Academic literature on the topic 'Rotating Machines Diagnostic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotating Machines Diagnostic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rotating Machines Diagnostic"
Frosini, Lucia. "Novel Diagnostic Techniques for Rotating Electrical Machines—A Review." Energies 13, no. 19 (September 27, 2020): 5066. http://dx.doi.org/10.3390/en13195066.
Full textHRANIAK, Valerii, and Oleh HRYSHCHUK. "DEVELOPMENT OF THE CONCEPT OF BUILDING DIAGNOSTIC SYSTEMS OF ROTATING ELECTRICAL MACHINES UNDER THE CONDITIONS OF LIMITED INFORMATIONALITY OF DIAGNOSTIC SIGNS." Herald of Khmelnytskyi National University. Technical sciences 311, no. 4 (August 2022): 70–77. http://dx.doi.org/10.31891/2307-5732-2022-311-4-70-77.
Full textGizelska, Małgorzata, Dorota Kozanecka, and Zbigniew Kozanecki. "Diagnostics of the Mechatronic Rotating System." Key Engineering Materials 588 (October 2013): 101–8. http://dx.doi.org/10.4028/www.scientific.net/kem.588.101.
Full textPennacchi, P., and A. Vania. "Diagnosis and Model Based Identification of a Coupling Misalignment." Shock and Vibration 12, no. 4 (2005): 293–308. http://dx.doi.org/10.1155/2005/607319.
Full textGolonka, Emil, and Michał Pająk. "Selected faults of low-speed machines, analysis of diagnostic signals." MATEC Web of Conferences 351 (2021): 01025. http://dx.doi.org/10.1051/matecconf/202135101025.
Full textKhan, Muhammad Amir, Bilal Asad, Karolina Kudelina, Toomas Vaimann, and Ants Kallaste. "The Bearing Faults Detection Methods for Electrical Machines—The State of the Art." Energies 16, no. 1 (December 27, 2022): 296. http://dx.doi.org/10.3390/en16010296.
Full textGizelska, Małgorzata, Dorota Kozanecka, and Zbigniew Kozanecki. "Monitoring and Diagnostics of the Rotating System with an Active Magnetic Bearing." Solid State Phenomena 198 (March 2013): 547–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.547.
Full textSule, Aliyu Hamza. "Rotating Electrical Machines: Types, Applications and Recent Advances." European Journal of Theoretical and Applied Sciences 1, no. 5 (September 1, 2023): 589–97. http://dx.doi.org/10.59324/ejtas.2023.1(5).47.
Full textKumar, Rahul R., Mauro Andriollo, Giansalvo Cirrincione, Maurizio Cirrincione, and Andrea Tortella. "A Comprehensive Review of Conventional and Intelligence-Based Approaches for the Fault Diagnosis and Condition Monitoring of Induction Motors." Energies 15, no. 23 (November 25, 2022): 8938. http://dx.doi.org/10.3390/en15238938.
Full textBielawski, Piotr. "Marine Propulsion System Vibration Sensor Heads." New Trends in Production Engineering 1, no. 1 (October 1, 2018): 729–37. http://dx.doi.org/10.2478/ntpe-2018-0092.
Full textDissertations / Theses on the topic "Rotating Machines Diagnostic"
SOAVE, Elia. "Diagnostics and prognostics of rotating machines through cyclostationary methods and machine learning." Doctoral thesis, Università degli studi di Ferrara, 2022. http://hdl.handle.net/11392/2490999.
Full textNegli ultimi decenni, l’analisi vibrazionale è stata sfruttata per il monitoraggio di molti sistemi meccanici per applicazioni industriali. Nonostante molte pubblicazioni abbiano dimostrato come la diagnostica vibrazionale possa raggiungere risultati soddisfacenti, lo scenario industriale odierno è in profondo cambiamento, guidato dalla necessità di ridurre tempi e costi produttivi. In questa direzione, la ricerca deve concentrarsi sul miglioramento dell’efficienza computazionale delle tecniche di analisi del segnale applicate a fini diagnostici. Allo stesso modo, il mondo industriale richiede una sempre maggior attenzione per la manutenzione predittiva, al fine di stimare l’effettivo danneggiamento del sistema evitando così inutili fermi macchina per operazioni manutentive. In tale ambito, negli ultimi anni l’attività di ricerca si sta spostando verso lo sviluppo di modelli prognostici finalizzati alla stima della vita utile residua dei componenti. Tuttavia, è importante ricordare come i due ambiti siano strettamente connessi, essendo la diagnostica la base su cui fondare l’efficacia di ciascun modello prognostico. Su questa base, questa tesi è stata incentrata su queste due diverse, ma tra loro connesse, aree al fine di identificare e predire possibile cause di cedimento su macchine rotanti per applicazioni industriali. La prima parte della tesi è concentrata sullo sviluppo di un nuovo indicatore di blind deconvolution per l’identificazione di difetti su organi rotanti sulla base della teoria ciclostazionaria. Il criterio presentato vuole andare a ridurre il costo computazionale richiesto dalla blind deconvolution tramite l’utilizzo della serie di Fourier-Bessel grazie alla sua natura modulata, maggiormente affine alla tipica firma vibratoria del difetto. L’indicatore proposto viene accuratamente confrontato con il suo analogo basato sulla classica serie di Fourier considerando sia segnali simulati che segnali di vibrazione reali. Il confronto vuole dimostrare il miglioramento fornito dal nuovo criterio in termini sia di minor numero di operazioni richieste dall’algoritmo che di efficacia diagnostica anche in condizioni di segnale molto rumoroso. Il contributo innovativo di questa parte riguarda la combinazione di ciclostazionarietà e serie di Furier-Bessel che porta alla definizione di un nuovo criterio di blind deconvolution in grado di mantenere l’efficacia diagnostica della ciclostazionarietà ma con un minor tempo computazionale per venire incontro alle richieste del mondo industriale. La second parte riguarda la definizione di un nuovo modello prognostico, appartenente alla famiglia degli hidden Markov models, costruito partendo da una distribuzione Gaussiana generalizzata. L’obbiettivo del metodo proposto è una miglior riproduzione della reale distribuzione dei dati, in particolar modo negli ultimi stadi del danneggiamento. Infatti, la comparsa e l’evoluzione del difetto comporta una modifica della distribuzione delle osservazioni fra i diversi stati. Di conseguenza, una densità di probabilità generalizzata permette la modificazione della forma della distribuzione tramite diversi valori dei parametri del modello. Il metodo proposto viene confrontato con il classico hidden Markov model di base Gaussiana in termini di qualità di riproduzione della distribuzione e predizione della sequenza di stati tramite l’analisi di alcuni test di rottura su cuscinetti volventi e sistemi complessi. L’innovatività di questa parte è data dalla definizione di un algoritmo iterativo per la stima dei parametri del modello nell’ipotesi di distribuzione Gaussiana generalizzata, sia nel caso monovariato che multivariato, partendo dalle osservazioni sul sistema fisico in esame.
Neill, Gary David. "PC based diagnostic system for the condition monitoring of rotating machines." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/1266.
Full textHajar, Mayssaa. "Contribution of random sampling in the context of rotating machinery diagnostic." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES001/document.
Full textNowadays, machine monitoring and supervision became one of the most important domains of research. Many axes of exploration are involved in this domain: signal processing, machine learning and several others. Besides, industrial systems can now be remotely monitored because of the internet availability. In fact, as many other systems, machines can now be connected to any network by a specified address due to the Internet of Things (IOT) concept. However, this combination is challenging in data acquisition and storage. In 2004, the compressive sensing was introduced to provide data with low rate in order to save energy consumption within wireless sensor networks. This aspect can also be achieved using random sampling (RS). This approach is found to be advantageous in acquiring data randomly with low frequency (much lower than Nyquist rate) while guaranteeing an aliasing-free spectrum. However, this method of sampling is still not available by hardware means in markets. Thus, a comprehensive review on its concept, its impact on sampled signal and its implementation in hardware is conducted. In this thesis, a study of RS and its different modes is presented with their conditions and limitations in time domain. A detailed examination of the RS’s spectral analysis is then explained. From there, the RS features are concluded. Also, recommendations regarding the choice of the adequate mode with the convenient parameters are proposed. In addition, some spectral analysis techniques are proposed for RS signals in order to provide an enhanced spectral representation. In order to validate the properties of such sampling, simulations and practical studies are shown. The research is then concluded with an application on vibration signals acquired from bearing and gear. The obtained results are satisfying, which proves that RS is quite promising and can be taken as a solution for reducing sampling frequencies and decreasing the amount of stored data. As a conclusion, the RS is an advantageous sampling process due to its anti-aliasing property. Further studies can be done in the scope of reducing its added noise that was proven to be cyclostationary of order 1 or 2 according to the chosen parameters
He, Jiamin. "Investigation on Diagnostic Methods of Rotating Machines and Influence Factors Based on Existing Testing Products." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277635.
Full textDenna avhandling sammanfattar etablerade metoder för elektrisk diagnos-tik av isolering hos stora roterande elektriska maskiner, dvs generatorer och stora motorer med märkspänningar högre än lågspänning. Därefter undersöks möjligheten att använda vissa befintliga diagnostiska instrument, som inte är särskilt avsedda för maskinisolering, för att utföra standardtester på roterande maskinerna. I sammanfattningen av diagnostiska metoder för roterande maskiner ingår traditionella metoder och för närvarande använda metoder inom industrin. Den anser vilka typer av defekter kan upptäckas, och påverkan av de tillämpade spännings magnituder och frekvenser, etc. En litteraturstudieomfattar flera nya eller utvecklande teknologier såsom on-line övervakningoch frekvensresponsanalys, för att undersöka den möjliga framtida utvecklingen av de diagnostiska metoder som har praktiska tillämpningar under tillverkning och drift av roterande maskiner för en mer exakt och punktlig bedömning. Möjliga modifieringar av provningsanordningar som passar dem mer för maskin isolering undersöks. study av tre marknadsföra-existerande apparater sammanfattar de bearbeta med maskin diagnostiska testar att de kunde användas för. En experimentell studie på en 7 kV statorlindning rapporteras, och dess resultat används för att analysera påverkan av test faktorersåsom frekvensberoendet av resultaten, för framtida utredning.
Kass, Souhayb. "Diagnostic vibratoire autonome des roulements." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI103.
Full textThe industrial and transportation sectors require more and more efficient and complex machines and installations increasing the risk of failure and disruption. This can lead to the immediate shutdown of a machine and disrupts the proper functioning of the entire production system. The diagnosis of industrial machines is essentially based on the monitoring of symptoms related to different degradation conditions. These symptoms can be derived from various sources of information, including vibration and acoustic signals. Nowadays, many effective techniques are well established, based on powerful tools offered by the theory of cyclostationary processes. The complexity of these tools requires an expert to use them and to interpret the results based on his/her experience. The continuous presence of the expert is expensive and difficult to achieve in practice. Condition indicators for rotating machines exist in the literature but they are conceived under the assumption of perfect operating conditions. They are limited, dispersed and generally not supported by theoretical frameworks. The main objective of this thesis is to reduce the use of human intervention by proposing strategies to design two optimal indicators that summarize diagnostic information into a scalar value. A distinction is made between two families in diagnosis: the case where prior information on the faults is known and the case where it is unknown. These indicators are designed to be used in an autonomous process without requiring human intervention, using statistical hypothesis tests. The capacity of these indicators is validated on real data and compared with other indicators from the literature in terms of detection performance
Kohutek, Tomáš. "Diagnostika vibrací strojů při kusových zkouškách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318531.
Full textKarkafi, Fadi. "Nonstationary vibration diagnostics of rotating machinery : Application to aeronautic power transmission systems." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0132.
Full textThe proper functioning of rotating machines relies on vibration monitoring of fragile rotating components such as gears and bearings. Concerning more particularly the case of power transmission systems in aeronautics, vibration monitoring presents considerable challenges that are addressed in this thesis: (i) nonstationary operating regimes, which require the adoption of synchronous approaches, (ii) complex interactions between different subsystems, likely to mask or disturb diagnostic signals and (iii) noise emitted by various sources, both environmental and internal, making fault detection more difficult. To address these challenges, the diagnostic principles proposed in this thesis are structured around several objectives: (1) a reliable estimation of the instantaneous angular speed, allowing the synchronization of the signals with the variations of the regime, (2) the extraction of the relevant vibration components to isolate the critical mechanical components and (3) the application of specific diagnostics to each component, taking into account the operational variations to guarantee robustness and reliability. The developed methodologies are validated by experimental data, demonstrating their potential to improve the reliability and safety of transmission systems in aeronautics
Menexiadis, Dimitri. "Conception d'un système expert d'aide au diagnostic pour les machines tournantes." Valenciennes, 1988. https://ged.uphf.fr/nuxeo/site/esupversions/04ba5d72-dc25-461d-8efd-ab79aeeefb8f.
