Academic literature on the topic 'Rotary engine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotary engine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rotary engine"

1

Chaudhari, Vinayak. "Rotary Engine." International Journal for Research in Applied Science and Engineering Technology 8, no. 7 (July 31, 2020): 456–59. http://dx.doi.org/10.22214/ijraset.2020.7075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Тимошевський, Борис Георгійович, Олександр Сергійович Митрофанов, Андрій Станіславович Познанський, and Аркадій Юрійович Проскурін. "АНАЛІЗ КОНСТРУКЦІЇ ТА ТЕХНОЛОГІЇ ВИГОТОВЛЕННЯ ПЕРСПЕКТИВНИХ РОТОРНО-ПОРШНЕВИХ ДВИГУНІВ." Aerospace technic and technology, no. 4 (August 28, 2020): 28–37. http://dx.doi.org/10.32620/aktt.2020.4.04.

Full text
Abstract:
The article discusses the main directions of development of creating new modern and improving existing rotary piston engines. The need for a systematic analysis of existing similar engine designs is established to separate and systematize their advantages and disadvantages at the design stage. As an analysis of the design and manufacturing technology of the existing most promising rotary piston engines, turbocompressor-type circuits with a movable cylinder block is considered, the engines in which the combustion takes place outside the working cylinder, the drum-piston type with movable combustion chambers, rotary expanders, etc. It is established that the structure of the housing of rotary piston engines with an internal cylindrical surface, in which the rotor with working cylinders is located, allows the creation of economical and compact engines. This structure of the engines allows you to reduce vibration and make them safer to use. A comparison of the mechanisms of motion of existing rotary piston engines. Based on the analysis of existing schemes and the design of modern rotary piston engines, a sample of a new design 12 RPE-4.4/1.75 rotary piston engine is designed. The design and basic parameters of a new model of the 12 RPE-4.4/1.75 rotary piston engine with adjustable spool air distribution are presented. The engine has twelve evenly spaced cylinders, provides a balanced engine, and the ability to start at any position of the rotor. The design of the engine designed provides for a central control cam shaft, the rotation of which allows you to adjust the valve timing and engine operation due to the degree of filling of the cylinder in a fairly wide range. A feature of the design of the engine is also that the control cam allows you to change the direction of rotation of the central rotor. It was found that the design of the crank mechanism of the 12 RPE-4.4/1.75 engine is simple in structure and production technology, as well as more reliable compared to similar existing rotary piston engines.
APA, Harvard, Vancouver, ISO, and other styles
3

Ki, Dockjong, and Heeju Choi. "Development of a Separate Type Rotary Engine." Journal of the Korean Society of Propulsion Engineers 21, no. 4 (August 1, 2017): 71–78. http://dx.doi.org/10.6108/kspe.2017.21.4.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Espinosa, Luis F., and Petros Lappas. "Mathematical Modelling Comparison of a Reciprocating, a Szorenyi Rotary, and a Wankel Rotary Engine." Nonlinear Engineering 8, no. 1 (January 28, 2019): 389–96. http://dx.doi.org/10.1515/nleng-2017-0082.

Full text
Abstract:
Abstract This paper provides an explanation of the geometry, design, and operational principles for the three engines; having special emphasis in the Szorenyi rotary engine which has a deforming rhombus revolving inside a mathematically defined stator. A basic ideal mathematical simulation of those engines were performed, assuming the Otto cycle for the three engines. Also, it assumes the volumetric efficiency of 100%, a wide-open throttle (WOT), no knock nor any mechanical or thermal losses. This simulation focuses on how the fuel burns during combustion, creating pressure and thus, net work. A comparison in pressure traces and cycle performance is made. The study concludes analysing and comparing the ignition advance; finding the best advance for each engine thus the net work between the three engines during one working cycle. Finally, this paper analyses how the different volume change ratio for the combustion chamber of the Szorenyi, Wankel and the reciprocating engine have an effect in the pressure, net work and thermal efficiency generated inside the chamber during combustion for every working cycle.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, J. H., D. J. Lu, Zhuang De Jiang, and X. N. Chen. "A Novel Micro Sliding Rotary Engine." Key Engineering Materials 339 (May 2007): 183–88. http://dx.doi.org/10.4028/www.scientific.net/kem.339.183.

