Journal articles on the topic 'Rotatable designs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rotatable designs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Khuri, A. I. "Blocking with Rotatable Designs." Calcutta Statistical Association Bulletin 41, no. 1-4 (March 1991): 81–98. http://dx.doi.org/10.1177/0008068319910105.
Full textKiwu, Lawrence Chizoba, Desmond Chekwube Bartholomew, Fidelia Chinenye Kiwu-Lawrence, Chukwudi Paul Obite, and Okafor Ikechukwu Boniface. "Evaluating Percentage Rotatability For The Small Box – Behnken Design." Journal of Mathematics and Statistics Studies 2, no. 2 (August 13, 2021): 16–24. http://dx.doi.org/10.32996/jmss.2021.2.2.3.
Full textMukerjee, Rahul. "On fourth order rotatable designs." Communications in Statistics - Theory and Methods 16, no. 6 (January 1987): 1697–702. http://dx.doi.org/10.1080/03610928708829463.
Full textShareef, R. Md Mastan. "A note on Variance-Sum Third Order Slope Rotatable Designs." International Journal for Research in Applied Science and Engineering Technology 9, no. 10 (October 31, 2021): 760–66. http://dx.doi.org/10.22214/ijraset.2021.38512.
Full textDas, Rabindra Nath. "Robust Second Order Rotatable Designs : Part I." Calcutta Statistical Association Bulletin 47, no. 3-4 (September 1997): 199–214. http://dx.doi.org/10.1177/0008068319970306.
Full textDraper, Norman R., Berthold Heiligers, and Friedrich Pukelsheim. "On optimal third order rotatable designs." Annals of the Institute of Statistical Mathematics 48, no. 2 (June 1996): 395–402. http://dx.doi.org/10.1007/bf00054798.
Full textEmily, Otieno-Roche. "Construction of Second Order Rotatable Simplex Designs." American Journal of Theoretical and Applied Statistics 6, no. 6 (2017): 297. http://dx.doi.org/10.11648/j.ajtas.20170606.16.
Full textDas, Rabindra Nath, Partha Pal, and Sung H. Park. "Modified Robust Second-Order Slope-Rotatable Designs." Communications in Statistics - Theory and Methods 44, no. 1 (December 2014): 80–94. http://dx.doi.org/10.1080/03610926.2012.732183.
Full textMukerjee, Rahul, and S. Huda. "Fourth-order rotatable designs: A-optimal measures." Statistics & Probability Letters 10, no. 2 (July 1990): 111–17. http://dx.doi.org/10.1016/0167-7152(90)90005-r.
Full textBabu, P. Seshu, and A. V. Dattatreya Rao. "ON THIRD ORDER SLOPE ROTATABLE DESIGNS USING PAIRWISE BALANCED DESIGNS." Far East Journal of Theoretical Statistics 63, no. 1 (November 10, 2021): 29–37. http://dx.doi.org/10.17654/ts063010029.
Full textDas, Rabindra Nath. "Slope Rotatability with Correlated Errors." Calcutta Statistical Association Bulletin 54, no. 1-2 (March 2003): 57–70. http://dx.doi.org/10.1177/0008068320030105.
Full textStreit, D. A., and B. J. Gilmore. "‘Perfect’ Spring Equilibrators for Rotatable Bodies." Journal of Mechanisms, Transmissions, and Automation in Design 111, no. 4 (December 1, 1989): 451–58. http://dx.doi.org/10.1115/1.3259020.
Full textPanda, Rajendra Nath, and Rabindra Nath Das. "First Order Rotatable Designs with Correlated Errors (Fordwce)." Calcutta Statistical Association Bulletin 44, no. 1-2 (March 1994): 83–102. http://dx.doi.org/10.1177/0008068319940107.
Full textDas, Rabindra Nath. "Robust Second Order Rotatable Designs Part II (RSORD)." Calcutta Statistical Association Bulletin 49, no. 1-2 (March 1999): 65–78. http://dx.doi.org/10.1177/0008068319990106.
Full textHuda, S., and Rahul Mukerjee. "D-optimal measures for fourth-order rotatable designs." Statistics 20, no. 3 (January 1989): 353–56. http://dx.doi.org/10.1080/02331888908802180.
Full textDas, Rabindra Nath, Jinseog Kim, and Youngjo Lee. "Robust first-order rotatable lifetime improvement experimental designs." Journal of Applied Statistics 42, no. 9 (March 23, 2015): 1911–30. http://dx.doi.org/10.1080/02664763.2015.1014888.
Full textBhatra Charyulu, N. Ch, A. Saheb Shaik, and G. Jayasree. "New Series for Construction of Second Order Rotatable Designs." European Journal of Mathematics and Statistics 3, no. 2 (March 8, 2022): 17–20. http://dx.doi.org/10.24018/ejmath.2022.3.2.46.
Full textVictor Babu, B. Re, and V. L. Narasimhant. "Construction of second order slope rotatable designs through balanced incomplete block designs." Communications in Statistics - Theory and Methods 20, no. 8 (January 1991): 2467–78. http://dx.doi.org/10.1080/03610929108830644.
Full textGuravaiah, B. "Construction of Variance-Sum Third Order Slope Rotatable Designs." International Journal for Research in Applied Science and Engineering Technology 9, no. 3 (March 31, 2021): 1075–83. http://dx.doi.org/10.22214/ijraset.2021.33422.
Full textEmily, Otieno-Roche. "Construction of Weighted Second Order Rotatable Simplex Designs (Wrsd)." American Journal of Theoretical and Applied Statistics 6, no. 6 (2017): 303. http://dx.doi.org/10.11648/j.ajtas.20170606.17.
Full textAngelopoulos, P., H. Evangelaras, and C. Koukouvinos. "Small, balanced, efficient and near rotatable central composite designs." Journal of Statistical Planning and Inference 139, no. 6 (June 2009): 2010–13. http://dx.doi.org/10.1016/j.jspi.2008.09.001.
Full textNath Das, Rabindra, Sung H. Park, and Manohar Aggarwal. "On D-optimal robust second order slope-rotatable designs." Journal of Statistical Planning and Inference 140, no. 5 (May 2010): 1269–79. http://dx.doi.org/10.1016/j.jspi.2009.11.012.
Full textSawa, Masanori, and Masatake Hirao. "Characterizing D-optimal Rotatable Designs with Finite Reflection Groups." Sankhya A 79, no. 1 (October 24, 2016): 101–32. http://dx.doi.org/10.1007/s13171-016-0091-1.
Full textRotich, Jeremy, Mathew Kosgei, and Gregory Kerich. "Optimal Third Order Rotatable Designs Constructed from Balanced Incomplete Block Design (BIBD)." Current Journal of Applied Science and Technology 22, no. 3 (July 14, 2017): 1–5. http://dx.doi.org/10.9734/cjast/2017/34937.
Full textVictorbabu, B. Re. "Modified Second Order Slope Rotatable Designs using Symmetrical Unequal Block Arrangements with two Unequal Block Sizes." Mapana - Journal of Sciences 5, no. 1 (June 21, 2006): 21–29. http://dx.doi.org/10.12723/mjs.8.3.
Full textDas, Rabindra Nath, Sung H. Park, and Manohar Aggarwal. "Robust Second-Order Slope-Rotatable Designs with Maximum Directional Variance." Communications in Statistics - Theory and Methods 39, no. 5 (February 25, 2010): 803–14. http://dx.doi.org/10.1080/03610920902796064.
Full textDas, Rabindra Nath, and Sung Hyun Park. "On efficient robust first order rotatable designs with autocorrelated error." Journal of the Korean Statistical Society 37, no. 2 (June 2008): 95–106. http://dx.doi.org/10.1016/j.jkss.2007.08.003.
Full textVictorbabu, B. Re. "Modified second-order slope rotatable designs with equi-spaced levels." Journal of the Korean Statistical Society 38, no. 1 (March 2009): 59–63. http://dx.doi.org/10.1016/j.jkss.2008.07.001.
Full textHirao, Masatake, Masanori Sawa, and Masakazu Jimbo. "Constructions of Φ p -Optimal Rotatable Designs on the Ball." Sankhya A 77, no. 1 (June 12, 2014): 211–36. http://dx.doi.org/10.1007/s13171-014-0053-4.
Full textIsaac Kipkosgei, Tum. "Construction of twenty-six points specific optimum second order rotatable designs in three dimensions with a practical example." International Journal of Advanced Statistics and Probability 8, no. 1 (February 18, 2020): 1. http://dx.doi.org/10.14419/ijasp.v8i1.30122.
Full textMwan, D., M. Kosgei, and S. Rambaei. "DT- optimality Criteria for Second Order Rotatable Designs Constructed Using Balanced Incomplete Block Design." British Journal of Mathematics & Computer Science 22, no. 6 (January 10, 2017): 1–7. http://dx.doi.org/10.9734/bjmcs/2017/34288.
Full textMukhopadhyay, Anis Chandra, Srijib Bhusan Bagchi, and Rabindra Nath Das. "Improvement of Quality of a System Using Regression Designs." Calcutta Statistical Association Bulletin 53, no. 3-4 (September 2002): 225–32. http://dx.doi.org/10.1177/0008068320020305.
Full textKim, Jinseog, Rabindra Nath Das, Poonam Singh, and Youngjo Lee. "Robust second-order rotatable designs invariably applicable for some lifetime distributions." Communications for Statistical Applications and Methods 28, no. 6 (November 30, 2021): 595–610. http://dx.doi.org/10.29220/csam.2021.28.6.595.
Full textAnjaneyulu, G. V. S. R., D. N. Varma, and V. L. Narasimham. "A note on second order slope rotatable designs over all directions." Communications in Statistics - Theory and Methods 26, no. 6 (January 1997): 1477–79. http://dx.doi.org/10.1080/03610929708831994.
Full textKoukouvinos, C., K. Mylona, A. Skountzou, and P. Goos. "A General Construction Method for Five-Level Second-Order Rotatable Designs." Communications in Statistics - Simulation and Computation 42, no. 9 (October 2013): 1961–69. http://dx.doi.org/10.1080/03610918.2012.687062.
Full textVictorbabu, B. Re, and K. Rajyalakshmi. "A New Method of Construction of Robust Second Order Rotatable Designs Using Balanced Incomplete Block Designs." Open Journal of Statistics 02, no. 01 (2012): 39–47. http://dx.doi.org/10.4236/ojs.2012.21005.
Full textVictorbabu, B. Re, and K. Rajyalakshmi. "A New Method of Construction of Robust Second Order Slope Rotatable Designs Using Pairwise Balanced Designs." Open Journal of Statistics 02, no. 03 (2012): 319–27. http://dx.doi.org/10.4236/ojs.2012.23040.
Full textCornelious, Nyakundi Omwando, and Evans Mbuthi Kilonzo. "Robustness of Higher Levels Rotatable Designs for Two Factors against Missing Data." International Journal of Advances in Scientific Research and Engineering 07, no. 04 (2021): 80–83. http://dx.doi.org/10.31695/ijasre.2021.34003.
Full textGuravaiah, B. "On Construction of Three Level Variance-Sum Second Order Slope Rotatable Designs." International Journal for Research in Applied Science and Engineering Technology 9, no. 3 (March 31, 2021): 651–55. http://dx.doi.org/10.22214/ijraset.2021.33299.
Full textOmwando Cornelious, Nyakundi, and Evans Mbuthi Kilonzo. "Optimal Sequential Third Order Rotatable Designs in Three, Four and Five Dimensions." International Journal of Systems Science and Applied Mathematics 6, no. 2 (2021): 35. http://dx.doi.org/10.11648/j.ijssam.20210602.11.
Full textArap Koske, J. K., and M. S. Patel. "Construction of fourth order rotatable designs with estimation of corresponding response surface." Communications in Statistics - Theory and Methods 16, no. 5 (January 1987): 1361–76. http://dx.doi.org/10.1080/03610928708829444.
Full textMutiso, J. M., G. K. Kerich, and H. M. Ng’eno. "CONSTRUCTION OF FIVE LEVEL SECOND ORDER ROTATABLE DESIGNS USING SUPPLEMENTARY DIFFERENCE SETS." Advances and Applications in Statistics 49, no. 1 (September 6, 2016): 21–30. http://dx.doi.org/10.17654/as049010021.
Full textHuda, Shahariar. "On a Problem of Increasing the Efficiency of Second-order Rotatable Designs." Biometrical Journal 32, no. 4 (January 19, 2007): 427–33. http://dx.doi.org/10.1002/bimj.4710320405.
Full textE.I., Jaja, Iwundu M.P., and Etuk E.H. "The Comparative Study of CCD and MCCD in the Presence of a Missing Design Point." African Journal of Mathematics and Statistics Studies 4, no. 2 (May 11, 2021): 10–24. http://dx.doi.org/10.52589/ajmss-jf1a1dza.
Full textYamamoto, Hirotaka, Masatake Hirao, and Masanori Sawa. "A construction of the fourth order rotatable designs invariant under the hyperoctahedral group." Journal of Statistical Planning and Inference 200 (May 2019): 63–73. http://dx.doi.org/10.1016/j.jspi.2018.09.005.
Full textMutiso, J. M., G. K. Kerich, and H. M. Ng’eno. "CONSTRUCTION OF FIVE LEVEL MODIFIED SECOND ORDER ROTATABLE DESIGNS USING SUPPLEMENTARY DIFFERENCE SETS." Far East Journal of Theoretical Statistics 52, no. 5 (November 12, 2016): 333–43. http://dx.doi.org/10.17654/ts052050333.
Full textPark, Sung H., and Hyo T. Kwon. "Slope-rotatable designs with equal maximum directional variance for second order response surface models." Communications in Statistics - Theory and Methods 27, no. 11 (January 1998): 2837–51. http://dx.doi.org/10.1080/03610929808832258.
Full textUkaegbu, et al., Eugene C. "of Prediction Variance Properties of Rotatable Central Composite Designs for 3 to 10 Factors." International Journal of Computational and Theoretical Statistics 2, no. 2 (November 1, 2015): 87–97. http://dx.doi.org/10.12785/ijcts/020203.
Full textRajyalakshmi, K., and B. Re Victorbabu. "An Empirical Study of Second Order Rotatable Designs under Tri-Diagonal Correlated Structure of Errors using Incomplete Block Designs." Sri Lankan Journal of Applied Statistics 17, no. 1 (April 28, 2016): 1. http://dx.doi.org/10.4038/sljastats.v17i1.7842.
Full textVarghese, Eldho, Seema Jaggi, and V. K. Sharma. "Rotatable Response Surface Designs in the Presence of Differential Neighbour Effects from Adjoining Experimental Units." Calcutta Statistical Association Bulletin 67, no. 3-4 (September 2015): 163–86. http://dx.doi.org/10.1177/0008068320150305.
Full text