Full textFourati, Aroua. "Modélisation électro-magnéto-mécanique d'une machine asynchrone sous approche angulaire : Application au diagnostic des défauts de roulements en régime non stationnaire." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI078.
Full textIn an induction machine, the diagnosis of defects by analysis of the electrical current signal requires knowledge of the dynamic behavior of the machine. In addition to external excitation sources, the behavior of the motor is governed by a set of periodic phenomena related to its angularly periodic geometry and coupled by their multiphysical character. In the presence of a bearing defect, measurable quantities will have components at its characteristic frequency combined with the characteristic frequencies of the engine. The understanding of interactions, in particular modulation, requires the implementation of numerical models that represent the manifestations of coupled phenomena. This thesis work proposes an electro-magneto-mechanical model of a squirrel-cage induction machine coupled to a rolling bearing model in an original writing frame called "Angular Approaches". By keeping the "Angle-Time" relation in modeling, it is possible to easily extend the modeling to non-stationary operating conditions and to introduce a strong coupling between the mechanical and electromagnetic models. Thus, it is shown that the instantaneous angular speed is the quantity which ensures the transmission of the localized mechanical defect to the electrical quantities. The proposed model thus offers a decryption of the modulation phenomena present on the transfer path and described by the couplings of cyclic dynamic behaviors (permeance network, loading of the rolling elements, etc.) and / or periodic (structural resonances, electrical resonance, etc.). This work opens the way for a better understanding of the multiphysical coupled behaviors of an electrical machine to better specify the monitoring tools to be used. Further developments can now be directed to a complexity of models or to the exploitation of fine dynamic behaviors in a non-steady operating conditions
Bardou, Olivier. "Sur des methodes de surveillance et de diagnostic vibratoire de machines alternativesS." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0015.
Full textBooks on the topic "Rotating Machines Diagnostic"
T, Hatch Charles, and Grissom Bob, eds. Fundamentals of rotating machinery diagnostics. Minden, Nev: Bently Pressurized Bearing Press, 2002.
Find full textDiana, G., ed. Diagnostics of Rotating Machines in Power Plants. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3.
Full textCarlson, David K. Artificicial [i.e. Artificial] neural networks and their applications in diagnostics of incipient faults in rotating machinery. Monterey, Calif: Naval Postgraduate School, 1991.
Find full textCISM/IFToMM Symposium (1993 Udine, Italy). Diagnostics of rotating machines in power plants: Proceedings of the CISM/IFToMM Symposium, October 27-29, 1993, Udine, Italy. Wien: Springer-Verlag, 1994.
Find full textGrissom, Bob, Charles T. Hatch, and Donald E. Bently. Fundamentals of Rotating Machinery Diagnostics. ASME Press, 2002. http://dx.doi.org/10.1115/1.801frm.
Full textRotating Machinery and Signal Processing: Proceedings of the First Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, ... Setif, Algeria. Springer, 2018.
Find full textChaari, Fakher, Mohamed Haddar, and Ahmed Felkaoui. Rotating Machinery and Signal Processing: Proceedings of the First Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, ... Setif, Algeria. Springer, 2018.
Find full textZhan, Yimin. Diagnostic models for rotating machinery subject to vibration monitoring for condition-based maintenance. 2003.
Find full textDiana, G. Diagnostics of Rotating Machines in Power Plants: Proceedings of the CISM/IFToMM Symposium, October 27-29, 1993, Udine, Italy. Springer London, Limited, 2014.
Find full textDiana, G. Diagnostics of Rotating Machines in Power Plants: Proceedings of the CISM-IFToMM Symposium, October 27 - 29, 1993, Udine, Italy (CISM International Centre for Mechanical Sciences). Springer, 2002.
Find full textBook chapters on the topic "Rotating Machines Diagnostic"
Diana, G., A. Vania, A. Vallini, and G. A. Zanetta. "Diagnostic Techniques in Condition Monitoring." In Diagnostics of Rotating Machines in Power Plants, 343–53. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_25.
Full textSisti, G., and G. Ferrari Aggradi. "Expert Diagnostic System for Gas Turbines." In Diagnostics of Rotating Machines in Power Plants, 99–109. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_7.