Full text
Abstract:
In recent years, there is an effort to develop a portable, autonomous micro power generation system to obtain an order of magnitude improvement in energy density over general alkaline or lithium ion batteries. As hydrocarbon fuels have much higher energy to weight ratios than general batteries, researches to realize micro-engines fueled by such hydrocarbon fuels are carried out in some universities or institutes. The first key problem of the researches is how to get a micro-engine structure suitable for MEMS (Micro-Electro Mechanical Systems) fabrication. This micro-engine structure needs characteristics such as planar geometry, self-valving operation and a minimal number of moving parts and so on. In this paper, a micro sliding rotary type combustion engine structure is presented and described. The intrinsic characteristics of the engine housing curve named of “kindred cardioids curve” are described in details. The structural scheme and cycle process of the micro-engine are discussed. Some performance parameters of the micro engine are theoretically calculated with H2-Air mixture and specified geometry parameters. The primitive calculated results indicate that the sliding rotary combustion engine is workable and effective.
APA, Harvard, Vancouver, ISO, and other styles
6

Okimoto, Haruo. "The Renesis rotary engine." MTZ worldwide 63, no. 10 (October 2002): 7–9. http://dx.doi.org/10.1007/bf03227573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Jin Zhou, Cun Yun Pan, Wen Min Li, Lei Zhang, and Hu Chen. "The Study of Friction Power Loss of Piston Group of a Twin-Rotor Engine." Applied Mechanics and Materials 620 (August 2014): 375–81. http://dx.doi.org/10.4028/www.scientific.net/amm.620.375.

Full text
Abstract:
Compared with the conventional piston engines, the new rotary engine has many significant advantages, such as smaller volume and higher power density. Current studies at home and abroad are mainly focusing on aspects of its structural design, kinematics, dynamics analysis, except mechanical efficiency. In conventional piston engines, frictional loss of the piston group accounted for 65% of the total friction power loss[1]. In order to provide the scientific basis for designing low friction piston of the rotary engine, this paper combine the average two-dimensional Reynolds equation, the asperity contacts equation, viscosity-temperature equation and loads balance equation, proposing a method for calculating the friction power loss, and the applying the method to calculate the friction power loss of piston group of a new rotary engine.
APA, Harvard, Vancouver, ISO, and other styles
8

SZWAJA, Stanisław, and Kazimierz RZADKOSZ. "Conception of a hybrid pneumatic-combustion rotary vane engine – challenge and reality." Combustion Engines 175, no. 4 (November 1, 2018): 35–39. http://dx.doi.org/10.19206/ce-2018-405.

Full text
Abstract:
The paper presents a new concept of applying a rotary vane engine working as the hybrid system including both a combustion engine and a pneumatic motor, which were working simultaneously. In the beginning, review on both unconventional piston engine designs and similar like solutions on rotary vane engines were conducted. Next, description of the conceptual engine was presented. The concept was realized in practice. The prototype engine was built and it was preliminary investigated focusing on problems with cold start and misfiring events which occurred. The engine was tested on LPG and gasoline, however, its main target is to feed it with natural gas. This approach is justified as far as the engine finally might work in natural gas reduction stations and would provide electricity of 1kW power for station’s own demands.
APA, Harvard, Vancouver, ISO, and other styles
9

Barnes, George. "Rotary Curie‐point heat engine." Physics Teacher 24, no. 4 (April 1986): 204–10. http://dx.doi.org/10.1119/1.2341985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fernandez-Pello, A. Carlos, Albert P. Pisano, Kelvin Fu, David C. Walther, Aaron Knobloch, Fabian Martinez, Matt Senesky, et al. "MEMS Rotary Engine Power System." IEEJ Transactions on Sensors and Micromachines 123, no. 9 (2003): 326–30. http://dx.doi.org/10.1541/ieejsmas.123.326.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rotary engine"

1

Dupont, Benoît. "Conception du compresseur supersonique du Rim Rotor Rotary Ramjet Engine." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/8823.

Full text
Abstract:
La demande pour les ressources énergétiques est en hausse alors que leur disponibilité est en baisse. Dans ce contexte, l’industrie du transport et de l’énergie est à la recherche de petits moteurs efficaces et puissants et le Rim Rotor Rotary Ramjet Engine (R4E) pourrait correspondre à ces critères. Or, en ce moment, le potentiel de ce moteur est limité, car son compresseur supersonique entraîne des pertes d’efficacité lorsque le rotor tourne à son nombre de Mach tangentiel optimal qui est de 2. Le présent mémoire compile toutes les notions requises pour comprendre le fonctionnement d’un compresseur supersonique lors de son démarrage et de concevoir le compresseur le plus approprié pour le R4E, tant en démarrage qu’en régime permanent. Pour se faire, des concepts de cascades inspirés des compresseurs et des méthodes de démarrage des moteurs ramjet actuels ont été générés et validés à l’aide de modèles analytiques. Les concepts sont par la suite essayés expérimentalement sous la forme de cascades à l’aide d’une soufflerie supersonique. Bien que le modèle analytique montre que les cascades munies de canaux de purge soient plus performantes et plus robustes en conditions off-design, ces dernières n’ont jamais démarré lors des expérimentations même si les canaux ont été agrandis et multipliés. Ainsi, parmi tous les concepts essayés, celui qui démarre par survitesse et qui comporte des canaux de succion de couche limite à son col a donné les meilleurs résultats. Il est très stable et permet d’obtenir un ratio de pression statique de 4.25 et un recouvrement de pression totale de 89 %, pour une efficacité isentropique de 92 % à un nombre de Mach tangentiel de 2. Par contre, il est à noter qu’il n’a pas été possible de mesurer la pression totale. Elle a plutôt été estimée à partir des images de strioscopie tirées lors des essais. Comme on ne dispose pas d’une structure permettant d’essayer le compresseur rotatif à Mach 2, il a fallu approximer l’influence de l’accélération centrifuge sur l’écoulement de la cascade et trouver un moyen d’intégrer le nouvel aubage à la roue. Un modèle permettant d’estimer les paramètres d’une couche limite se développant sur une plaque plane en rotation a permis de déduire que l’accélération transverse n’aurait qu’un effet légèrement favorable, puisqu’il permet d’amincir l’épaisseur de déplacement, réduisant ainsi les risques d’interaction en la couche limite et les chocs. Finalement, les canaux de succion de couche limite du compresseur pourraient permettre d’alimenter un système de refroidissement qui limiterait la température à la jante à 820 K. Le R4E pourrait devenir l’avenir des systèmes de régénération électrique pour les véhicules hybrides. Il serait aussi intéressant pour une utilisation dans les petites centrales thermiques des régions éloignées. Ce grand potentiel d’utilisation provient de la grande densité de puissance du moteur, de sa simplicité et de son très faible coût de fabrication et de maintenance.
APA, Harvard, Vancouver, ISO, and other styles
2

Bagheri, Amirhossein. "Preliminary Analysis of an Innovative Rotary Displacer Stirling Engine." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822801/.

Full text
Abstract:
Stirling engines are an external combustion heat engine that converts thermal energy into mechanical work that a closed cycle is run by cyclic compression and expansion of a work fluid (commonly air or Helium) in which, the working fluid interacts with a heat source and a heat sink and produces network. The engine is based on the Stirling cycle which is a subset of the Carnot cycle. The Stirling cycle has recently been receiving renewed interest due to some of its key inherent advantages. In particular, the ability to operate with any form of heat source (including external combustion, flue gases, alternative (biomass, solar, geothermal) energy) provides Stirling engines a great flexibility and potential benefits since it is convinced as engines running with external heat sources. However, several aspects of traditional Stirling engine configurations (namely, the Alpha, Beta, and Gamma), specifically complexity of design, high cost, and relatively low power to size and power to volume ratios, limited their widespread applications to date. This study focuses on an innovative Stirling engine configuration that features a rotary displacer (as opposed to common reciprocating displacers), and aims to utilize analytical and numerical analysis to gain insights on its operation parameters. The results are expected to provide useful design guidelines towards optimization. The present study starts with an overview of the Stirling cycle and Stirling engines including both traditional and innovative rotary displacer configurations, and their major advantages and disadvantages. The first approach considers an ideal analytical model and implements the well-known Schmidt analysis assumptions for the rotary displacer Stirling engine to define the effects of major design and operation parameters on the performance. The analytical model resulted in identifying major variables that could affect the engine performance (such as the dead volume spaces, temperature ratios and the leading phase angle). It was shown that the dead volume could have a drastic effect over the engine performance and the optimum phase angle of the engine is 90o. The second approach considers a non-ideal analytical model and aims to identify and account the main sources of energy losses in the cycle to better represent the engine performance. The study showed that the ideal efficiency and the non-ideal efficiency could have 15% difference that could have as an enormous effect on the engine performance.
APA, Harvard, Vancouver, ISO, and other styles
3

DRUMOND, CARLO CESAR. "NUMERICAL SIMULATION OF A ROTARY STIRLING ENGINE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30089@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O presente trabalho estuda um motor de deslocamento positivo Stirling rotativo. Dois modelos de simulação para este motor Stirling rotativo são desenvolvidos. O primeiro modelo utiliza o método isotérmico, mediante o qual a câmara de expansão/compressão do motor está à mesma temperatura do reservatório térmico com que troca calor. O segundo modelo utiliza o método de volumes de controle, no qual o motor é dividido em cinco volumes de controle: as câmaras de expansão e compressão, o aquecedor, o resfriador e o compartimento rotativo. Para cada volume de controle aplicam-se as equações de conservação de massa e energia e de equações de estado do gás. O sistema de equações diferenciais ordinárias resultantes do segundo modelo, é integrado, permitindo obter-se a variação no ângulo do eixo para todas as variáveis termodinâmicas do motor (pressão, temperatura, etc.). Dadas as condições de operação e a geometria do motor rotativo em estudo, os modelos preveem resultados globais e transientes ângulo a ângulo. Os resultados dos modelos são confrontados com resultados teóricos disponíveis na literatura.
The present work studies a positive displacement rotary Stirling engine. Two simulation models for this rotary Stirling engine are developed. The first model applies the isothermal method, in which the gas at the engine expansion / compression chamber has the same temperatures of the thermal reservoir. The second model uses the control volume method, in which the engine is divided into five control volumes: the expansion and compression chambers, the heater, the chiller and the rotary chamber. For each control volume the equations of conservation of mass and energy and the equation of state, are applied. The system of ordinary differential equations resulting from the second model is integrated allowing to obtain the variation in the axis angle for all thermodynamic variables of the motor (pressure, temperature, etc.). Given the operating conditions and geometry of the rotating motor under study, the models provide global and transient results from angle to angle. Results from two models are confronted with theoretical results available in the literature.
APA, Harvard, Vancouver, ISO, and other styles
4

Picard, Mathieu. "Dynamique des gaz et combustion du Rim-Rotor Rotary Ramjet Engine (R4E)." Mémoire, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/1607.

Full text
Abstract:
Le Rim-Rotor Rotary Ramjet Engine (R4E) a le potentiel de remplacer les turbines à gaz de 1 MW et moins en offrant : (1) une densité de puissance de 7.6 kW/kg, soit le double des turbines à gaz actuelles, (2) une meilleure fiabilité et un moindre coût par sa pièce mobile unique et (3) une efficacité de plus de 20 %, soit similaire aux turbines à gaz de cette puissance.Le R4E convertit la grande vitesse tangentielle du mélange air-carburant, idéalement 1000 m/s, en une grande pression dans la chambre de combustion. La combustion des réactifs augmente le volume du gaz ce qui force les produits à sortir à une grande vitesse tangentielle. La poussée générée est récupérée en travail mécanique à l'arbre directement ou est convertie en électricité. Ce travail présente la conception de la géométrie des propulseurs à l'aide d'un modèle 1D généralisé basé sur l'analyse préliminaire, ainsi que la validation expérimentale d'un prototype faisant la preuve de concept du R4E à travers 5 étapes principales s'étendant sur 2 versions du prototype : (1) la friction aérodynamique, (2) l'écoulement dans le moteur, (3) l'allumage, (4) la combustion et (5) la démonstration de la puissance nette des ailettes. La friction aérodynamique de la paroi externe du Rim-Rotor dépasse de 35 % les modèles actuels ce qui en fait le mécanisme de perte le plus important.Le débit massique dans le moteur est de 30 % inférieur à la valeur estimée par le modèle 1D pour la géométrie testée. La puissance de trainée des statoréacteurs sans combustion mesurée est en ligne avec la puissance prédite pour un débit massique corrigé expérimentalement. En ce qui concerne la combustion dans le moteur, le champ centrifuge extrême domine le mécanisme de propagation de la flamme. Un modèle simple de flottaison est utilisé pour prédire la longueur du front de flamme, représentant les produits chauds qui ont tendance à"flotter" sur les réactifs froids. Un modèle numérique est élaboré pour valider la propagation de la flamme jusqu'à une accélération centrifuge de 1.1 million de g et montre une bonne corrélation avec le modèle simple. Une efficacité de combustion de 85% est démontrée avec un second prototype pour une accélération centrifuge jusqu'à 284 000 g, soit 25 fois supérieures à la plus grande valeur testée dans la littérature. Une fois la combustion stabilisée, ce prototype a été en mesure de produire une légère poussée, une première pour les moteurs à statoréacteur rotatif.
APA, Harvard, Vancouver, ISO, and other styles
5

Rancourt, David. "Analyse structurelle et validation expérimentale d'un Rim-Rotor Rotary Ramjet Engine (R4E)." Mémoire, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/1612.

Full text
Abstract:
Le Rim-Rotor Rotary Ramjet Engine (R4E) est un moteur très haute densité de puissance utilisant des statoréacteurs en rotation pour produire un couple à grande vitesse angulaire.Le design structurel d'une première génération de R4E est présenté dans ce mémoire ainsi qu'une validation expérimentale avec combustion haute température. Ces travaux s'imbriquent dans un programme de recherche où l'objectif ultime est de démontrer expérimentalement qu'il est possible de produire de la puissance positive de ce type de moteur. La structure principale du moteur est basée sur l'utilisation d'un Rim-Rotor, un anneau de Carbone-PEEK unidirectionnel, qui reprend partiellement le chargement des propulseurs en compression. Un moyeu en aluminium en une pièce inclut les propulseurs et supporte le système d'allumage inductif intégré à la structure. Ce dernier a été caractérisé indépendamment afin de connaître l'effet des paramètres tels la distance entre les électrodes sur la puissance et l'énergie des étincelles.Le concept final proposé pèse 76 g, ne contient que 5 pièces dans un assemblage unique et peut résister à une vitesse tangentielle de 330 m/s (120 krpm) au niveau des propulseurs lors d'une combustion d'hydrogène de 1 sec. Un autre concept présenté est conçu pour résister 560 m/s (200 krpm) pour des durées de combustion très courtes, sans échauffement significatif des composants. Un modèle structurel analytique est proposé et validé par un modèle numérique ainsi que des essais expérimentaux sans combustion réalisés jusqu'à 188 krpm sans rupture.Le prototype conçu pour la combustion est validé par rapport à ses paramètres de conception et une rupture des pales de turbine survient tel que prédit par le modèle couplé thermique-structurel numérique. Les recherches ont démontré que le concept d'un R4E est viable et qu'il a le potentiel d'atteindre une vitesse tangentielle de près de 1000 m/s en utilisant des matériaux disponibles aujourd'hui. Les dissimilitudes d'expansion thermique entre les composantes, la différence de rigidité entre les pièces de l'assemblage ainsi que le transfert de chaleur vers le Rim-Rotor ont été identifiés comme des considérations importantes pour les futurs concepts de R4E.
APA, Harvard, Vancouver, ISO, and other styles
6

Hudson, Barry, and not given. "The Production of Power by Pure Rotary Means." RMIT University. Architecture and Design, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090213.150107.

Full text
Abstract:
The chapters subsequent to the design discussion describe the evolution of the project. During the progression of the project, four case studies were undertaken. Each of these case studies involved the design of an engine, using the principles expounded in the early chapters. The parts of three of these were manufactured. The project has culminated in case study four which consisted of the conception, design and component manufacture of a new type of engine: the Hudson 5 Cycle Rotary Engine. It does not reciprocate, nor is it orbital (Sarich) and is not peritrocoidal (Mazda). It operates with pure rotary motion. It also promises to have a favourable environmental aspect due to its excellent fuel efficiency and because of its exceptional power to weight and power to size ratios plus a low component count. The small size and low number of parts make it very economical to produce, both in materials and energy.
APA, Harvard, Vancouver, ISO, and other styles
7

Stanten, Raymond Anthony. "Heat transfer and performance calculations in a rotary engine." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/101304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karaca, Mehmet. "Overal Performance Prediction Of Turbo Rotary Compound (turc) Engine Using Simulation Results Of Engine Components." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606491/index.pdf.

