatskicheva. "The rotational hysteresis losses in thin films with unidirectional magnetic anisotropy." Journal of Magnetism and Magnetic Materials 109, no. 2-3 (March 1992): 301–4. http://dx.doi.org/10.1016/0304-8853(92)91765-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Song, I. M., S. Ishio, M. Ishizuka, T. Tsunoda, and M. Takahashi. "Perpendicular magnetic anisotropy and rotational hysteresis loss in Co-Cr films." Journal of Magnetism and Magnetic Materials 119, no. 3 (February 1993): 261–70. http://dx.doi.org/10.1016/0304-8853(93)90410-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

SUN, M. J., G. P. ZHAO, J. LIANG, G. ZHOU, H. S. LIM, and Y. P. FENG. "A HYBRID MODEL ON HYSTERESIS LOOP AND COERCIVITY IN NANOSTRUCTURED PERMANENT MAGNETS." International Journal of Nanoscience 05, no. 04n05 (August 2006): 627–31. http://dx.doi.org/10.1142/s0219581x06004899.

Full text
Abstract:
A simplified micromagnetic model has been proposed to calculate the hysteresis loops of nanostructured permanent magnets for various configurations, including thin films, exchange-coupled double-layer systems and bulk materials. The reversal part of the hysteresis is based on the Stoner–Wohlfarth coherent rotational model and the coercivity mechanism is due mainly to the motion of the transition region (a domain wall like magnetic moment distribution in the grain boundary). The elements of nucleation and pinning models are also incorporated.
APA, Harvard, Vancouver, ISO, and other styles
44

Park, Jin Young, Sang Whan Han, Ki Hoon Moon, Kang Seok Lee, and Hyung Joon Kim. "Experimental Investigation of Influence of Normal Pressure on Rotational Friction Behavior." Applied Mechanics and Materials 470 (December 2013): 525–28. http://dx.doi.org/10.4028/www.scientific.net/amm.470.525.

Full text
Abstract:
From various previousexperimental researches, the stable hysteresis of brake liningpads-to-stainless steel sheet friction interfaces has been verified.However, most of previous researches concentrated on the linear frictionbehavior of the brake lining pads-to-stainless steel sheet interfaces andresearches on rotational friction behavior are very limited. Therefore, thisstudy experimentally investigates the rotational friction behavior of theinterfaces and the influence of normal pressure applied by torque ofhigh-strength bolts. Cyclic loading tests were carried out with changing normalpressures.
APA, Harvard, Vancouver, ISO, and other styles
45

Ivanyi, Amalia, Peter Ivanyi, Miklos M. Ivanyi, and Miklos Ivanyi. "A Periodical Loaded Dynamical System." Materials Science Forum 721 (June 2012): 301–6. http://dx.doi.org/10.4028/www.scientific.net/msf.721.301.

Full text
Abstract:
In the paper a Preisach hysteresis model is applied to determine the dynamic behavior of a steel column with a mass on the top and loaded by periodically alternating force. The column is considered as a completely rigid element, while the fixed end of the column is modeled with a rotational spring with hysteresis characteristic. In the solution of the non-linear dynamical equation of the motion the fix-point technique is inserted to the time marching iteration. The cycling time of the force is changing. The results are plotted in figures.
APA, Harvard, Vancouver, ISO, and other styles
46

Matsuo, T., and M. Shimasaki. "Generalization of an Isotropic Vector Hysteresis Model Represented by the Superposition of Stop Models—Identification and Rotational Hysteresis Loss." IEEE Transactions on Magnetics 43, no. 4 (April 2007): 1389–92. http://dx.doi.org/10.1109/tmag.2007.892427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kitao, Junji, Yasuhito Takahashi, Koji Fujiwara, Akira Ahagon, Tetsuji Matsuo, and Akihiro Daikoku. "Improvement of Representation of Rotational Hysteresis Loss by Isotropic Vector Play Model." IEEJ Transactions on Power and Energy 137, no. 3 (2017): 216–22. http://dx.doi.org/10.1541/ieejpes.137.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Olamit, Justin, and Kai Liu. "Rotational hysteresis of the exchange anisotropy direction in Co∕FeMn thin films." Journal of Applied Physics 101, no. 9 (May 2007): 09E508. http://dx.doi.org/10.1063/1.2694378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wuori, E., and J. Judy. "Rotational hysteresis for domain wall motion in the presence of demagnetizing fields." IEEE Transactions on Magnetics 21, no. 5 (September 1985): 1602–3. http://dx.doi.org/10.1109/tmag.1985.1063990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xie, Qifang, Long Wang, Lipeng Zhang, Wei Xiang, and Weibing Hu. "Rotational Behaviors of Fork-Column Dou-Gong: Experimental Tests and Hysteresis Model." Journal of Performance of Constructed Facilities 34, no. 3 (June 2020): 04020032. http://dx.doi.org/10.1061/(asce)cf.1943-5509.0001426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography