Academic literature on the topic 'Rotary'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rotary.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rotary"
Cardinali, Filippo, and Gianluca Plotino. "Rotary Natives, Rotary Immigrants." Giornale Italiano di Endodonzia 30, no. 1 (June 2016): 1. http://dx.doi.org/10.1016/j.gien.2016.04.009.
Full textSekisov, Aleksandr, and Georgy Serga. "Rotary-screw systems for rotary kilns." E3S Web of Conferences 91 (2019): 02034. http://dx.doi.org/10.1051/e3sconf/20199102034.
Full textAkinin, K. P., A. E. Antonov, V. G. Kireyev, and A. A. Filomenko. "RETURN-ROTARY MOTION CONTROL SYSTEM OF ROTOR OF BRUSHLESS MAGNETOELECTRIC MOTOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2020, no. 55 (March 19, 2020): 58–66. http://dx.doi.org/10.15407/publishing2020.55.058.
Full textBazirake, Joseph Besigye, and Paul Bukuluki. "The Role of Rotary Clubs in Post-Conflict Peace Building: A Case of Northern Uganda (2006-2010)." International Letters of Social and Humanistic Sciences 10 (September 2013): 54–72. http://dx.doi.org/10.18052/www.scipress.com/ilshs.10.54.
Full textKawai, Ken-ichi. "Rotary forming." Journal of Japan Institute of Light Metals 58, no. 3 (March 30, 2008): 123–28. http://dx.doi.org/10.2464/jilm.58.123.
Full textSOMEYA, Atsushi. "Rotary Encoder." Journal of the Robotics Society of Japan 9, no. 7 (1991): 922–24. http://dx.doi.org/10.7210/jrsj.9.922.
Full textAbad, Pablo, Valentin Puente, José Angel Gregorio, and Pablo Prieto. "Rotary router." ACM SIGARCH Computer Architecture News 35, no. 2 (June 9, 2007): 116–25. http://dx.doi.org/10.1145/1273440.1250678.
Full textChaudhari, Vinayak. "Rotary Engine." International Journal for Research in Applied Science and Engineering Technology 8, no. 7 (July 31, 2020): 456–59. http://dx.doi.org/10.22214/ijraset.2020.7075.
Full textHoffmann, Hartmut, Michael Schweitzer, and Joachim Milberg. "Rotary Blanking." CIRP Annals 48, no. 1 (1999): 213–16. http://dx.doi.org/10.1016/s0007-8506(07)63168-0.
Full textAnthony, James. "Rotary instrumentation." Clinical Techniques in Small Animal Practice 16, no. 3 (August 2001): 182–85. http://dx.doi.org/10.1053/svms.2001.26459.
Full textDissertations / Theses on the topic "Rotary"
Walsh, Brendan Walsh Patrick. "Rotary." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-12052008-145205/.
Full textAlnakar, Raran, and Danilo Catovic. "Rotary parking system." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295808.
Full textAutomatiska parkeringssystem är avsedda att spara utrymme och skapa en bättre parkeringsupplevelse. I denna avhandling var huvudmålet att skapa ett funktionellt och användarvänligt roterande parkeringssystem. Systemet består av ett ramverk, likströmsmotor, drivlina, ultraljudssensor och plattformar. Majoriteten av konstruktionen består av plast, de återstående delarna är gjorda av metall. Systemet utvärderades med hjälp av två experiment, ett som mätte systemets hastighet och ett annat som mätte noggrannheten. Efter det första experimentet drogs slutsatsen att systemet fungerar bra för motsvarande hastighet. Det andra experimentet visade att förbättringar av noggrannheten kan göras.
Alnakar, Rayan, and Danilo Catovic. "Rotary parking system." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295808.
Full textAutomatiska parkeringssystem är avsedda att spara utrymme och skapa en bättre parkeringsupplevelse. I denna avhandling var huvudmålet att skapa ett funktionellt och användarvänligt roterande parkeringssystem. Systemet består av ett ramverk, likströmsmotor, drivlina, ultraljudssensor och plattformar. Majoriteten av konstruktionen består av plast, de återstående delarna är gjorda av metall. Systemet utvärderades med hjälp av två experiment, ett som mätte systemets hastighet och ett annat som mätte noggrannheten. Efter det första experimentet drogs slutsatsen att systemet fungerar bra för motsvarande hastighet. Det andra experimentet visade att förbättringar av noggrannheten kan göras.
Dupont, Benoît. "Conception du compresseur supersonique du Rim Rotor Rotary Ramjet Engine." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/8823.
Full textMontesanti, Richard Clement. "High bandwidth rotary fast tool servos and a hybrid rotary/linear electromagnetic actuator." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34987.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 541-555).
This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-off methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems. A fast tool servo (FTS) is a high-speed auxiliary servo axis that is added to a diamond turning machine (ultra-precision lathe) to allow generating free-form non-axisymmetric or textured surfaces on a workpiece. A rotary fast tool servo produces an in-and-out motion of the tool relative to a workpiece by swinging the tool along an arc having a fixed radius. The rotary fast tool servos developed in this project were designed for diamond turning prescription textured surfaces on small spherical workpieces (diameters in the range of 10 mm or less), and are suitable for generating free-form non-axisymmetric surfaces on similar-sized workpieces. Straightforward modifications would allow them to be used on larger workpieces. These rotary fast tool servos set new benchmarks for demonstrated closed-loop bandwidth (2 kHz and 10 kHz) and tool tip acceleration (400 g).
(cont.) The first machine, referred to as the 2 kHz rotary fast tool servo, uses a commercially available moving-magnet galvanometer as the actuator (Lorentz force), and provides proof-of-principles for a flexure bearing, small diamond tool and mounting method, circuit topology for a high bandwidth current-mode amplifier, and control system design. The following closed-loop performance is demonstrated for the 2 kHz rotary fast tool servo: -3dB bandwidth of 2 kHz, 20 g tool tip acceleration at 2 kHz, maximum tool travel of 50 [mu]m PP, and tool position noise level of 10 nm PP. The 2 kHz FTS is integrated with a diamond turning machine and used to produce optical quality textured surfaces on the face and outside diameter of aluminum workpieces while operating at 2 kHz. The machining tests validate that a rotary-type fast tool servo can be used to produce optical quality surfaces on a spherical workpiece from its pole to its equator. The second machine, referred to as the 10 kHz rotary fast tool servo, incorporates the proof-of-principles from the first machine and is the vehicle for developing the hybrid rotary/linear electromagnetic actuator used in it.
(cont.) The actuator is a normal-stress variable reluctance machine with a demonstrated order of magnitude increase in the peak torque and in the ratio of peak torque divided by the electrical power at its terminals, when compared to the actuator used in the 2 kHz FTS. By integrating the tool holder directly to the moving mass of the actuator to form a single rigid body, the overall torque-to-inertia ratio for the system and the frequency of the first uncoupled-mass resonance are both increased. The following closed-loop performance is demonstrated for the 10 kHz rotary fast tool servo: -3dB bandwidth of 10 kHz, 400 g tool tip acceleration at 5 kHz, 870 g tool tip acceleration at 10 kHz (aided by a stable mechanical resonance), maximum tool travel of 70 [mu]m PP, and tool position noise level of 1.4 to 2.5 nm rms (depending on the magnitude of the bias flux used). The hybrid rotary/linear electromagnetic actuator utilizes a constant bias magnetic flux, which linearizes the torque versus drive-current relationship for the actuator and provides up to half of the torque-producing magnetic flux in the rotor/stator air gaps. The actuator is similar to the rotary actuators used to drive and sustain a resonance in a mechanical oscillator in certain electric engraving heads.
(cont.) This research is distinguished from the prior art by the ability to generate closed-loop arbitrary trajectories for the tool tip. Using a separate current-mode amplifier for each stator half allows demonstrating closed-loop control of the rotary and linear degrees of freedom that are inherent in this class of actuators. This research is further distinguished from the prior art by a magnetic circuit that substantially decouples certain magnetic flux paths when a coil is used instead of a permanent magnet to provide the bias magnetic flux. This reduces the complexity of the actuator electrical dynamics from a MIMO system to a SISO system, and allows using loop-shaping techniques with classical control theory to design the control systems. Torque control for the hybrid rotary/linear actuator in the 10 kHz FTS is independent of force control, but force control requires a torque-generating current to act as an operating point. Alternate magnetic circuit topologies that fully decouple torque and force control are described and compared. Future work that utilizes the linear mode as an active suspension for improving the performance of a predominantly rotary system is considered. Using the experience gained by designing, building, and testing the 10 kHz FTS and hybrid rotary/linear actuator, future work involving alternate concepts for the actuator is suggested for a follow-on rotary fast tool servo, and a high bandwidth steering mirror.
by Richard Clement Montesanti.
Ph.D.
Qi, Fei. "Light-driven molecular rotary motors." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/434.
Full textRoy, Matthew J. "Rotary forming of cast aluminum." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44789.
Full textGrieve, David G. "Computer simulation of rotary forging." Thesis, University of Nottingham, 1991. http://eprints.nottingham.ac.uk/14392/.
Full textUrs, Shravan B. R. "SCHEDULING ROTARY INJECTION MOLDING MACHINE." Ohio University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1132529304.
Full textHeydenrych, Michael David. "Modelling of rotary kilns : proefschrift ... /." [Enschede?] : University of Twente, 2001. http://www.ub.utwente.nl/webdocs/ct/1/t00000628.pdf.
Full textBooks on the topic "Rotary"
Pavlović, Momčilo. Rotari klub Subotica: 1929-1941, 1997-2008 = Szabadkai Rotary Klub = Szabadkai Rotary Klub. Subotica: Rotari klub, 2008.
Find full textRotary: Poems. Cincinnati, OH: Word Press, 2004.
Find full textCooper, Fiona. Rotary Spokes. London, England: Brilliance Books, 1988.
Find full textCooper, Fiona. Rotary spokes. London: Serpent's Tail, 1995.
Find full textBrooks, Thomas F. Helicopter main-rotor noise: Determination of source contributions using scaled model data. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textBrooks, Thomas F. Helicopter main-rotor noise: Determination of source contributions using scaled model data. Hampton, Va: Langley Research Center, 1988.
Find full textBrooks, Thomas F. Helicopter main-rotor noise: Determination of source contributions using scaled model data. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textMatsuda, Hikaru, ed. Rotary Blood Pumps. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-67917-2.
Full textKuruc, Marcel. Rotary Ultrasonic Machining. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67944-6.
Full textCentrifugal & Rotary Pumps. London: Taylor and Francis, 1999.
Find full textBook chapters on the topic "Rotary"
Borcosi, Ilie, Nicolae Antonie, and Alina Dinca. "Rotary Transducer." In Technological Developments in Networking, Education and Automation, 373–76. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9151-2_65.
Full textCameron, Neil. "Rotary Encoder." In Arduino Applied, 177–87. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3960-5_9.
Full textGonzález, Jorge E., and Alexander Kiderman. "Rotary Chair." In Encyclopedia of Otolaryngology, Head and Neck Surgery, 2321–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23499-6_722.
Full textLanglois, William E., and Michel O. Deville. "Rotary Flow." In Slow Viscous Flow, 213–28. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03835-3_8.
Full textGooch, Jan W. "Rotary Joint." In Encyclopedic Dictionary of Polymers, 638. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10146.
Full textGooch, Jan W. "Rotary Molding." In Encyclopedic Dictionary of Polymers, 638. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10147.
Full textGooch, Jan W. "Rotary Press." In Encyclopedic Dictionary of Polymers, 638. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10148.
Full textGay, Warren. "Rotary Encoders." In Custom Raspberry Pi Interfaces, 103–27. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2406-9_8.
Full textJain, Priyanka. "Rotary instruments." In Current Therapy in Endodontics, 27–86. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119067757.ch3.
Full textKimmich, Rainer. "Rotary Echoes." In NMR, 21–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60582-6_3.
Full textConference papers on the topic "Rotary"
Abad, Pablo, Valentin Puente, José Angel Gregorio, and Pablo Prieto. "Rotary router." In the 34th annual international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1250662.1250678.
Full textHeikkinen, Janne E., and Siavash Pakdelian. "Rotordynamics of a Trans-Rotary Magnetic Gear Rotor." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63813.
Full textMannisto, John F., and Robert Bazaz. "Structural Analysis of a Rotary Combustion Engine Rotor." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/870447.
Full textWoolsey, J. Robert, and Brian G. Noakes. "Rotary-Vibracore Drill." In Offshore Technology Conference. Offshore Technology Conference, 2001. http://dx.doi.org/10.4043/13095-ms.
Full textMiller, George, and Mark Williams. "Rotary Servohinge Actuator." In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/892261.
Full textGregor, A., and J. Mrkos. "BARTELL ROTARY BASKETS." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-158.
Full textDalea, Alexandru, Mihai Iordache, Dragos Niculae, Neculai Galan, Sorin Deleanu, and Mircea Ignat. "Rotary Magnetostrictive Motor." In 2019 International Conference on Electromechanical and Energy Systems (SIELMEN). IEEE, 2019. http://dx.doi.org/10.1109/sielmen.2019.8905821.
Full textMendoza, Sergio. "Rotary Fuel Cell." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-130.
Full textPeliks, Beto, and Nam P. Suh. "Rotary Valve Revolution." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1522.
Full textPehan, Stanislav, and Breda Kegl. "Rotary Engine Design." In Automotive and Transportation Technology Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-3194.
Full textReports on the topic "Rotary"
Paul Flanagan. Rotary Burner Demonstration. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810808.
Full textPoirier, M. Rotary Microfilter Media Evaluation. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/890177.
Full textMontesanti, Richard Clement. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/891383.
Full textITT SYSTEMS ROME NY. Rotary Wing Aircraft Crash Resistance. Fort Belvoir, VA: Defense Technical Information Center, May 1987. http://dx.doi.org/10.21236/ada396019.
Full textFitsos, P. Rotary Valve FY 2016 Highlights. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1341957.
Full textKowalski, Darin, and Andrew Biske. Unique Rotary Diesel Engine Generator Development. Warrendale, PA: SAE International, September 2010. http://dx.doi.org/10.4271/2010-32-0112.
Full textKariya, Arthur Harumichi, Wayne Lawrence Staats, and Jeffrey P. Koplow. Rotary Vapor Compression Cycle Final Report. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426059.
Full textKariya, Arthur, Wayne Staats, Jeffrey P. Koplow, Scott Wujek, Stefan Elbel, and Pega Hrnjak. Rotary Vapor Compression Cycle Final Report. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426402.
Full textJohns, B. R. Rotary mode system initial instrument calibration. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10185368.
Full textFowley, M., and D. Herman. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1018680.
Full text