Full text
Abstract:
The thesis proposes an overall performance estimation procedure for a new turbo-rotary compound engine (TURC) and an associated novel thermodynamic cycle. In this engine, two or multiple spools are lined up in series within the engine. In the front spool, positive displacement rotary vane type turbines drive axial compressor the performance of which were estimated using stage stacking calculations. In the back spool, axial turbine stages drive positive displacement rotary vane type compressors, the performance of axial turbine was predicted by series matching of turbine stages. Two air streams feed separately the customary turbo components and the rotary vane components, respectively. Accordingly, the primary high mass flow through the axial compressors and turbines undergoes Bryton cycle, where as the secondary, low mass flow through the positive displacement rotary components is mainly undergoes Akmandor cycle, which is a novel thermodynamic cycle. The energy consumed internally by the engine is minimized because less input shaft power is needed for the rotary vane compressors and higher inlet temperatures and less cooling can be tolerated by the intermittent combustion rotary vane turbines. The result is a radical improvement in both efficiency and net power output. But this result can be estimated, since the novel engine is the combination of a high efficiency internal combustion engine and high performance gas turbine engine. Aerothermodynamics and spool matching calculations comparing a T56-A14 core with a TURC of similar size and compression ratio show that the new engine provides superior performance characteristics by increasing the net output work by 100% and decreasing the specific fuel consumption by 20%.
APA, Harvard, Vancouver, ISO, and other styles
9

SILVA, FILIPE TEIXEIRA DE FREITAS E. "DEVELOPMENT AND EXPERIMENTAL EVALUATION OF A ROTARY INTERNAL COMBUSTION ENGINE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34206@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
No presente trabalho foi realizada a construção, montagem, revisão de projeto e avaliação experimental preliminar de um novo motor a combustão interna rotativo por ignição por centelha, que pode ser classificado como cat-and-mouse engine ou Twin-Rotor Piston Engine. Nesse motor, dois pares de deslocadores são montados sobre dois rotores, que giram em velocidade variável em dentro de uma câmara cilindrica, de forma a conferir uma variação da posição angular relativa entre deslocadores e, assim, formar quatro câmaras de volumes variáveis com o tempo, a fim de se realizar processos termodinâmicos equivalentes aos de um motor alternativo de quatro tempos. Esse motor destaca-se por possuir um sistema inovador que permite a mudança do movimento dos rotores e deslocadores, de forma a aumentar o volume deslocado e a taxa de compressão das câmaras onde ocorrem os processos termodinâmicos. Tal dispositivo permite alterar e otimizar a taxa de compressão para diferentes combustíveis. Os componentes do motor foram usinados de acordo com o projeto e o protótipo foi montado, revisado e ajustado, de forma a garantir a operacionalidade do equipamento. Posteriormente, o motor foi montado em uma bancada para se efetuar testes preliminares de acionamento externo, afim de se medir vazão volumétrica, potência fornecida e pressão de compressão no ponto morto superior em função da velocidade angular. A revisão bibliográfica do trabalho contém definições úteis na classificação de motores rotativos, além de discutir suas especificidades características.
The present work describes the construction, assembly, project revision and preliminary experimental evaluation of an innovative rotary spark ignition internal combustion engine. First, a literature survey was carried out. Some useful definitions were found for rotary engines classification as well as some of their specific characteristics were discussed. The engine can be classified as cat-andmouse engine or Twin-Rotor Piston Engine. It is characterized by two pairs of displacers, assembled over two rotors, which rotate at a variable rotational speed within a cylindrical cavity. The driving mechanism is such that the relative distance between each pair of displacers varies continuously, thus providing the positive displacement effect. Therefore, the engine has four chambers, each one with its own time varying volume, so that thermodynamic processes, equivalent to those of a four-stroke reciprocating internal combustion engine, can take place. This engine presents a unique and innovative mechanism by which the compression ratio can be varied during operation, thus optimizing engine efficiency a for a given fuel. Engine components, designed in an effort previous to the present one, were fabricated according to the original project. A prototype was assembled, with all components following a routine of project revision, including measurements, uncertainties and adjustments. The engine was then placed on a test bench where preliminary non-firing external driving tests were carried out. They included: volumetric flow rate, driving (frictional) power and cylinder maximum pressure with displacer at the top dead center, all these parameters in terms of the primary shaft angular velocity.
APA, Harvard, Vancouver, ISO, and other styles
10

Tsakiroglou, G. B. "Performance modelling of a one-stroke rotary internal combustion engine." Thesis, University of Surrey, 1988. http://epubs.surrey.ac.uk/848135/.