Full textKanki, H., C. Yasuda, S. Umemura, R. Itoh, C. Miyamoto, and T. Kawaguchi. "Vibration Diagnostic Expert System for Steam Turbines." In Diagnostics of Rotating Machines in Power Plants, 25–35. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_2.
Full textTanaka, M. "The Diagnostic Technologies in Power Plants in Japan." In Diagnostics of Rotating Machines in Power Plants, 199–210. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_15.
Full textSmalley, A. J., R. M. Baldwin, G. H. Quentin, and H. R. Simmons. "Diagnostic Technology for Combustion Turbines in Power Plants." In Diagnostics of Rotating Machines in Power Plants, 211–40. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_16.
Full textMatsushita, Osami, Masato Tanaka, Masao Kobayashi, Patrick Keogh, and Hiroshi Kanki. "Signal Processing for Rotor Vibration Diagnosis." In Vibrations of Rotating Machinery, 301–51. Tokyo: Springer Japan, 2019. http://dx.doi.org/10.1007/978-4-431-55453-0_10.
Full textLim, G. H. "Rotating machinery noise and vibration study." In Condition Monitoring and Diagnostic Engineering Management, 120–25. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0431-6_20.
Full textUhrig, S., F. Öttl, N. Augeneder, and R. Hinterholzer. "Reliable Diagnostics on Rotating Machines Using FRA." In Lecture Notes in Electrical Engineering, 738–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_70.
Full textNordmann, R. "Identification Techniques in Rotordynamics." In Diagnostics of Rotating Machines in Power Plants, 1–24. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_1.
Full textCavagnino, C., G. L. Lapini, M. Zippo, P. Moretti, and R. Bernante. "Experimental Verification of a Non Intrusive Method for Detecting Steam Turbine Blade Resonances." In Diagnostics of Rotating Machines in Power Plants, 137–47. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-2706-3_10.
Full textConference papers on the topic "Rotating Machines Diagnostic"
Plötz, Sandra, Lukas Ranzinger, and Stephanie Uhrig. "Frequency Response Analysis on Rotating Machines – Model Parameterization for Different Machine Types and Performance Classes." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 01–06. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693894.
Full textStaubach, Christian, Stefan Reddig, and Patrick Zander. "Practical Experience with PD-Localization in Rotating Machines." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693883.
Full textPattanadech, Norasage, and Siwakorn Jeenmuang. "Condition Assessment of Rotating Machine Insulation: Case Studies from Power Plants." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 01–06. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693915.
Full textRanzinger, Lukas, Stephanie Uhrig, Stefan Tenbohlen, and Sandra Plötz. "Transferability of SFRA Measurements Between Rotating Machines of Different Power Class and Type." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693884.
Full textZidane, Ousama, Rainer Haller, Pavel Trnka, and Hans Bärnklau. "Accelerated Life Testing for Rotating Machine Insulating Materials Exposed to High AC Voltage." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 01–05. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693924.
Full textAmjad, Shanzay, Muhammad Faraz, and Syed Zohaib Hassan Naqvi. "Fault Diagnosis in Rotating Machines using Vibration Signal Analysis and Machine Learning." In 2024 19th International Conference on Emerging Technologies (ICET), 1–6. IEEE, 2024. https://doi.org/10.1109/icet63392.2024.10935064.
Full textPan, Haiyang, Chunan Chen, Jinde Zheng, Jinyu Tong, and Jian Chen. "Fault Diagnosis Method for Rotating Machinery Based on Multi-Task Support Matrix Machine." In 2024 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), 1–6. IEEE, 2024. https://doi.org/10.1109/icsmd64214.2024.10920299.
Full textYang, Lin, Jun Lu, Zhe Yang, Yunwei Huang, Jianyu Long, and Chuan Li. "Compound Fault Diagnosis of Rotating Machinery Using Contrastive Representation Inference." In 2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 158–62. IEEE, 2024. http://dx.doi.org/10.1109/sdpc62810.2024.10707737.
Full textKim, Yong Joo, and Jin Lee. "Pre-Trained Partial Discharge Evaluator for Diagnosis of Rotating Machine." In 2024 10th International Conference on Condition Monitoring and Diagnosis (CMD), 242–45. IEEE, 2024. https://doi.org/10.23919/cmd62064.2024.10766089.
Full textFiori de Castro, Helio, and Natalia Tyminski. "Fault Diagnostic for Rotating Machines using Bayesian Networks." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0809.
Full text