Academic literature on the topic 'Rotary-wing UAV'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotary-wing UAV.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rotary-wing UAV"
Krishnakumar, R., K. Senthil Kumar, and T. Anand. "Design and Development of Vertical Takeoff and Horizontal Transition Mini Unmanned Aerial Vehicle." Advanced Materials Research 1016 (August 2014): 436–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.436.
Full textPeng, Kemao. "Autonomous Mission Management Based Nonlinear Flight Control Design for a Class of Hybrid Unmanned Aerial Vehicles." Guidance, Navigation and Control 01, no. 02 (June 2021): 2150009. http://dx.doi.org/10.1142/s2737480721500096.
Full textÜNAL, Beytullah, Tamer SAVAŞ, and Işıl YAZAR. "DESIGN OF A SPRAYING QUADCOPTER." First Issue of 2019, no. 2019.01 (December 18, 2019): 3–9. http://dx.doi.org/10.23890/ijast.2019.0101.
Full textGonzalez, José Cerdeira, Roberto Ortiz Garrido, and Antonio Eduardo Carrilho da Cunha. "Rotary-Wing UAV Mission Planning Aided by Supervisory Control." IFAC Proceedings Volumes 43, no. 12 (2010): 324–30. http://dx.doi.org/10.3182/20100830-3-de-4013.00054.
Full textZhan, Cheng, and Renjie Huang. "Energy Efficient Adaptive Video Streaming With Rotary-Wing UAV." IEEE Transactions on Vehicular Technology 69, no. 7 (July 2020): 8040–44. http://dx.doi.org/10.1109/tvt.2020.2993303.
Full textAhmed, Bilal, Hemanshu R. Pota, and Matt Garratt. "Flight control of a rotary wing UAV using backstepping." International Journal of Robust and Nonlinear Control 20, no. 6 (May 12, 2009): 639–58. http://dx.doi.org/10.1002/rnc.1458.
Full textZeng, Yong, Jie Xu, and Rui Zhang. "Energy Minimization for Wireless Communication With Rotary-Wing UAV." IEEE Transactions on Wireless Communications 18, no. 4 (April 2019): 2329–45. http://dx.doi.org/10.1109/twc.2019.2902559.
Full textYan, Hua, Yunfei Chen, and Shuang-Hua Yang. "New Energy Consumption Model for Rotary-Wing UAV Propulsion." IEEE Wireless Communications Letters 10, no. 9 (September 2021): 2009–12. http://dx.doi.org/10.1109/lwc.2021.3090772.
Full textGuo, Huiqiang, Mingzhe Li, Pengfei Sun, Changfeng Zhao, Wenjie Zuo, and Xiaoying Li. "Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design." Advances in Mechanical Engineering 13, no. 7 (July 2021): 168781402110349. http://dx.doi.org/10.1177/16878140211034999.
Full textKumar, K. Senthil, and A. Mohamed Rasheed. "Development of Rotary Wing Mini UAS for Civilian Applications." Unmanned Systems 01, no. 02 (October 2013): 247–58. http://dx.doi.org/10.1142/s2301385013400050.
Full textDissertations / Theses on the topic "Rotary-wing UAV"
Beyers, Coenraad Johannes. "Motion planning algorithms for autonomous navigation for a rotary-wing UAV." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80231.
Full textENGLISH ABSTRACT: This project concerns motion planning for a rotary wing UAV, where vehicle controllers are already in place, and map data is readily available to a collision detection module. In broad terms, the goal of the motion planning algorithm is to provide a safe (i.e. obstacle free) flight path between an initial- and goal waypoint. This project looks at two specific motion planning algorithms, the Rapidly Exploring Random Tree (or RRT*), and the Probabilistic Roadmap Method (or PRM). The primary focus of this project is learning how these algorithms behave in specific environments and an in depth analysis is done on their differences. A secondary focus is the execution of planned paths via a Simulink simulation and lastly, this project also looks at the effect of path replanning. The work done in this project enables a rotary wing UAV to autonomously navigate an uncertain, dynamic and cluttered environment. The work also provides insight into the choice of an algorithm for a given environment: knowing which algorithm performs better can save valuable processing time and will make the entire system more responsive.
AFRIKAANSE OPSOMMING: ’n Tipiese vliegstuuroutomaat is daartoe in staat om ’n onbemande lugvaartvoertuig (UAV) so te stuur dat ’n stel gedefinieerde punte gevolg word. Die punte moet egter vooraf beplan word, en indien enige verandering nodig is (bv. as gevolg van veranderinge in die omgewing) is dit nodig dat ’n menslike operateur betrokke moet raak. Vir voertuie om ten volle outonoom te kan navigeer, moet die voertuig in staat wees om te kan reageer op veranderende situasies. Vir hierdie doel word kinodinamiese beplanningsalgoritmes en konflikdeteksiemetodes gebruik. Hierdie projek behels kinodinamiese beplanningsalgoritmes vir ’n onbemande helikopter, waar die beheerders vir die voertuig reeds in plek is, en omgewingsdata beskikbaar is vir ’n konflikdeteksie-module. In breë terme is die doel van die kinodinamiese beplanningsalgoritme om ’n veilige (d.w.s ’n konflikvrye) vlugpad tussen ’n begin- en eindpunt te vind. Hierdie projek kyk na twee spesifieke kinodinamiese beplanningsalgoritmes, die “Rapidly exploring Random Tree*” (of RRT*), en die “Probabilistic Roadmap Method” (of PRM). Die primêre fokus van hierdie projek is om die gedrag van hierdie algoritmes in spesifieke omgewings te analiseer en ’n volledige analise te doen op hul verskille. ’n Sekondêre fokus is die uitvoering van ’n beplande vlugpad d.m.v ’n Simulink-simulasie, en laastens kyk hierdie projek ook na die effek van padherbeplanning. Die werk wat gedoen is in hierdie projek stel ’n onbemande helikopter in staat om outonoom te navigeer in ’n onsekere, dinamiese en besige omgewing. Die werk bied ook insig in die keuse van ’n algoritme vir ’n gegewe omgewing: om te weet watter algoritme beter uitvoertye het kan waardevolle verwerkingstyd bespaar, en verseker dat die hele stelsel vinniger kan reageer.
Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.
Full textMcEwen, Matthew D. "Dynamic system identification and modeling of a rotary wing UAV for stability and control analysis." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA349878.
Full textGleeson, Jeremy Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "Finding the shipboard relative position of a rotary wing unmanned aerial vehicle (UAV) with ultasonic ranging." Awarded by:University of New South Wales - Australian Defence Force Academy, 2008. http://handle.unsw.edu.au/1959.4/38978.
Full textRathore, Ankush, and ankushrathore@yahoo com. "A systems approach to model the conceptual design process of vertical take-off unmanned aerial vehicle." RMIT University. School of Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20061114.103443.
Full textMa, Ling. "Development of Fault Detection and Diagnosis Techniques with Applications to Fixed-wing and Rotary-wing UAVs." Thesis, 2011. http://spectrum.library.concordia.ca/7466/1/MA_MASc_S20..pdf.
Full textBooks on the topic "Rotary-wing UAV"
McEwen, Matthew D. Dynamic system identification and modeling of a rotary wing UAV for stability and control analysis. Monterey, Calif: Naval Postgraduate School, 1998.
Find full textDynamic System Identification and Modeling of a Rotary Wing UAV for Stability and Control Analysis. Storming Media, 1998.
Find full textBook chapters on the topic "Rotary-wing UAV"
Wu, Fahui, Dingcheng Yang, and Lin Xiao. "Energy Minimization for Rotary-Wing UAV Enabled WPCN." In Intelligent Robotics and Applications, 27–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27538-9_3.
Full textAhmed, Bilal, and Hemanshu R. Pota. "Dynamic Compensation for Control of a Rotary wing UAV Using Positive Position Feedback." In Unmanned Aerial Vehicles, 43–56. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1110-5_5.
Full textGöktoğan, Ali Haydar, Salah Sukkarieh, Mitch Bryson, Jeremy Randle, Todd Lupton, and Calvin Hung. "A Rotary-wing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management." In Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, U.S.A. June 8–10, 2009, 467–84. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-8764-5_24.
Full textGomes, Alexandre, Bruno J. Guerreiro, Rita Cunha, Carlos Silvestre, and Paulo Oliveira. "Sensor-Based 3-D Pose Estimation and Control of Rotary-Wing UAVs Using a 2-D LiDAR." In ROBOT 2017: Third Iberian Robotics Conference, 718–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70833-1_58.
Full textConference papers on the topic "Rotary-wing UAV"
Xu, Yaojin, Long Di, and YangQuan Chen. "Consensus Based Formation Control of Multiple Small Rotary-Wing UAVs." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47844.
Full textBilal Ahmed, Hemanshu R. Pota, and Matt Garratt. "Rotary wing UAV position control using backstepping." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434589.
Full textHui Xie, Alan Lynch, and Martin Jagersand. "IBVS of a rotary wing UAV using line features." In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2014. http://dx.doi.org/10.1109/ccece.2014.6901119.
Full textHanford, Scott, Lyle Long, and Joseph Horn. "A Small Semi-Autonomous Rotary-Wing Unmanned Air Vehicle (UAV)." In Infotech@Aerospace. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7077.
Full textAhmed, Bilal, Hemanshu R. Pota, and Matt Garratt. "Flight control of a rotary wing UAV - a practical approach." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4738917.
Full textGrobler, P. R., and H. W. Jordaan. "Autonomous Vision Based Landing Strategy for a Rotary Wing UAV." In 2020 International SAUPEC/RobMech/PRASA Conference. IEEE, 2020. http://dx.doi.org/10.1109/saupec/robmech/prasa48453.2020.9041238.
Full textAhmed, Bilal, and Hemanshu R. Pota. "Flight control of a Rotary wing UAV using adaptive backstepping." In 2009 IEEE International Conference on Control and Automation (ICCA). IEEE, 2009. http://dx.doi.org/10.1109/icca.2009.5410398.
Full textKong, Changduk, Jongha Park, and Myoungcheol Kang. "A Study on Transient Performance Characteristics of the CRW Type UAV Propulsion System During Flight Mode Transition." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68400.
Full textWheeler, Jei. "Tactical Close Aerial Support for Public Events by Rotary Wing UAV." In Infotech@Aerospace. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-6953.
Full textSanchez, L. A., O. Santos, H. Romero, S. Salazar, and R. Lozano. "Nonlinear and optimal real-time control of a rotary-wing UAV." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6315498.
Full text