Full text
Abstract:
The subject of this Thesis is the performance modelling and evaluation of the Rotary Internal Combustion One-Stroke Engine specified in Patent Application number PCT/GB 84/0048. A mathematical model, capable of simulating the various changes that take place during the cycle of the engine, has been formed and applied to the engine for testing its performance. Before forming the model the dimensions of the engine were calculated by considering the stressing of the main movable parts of the engine such as the driveshaft, radial sealing wall and rotary piston, as well as the surface area to volume ratio. Also the timing and conditions under which the engine operates were speci--fied and used as input to the model. The model incorporates six subroutines namely, "DATUM" which stores all the input constants and variables, "GEOMETRY" which calculates various geometrical engine parameters, "COMBUST" and "EXPAND" which simulate the ignition delay/combustion and expansion respectively, and "PERFORMANCE" which calculates the various performance parameters of the engine. The above model was run with different sets of fuel-air ratios/speeds as input. The performance evaluated has been tabulated and a performance map of the engine drawn. Typical pressure-volume and heat flux diagrams were plotted. Further, the model was tested, with different sets of operating variables as input, to optimise the principal dimensions and timing of the engine. The model was validated by adaption to simulate a two-stroke internal combustion reciprocating piston engine and run with MAN-B&W L55GB engine data. The output was compared with the figures quoted by the engine manufacturers. The comparison was favourable. Once the model had been validated a direct comparison was made between the internal combustion rotary one-stroke engine and the MAN-B&W L55GB engine. Costs were analysed and proposals of possible methods of optimising the design of the above engine formulated.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rotary engine"

1

Nahum, Andrew. The rotary aero engine. London: H.M.S.O. ; Lanham, MD : Obtainable in Canada and U.S.A. from Bernan-Unipub, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frasca, Joseph F. Elements of Frasca rotary engine design. Elyria, Ohio: Frasca Publications, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

The Wankel rotary engine: Introduction and guide. Ann Arbor, Mich: UMI, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dark, Harris Edward. The Wankel rotary engine: Introduction and guide. Ann Arbor, Mich: U.M.I., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, Hung Lee. Performance and combustion characteristics of direct-injection stratified-charge rotary engines. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Hung Lee. Performance and combustion characteristics of direct-injection stratified-charge rotary engines. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Newton, Linda Kathryn. The development of a high speed rotary engine. Birmingham: University of Birmingham, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Badgley, P. Stratified charge rotary aircraft engine technology enablement program: Final report. Wood-Ridge, N.J: The Division, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vilmann, Carl. Deformation analysis of rotary combustion engine housings: Final report on NASA grant NAG 3-456. [Houghton, Mich.]: Michigan Technological University, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamaguchi, Jack K. RX-7: The new Mazda RX-7 and Mazda rotary engine sports car. New York: St. Martins, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rotary engine"

1

Walker, James W., and Robert E. Mount. "The Stratified Charge Rotary Engine." In Automotive Engine Alternatives, 203–18. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9348-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nagao, Akihito, Hiroshi Ohzeki, and Yoshinori Niura. "Present Status and Future View of Rotary Engines." In Automotive Engine Alternatives, 183–201. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9348-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, J. H., D. J. Lu, Zhuang De Jiang, and X. N. Chen. "A Novel Micro Sliding Rotary Engine." In Progress of Precision Engineering and Nano Technology, 183–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-430-8.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakate, Nobuo, Tsutomu Shimizu, and Akihide Takami. "Applications of Ceramics for the Rotary Engine." In 4th International Symposium on Ceramic Materials and Components for Engines, 1042–49. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2882-7_116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Genchi, Giuseppe, and Francesco Sorge. "The Rotary Aero Engine from 1908 to 1918." In History of Mechanism and Machine Science, 349–62. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4132-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dimpelfeld, P. M., and P. O. Witze. "Velocity Measurements in a 5.8 liter Stratified-Charge Rotary Engine." In Applications of Laser Anemometry to Fluid Mechanics, 133–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83844-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dudás, László. "Developing a Rotary Internal Combustion Engine Characterised by High Speed Operation." In Lecture Notes in Mechanical Engineering, 79–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51189-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitsui, Norimasa, Patrick Havlik, Thierry Mesana, Jean Trinkl, Jean-Luc Tourres, Jean-Luc Demunck, Bernard Candelon, and Jean-Raoul Montiès. "An Electrically-Driven Rotary Blood Pump Based on the Wankel Engine." In Heart Replacement, 281–86. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-67023-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kulkarni, Sadanand, S. Satish Kumar, S. Santhosh Kumar, Umesh Kumar Sinha, Brijeshkumar Shah, K. Satish Kumar, A. J. Steve Mithran, and K. Monickavasagom Pillai. "Vibration Reduction in Indigenous Wankel Rotary Combustion Engine with Structured Layer Damping." In Lecture Notes in Mechanical Engineering, 461–68. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5701-9_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dudás, László. "Optimal Manufacturing Technology Determination for the Main Parts of a Rotary Internal Combustion Engine." In Lecture Notes in Mechanical Engineering, 14–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75677-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rotary engine"

1

Pehan, Stanislav, and Breda Kegl. "Rotary Engine Design." In Automotive and Transportation Technology Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bittencourt, Daniel, José Fernando Bittencourt, Armando Dias Stamile Soares, Jo˜ão L. V. Manguino, and Frederico Renan Sim˜ões Brand˜ão. "Bitt-rotator rotary engine." In 2019 SAE Brasil Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2019-36-0319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ohta, Yoshitaka, Susumu Ohkubo, Keiji Iino, Masatoshi Nagaoka, Keiji Nagano, and Nobuchika Katagiri. "Study of Coaxial Counter Rotating Rotary Tilling System at Front Rotary Type Compact Walking Tractor." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-32-0089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yarnamoto, Kozo, Toshihiro Yarnada, and Katsura Fukuyarna. "Development and Application of Rotary Shock Absorber." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kokuryo, Takashi, Hideaki Kobayashi, Masashi Takeuchi, and Masatoshi Nagaoka. "Development of Coaxial Counterrotating Rotary Tilling System." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mannisto, John F., and Robert Bazaz. "Structural Analysis of a Rotary Combustion Engine Rotor." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shapovalov, Vladimir. "The Two-Stroke Rotary Engine." In International Fall Fuels and Lubricants Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baer, Stephen C. "Rotary Liquid Piston Stirling Engine." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hartfield, Roy, and Timothy W. Ledlow. "Continuous Flow Rotary Vane Engine." In SAE 2014 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-1189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kamo, R., R. M. Kakwani, and W. Hady. "Adiabatic Wankel Type Rotary Engine." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/860616.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rotary engine"

1

Kowalski, Darin, and Andrew Biske. Unique Rotary Diesel Engine Generator Development. Warrendale, PA: SAE International, September 2010. http://dx.doi.org/10.4271/2010-32-0112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kweon, Chol-Bum M. A Review of Heavy-Fueled Rotary Engine Combustion Technologies. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada545309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeng, Dun-Zen, Ming-June Hsieh, Chih-Chuan Lee, and Yu Han. The Intake and Exhaust Pipe Effect on Rotary Engine Performance. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jeng, Dun-Zen, Ming-June Hsieh, Chih-Chuan Lee, and Yu Han. The Intake and Exhaust Pipe Effect on a Rotary Engine Performance. Warrendale, PA: SAE International, October 2012. http://dx.doi.org/10.4271/2012-32-0064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jeng, Dun-Zen, Ming-June Hsieh, Chih-Chuan Lee, and Yu Han. The Numerical Investigation on the Performance of Rotary Engine with Leakage, Different Fuels and Recess Sizes. Warrendale, PA: SAE International, October 2012. http://dx.doi.org/10.4271/2012-32-0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jeng, Dun-Zen, Ming-June Hsieh, Chih-Chuan Lee, and Yu Han. The Numerical Investigation on the Performance of Rotary Engine with Leakage, Different Fuels and Recess sizes. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hubmann, Christian, Frank Beste, Hubert Friedl, and Wolfgang Schoffmann. Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine Maintaining High Compactness and NVH Performance. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Testea, George. A Very High Performance Multi-Rotor Combustion Engine. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada267147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aaron Koopman. RAMGEN ROTOR CARTRIDGE FOR THE PRE-PROTOTYPE RAMGEN ENGINE. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/833214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roth, P. G. Probabilistic Rotor Design System (PRDS) -- Gas Turbine Engine Design. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada378908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography