Academic literature on the topic 'ROS/Gazebo'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ROS/Gazebo.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ROS/Gazebo"
Agha, Rawan A. AlRashid, Zhwan Hani Mahdi, Muhammed N. Sefer, and Ibrahim Hamarash. "A ROS-Gazebo Interface for the Katana Robotic Arm Manipulation." UKH Journal of Science and Engineering 5, no. 1 (June 30, 2021): 26–37. http://dx.doi.org/10.25079/ukhjse.v5n1y2021.pp26-37.
Full textKinouchi, Yusuke, Hiroyoshi Kojima, Tatsuya Hashimoto, Takayuki Ono, Takayuki Koyama, Kenji Hashimoto, and Atsuo Takanishi. "Robots utilizing ROS/Gazebo in Mitsubishi Heavy Industries." Journal of the Robotics Society of Japan 35, no. 4 (2017): 276–79. http://dx.doi.org/10.7210/jrsj.35.276.
Full textRivera, Zandra B., Marco C. De Simone, and Domenico Guida. "Unmanned Ground Vehicle Modelling in Gazebo/ROS-Based Environments." Machines 7, no. 2 (June 14, 2019): 42. http://dx.doi.org/10.3390/machines7020042.
Full textAndrean, Danu, and Nuryono Satya Widodo. "Simulation and Implementation of RSCUAD Walking Robot Based on ROS and Gazebo Simulator." Control Systems and Optimization Letters 1, no. 2 (July 18, 2023): 93–98. http://dx.doi.org/10.59247/csol.v1i2.32.
Full textPineda Torres, Franklin, and Luis Alejandro Arias Barragán. "PRM navigation in trading drone and Gazebo simulation." Visión electrónica 14, no. 1 (January 31, 2020): 43–50. http://dx.doi.org/10.14483/22484728.16494.
Full textUslu, Erkan, Furkan Çakmak, Nihal Altuntaş, Salih Marangoz, Mehmet Fatih Amasyalı, and Sırma Yavuz. "An architecture for multi-robot localization and mapping in the Gazebo/Robot Operating System simulation environment." SIMULATION 93, no. 9 (June 6, 2017): 771–80. http://dx.doi.org/10.1177/0037549717710098.
Full textVujić, Đorđe. "SIMULACIJA ROBOTA BAZIRANOG NA DIFERENCIJALNOM POGONU KORIŠĆENJEM GAZEBO SIMULATORA I ROS-A." Zbornik radova Fakulteta tehničkih nauka u Novom Sadu 37, no. 04 (April 8, 2022): 661–65. http://dx.doi.org/10.24867/17be17vujic.
Full textJalil, Abdul. "ROBOT OPERATING SYSTEM (ROS) DAN GAZEBO SEBAGAI MEDIA PEMBELAJARAN ROBOT INTERAKTIF." ILKOM Jurnal Ilmiah 10, no. 3 (December 20, 2018): 284–89. http://dx.doi.org/10.33096/ilkom.v10i3.365.284-289.
Full textShimchik, Ilya, Artur Sagitov, Ilya Afanasyev, Fumitoshi Matsuno, and Evgeni Magid. "Golf cart prototype development and navigation simulation using ROS and Gazebo." MATEC Web of Conferences 75 (2016): 09005. http://dx.doi.org/10.1051/matecconf/20167509005.
Full textМосковский, А. Д., and М. А. Ровбо. "РАЗРАБОТКА СРЕДСТВ ОБУЧЕНИЯ РЕАЛИСТИЧНЫХ МОДЕЛЕЙ МОБИЛЬНЫХ РОБОТОВ В СИМУЛЯТОРЕ ROS GAZEBO." Вестник Военного инновационного технополиса «ЭРА» 3, no. 2 (2022): 175–81. http://dx.doi.org/10.56304/s2782375x22020127.
Full textDissertations / Theses on the topic "ROS/Gazebo"
Bach, Willy, and Petter Vidarsson. "Integrering av en robotgräsklippare i en 3-dimensionell simulering." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47454.
Full textSilva, Filipe Aguiar da. "Sistema baseado em ROS distribuído para controlo de uma plataforma skid-steering." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23356.
Full textEsta dissertação tem como objetivo a implementação de um sistema de ROS distribuído para o controlo de uma plataforma robótica móvel com uma configuração skid-steering. Para o seu desenvolvimento são usados múltiplos microcontroladores de baixo custo, o Raspberry Pi, que interligados em rede permitem a partilha de mensagens ROS e o respetivo controlo da plataforma. A par disto, foram desenvolvidas algumas funcionalidades que permitem melhor facilidade de utilização de todo o sistema, como o controlo remoto. É ainda criado um ambiente de simulação para uma plataforma skid-steering que interage com todos os processos desenvolvidos de ROS. Por fim, de forma a testar a solução, foi realizada uma aplicação em ambiente virtual que visa a utilização de todas as funcionalidades desenvolvidas. Esta aplicação consiste no seguimento de uma linha usando uma câmara, sendo também possível a intervenção humana no seu controlo, recorrendo ao uso de um comando joystick.
This dissertation aims to implement a distributed ROS system to control a mobile robotic platform with a skid-steering configuration. For its development are used multiple low-cost microcontrollers, Raspberry Pi, which networked together allow the sharing of ROS messages and the platform control. Alongside this, some features have been developed that allow better usability of the entire system, such as remote control. It also created a simulation environment for a skid-steering platform that interacts with all the processes developed in ROS. Finally, in order to test the solution, an application in virtual environment is realized that aims at the use of all the functionalities developed. This application consists in a line following application using a camera, being also possible the human intervention in its control, resorting to the use of a joystick command.
Morales, Néstor, and Manuel Serrano. "Autonomous Robotics Platforms." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17261.
Full textPham, Hoang Anh. "Coordination de systèmes sous-marins autonomes basée sur une méthodologie intégrée dans un environnement Open-source." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL0020.
Full textThis thesis studies the coordination of autonomous underwater robots in the context of coastal seabed exploration or facility inspections. Investigating an integrated methodology, we have created a framework to design and simulate low-cost underwater robot controls with different model assumptions of increasing complexity (linear, non-linear, and finally non-linear with uncertainties). By using this framework, we have studied algorithms to solve the problem of formation control, collision avoidance between robots and obstacle avoidance of a group of underwater robots. More precisely, we first consider underwater robot models as linear systems of simple integrator type, from which we can build a formation controller using consensus and avoidance algorithms. We then extend these algorithms for the nonlinear dynamic model of a Bluerov robot in an iterative design process. Then we have integrated a Radial Basis Function neural network, already proven in convergence and stability, with the algebraic controller to estimate and compensate for uncertainties in the robot model. Finally, we have presented simulation results and real basin tests to validate the proposed concepts. This work also aims to convert a remotely operated ROV into an autonomous ROV-AUV hybrid
Vávra, Patrik. "Využití nástroje ROS pro řízení autonomního mobilního robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402584.
Full textŠťastný, Martin. "Modelování a simulace robotických aplikací." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232094.
Full textBednařík, Jan. "Optická lokalizace velmi vzdálených cílů ve vícekamerovém systému." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255418.
Full textTeixeira, Bruno Daniel Almeida. "Development of an anthropomorphic arm for manipulation." Master's thesis, 2017. http://hdl.handle.net/10773/24265.
Full textNos dias que correm, os robôs são usados na investigação, para uso privado, como nos programas espaciais para explorarem planetas, ou para um projeto Universitário. Este projeto terá como foco o desenvolvimento de um braço antropomórfico, e possível instalação na plataforma móvel CAMBADA@ Home, para este poder participar na competição do RoboCup e conseguir alcançar mais objetivos do que aqueles que faz atualmente. Nesta dissertação irá ser explicado como os braços para o CAMBADA@Home serão desenvolvidos, explicando os motores que foram usados, motor BLDC e os servo motores, e como foram aplicados, o desenvolvimento de um modelo virtual a partir um software CAD e a construção do modelo físico. Irá também conter a informação de como a placa de controlo dos motores foi desenvolvida, o software usado assim como as ferramentas necessárias para este trabalho, incluindo o simulador usado para testar o modelo
Mestrado em Engenharia Eletrónica e Telecomunicações
Ferreira, Manuel Teles. "Planeamento dinâmico de trajetórias locais para o ATLASCAR2 em ambientes com múltiplos veículos." Master's thesis, 2019. http://hdl.handle.net/10773/28210.
Full textOne of the greatest challenges in the development of autonomous driving corresponds to the planning of the trajectory to be executed, requiring the collection of data acquired by sensors installed in the vehicle, therefore obtaining information about the obstacles in its periphery. With this in mind, this dissertation aims at adapting the trajectory planner of the ATLASCAR2 developed in previous projects, so that this algorithm is able to respond to common situations during a trip, such as overtaking or an intersection between vehicles. In order to do so, it was necessary to reformulate the existing simulation environment in order to allow the use of multiple vehicles in the Gazebo simulator, each having its own trajectory planner, improving the interaction between the programmer and the simulation, allowing multiple tests without the need for profound alterations to the algorithm. Changes were also made to the general trajectory planner focusing on the right lane driving and the use of a dynamic attractor point capable of altering the vehicle’s behavior depending on the maneuver to be performed. In this way it was possible to parameterize different maneuvers specifying the behavior that the autonomous vehicle should perform in each situation, with emphasis in the parametrization of the overtaking maneuver. The development of this dissertation used the Robot Operating System (ROS) with the aid of the Gazebo simulator to evaluate the performance of the developed trajectory planner.
Mestrado em Engenharia Mecânica
Silva, Pedro Henrique Meneses Osório Gonçalves. "Simulador 3D multi-plataforma para competições robóticas." Master's thesis, 2018. http://hdl.handle.net/1822/59470.
Full textCom a evolução da tecnologia de computação, foi possível oferecer aos desenvolvedores e investigadores de diversas áreas, como a informática, a robótica, as micro e nano tecnologias, medicina ou aviação, melhores e mais poderosas ferramentas de trabalho e treino, que promoveram mais avanços tecnológicos e qualidade no desempenho das suas tarefas. Abrangendo muitas áreas de aplicação, os simuladores mostram-se umas das ferramentas mais inovadoras e importantes, encontrando-se em constante desenvolvimento. Esta dissertação tem como objetivo desenvolver um simulador, utilizando um simulador de física externo, que possa, de forma intuitiva, melhorar a qualidade e agilizar o processo de investigação e desenvolvimento de plataformas robóticas. Estando o projeto inserido no Laboratório de Automação e Robótica (LAR), o âmbito de desenvolvimento do simulador estará alargado às várias competições nas quais o grupo participa. Irão ser criados mecanismos de simulação para as principais ligas do RoboCup tais como a RoboCup Middle-Size League, RoboCup Soccer Junior, RoboCup@Home, e do Festival Nacional de Robótica, o Robot@Factory e a Condução Autónoma. O macro-problema identificado, que se pretende solucionar neste projeto de dissertação, é o facto do processo de desenvolvimento de uma plataforma robótica ser muitas vezes atrasado e dificultado por indisponibilidade de espaços de teste, das plataformas ou de meios para realizar testes, ou a indisponibilidade de software, criando fortes entraves aos avanços nos projetos. Existe também, no caso de competições em que são enfrentadas outras equipas, a necessidade de fazer testes contra adversários, o que na realidade, pode ser bastante complicado de realizar fora das competições. O produto desenvolvido dá ao utilizador a possibilidade de interagir com os robôs da forma mais realista possível, conseguida através de manipulação dos elementos, implementação de mecanismos realistas e de visualização 3D. O objetivo sumário deste projeto foi conseguido, fornecendo ferramentas para diversos estados do desenvolvimento de várias plataformas, tanto para os casos em que dificuldades com hardware como para os casos em que se pretenda desenvolver novas camadas de software, nomeadamente inteligência artificial, e não se pretenda utilizar o robô real, agilizando o processo de desenvolvimento e teste. Criando uma ferramenta que permita melhorar o desenvolvimento dos vários projetos, espera-se que os resultados obtidos pelas diversas equipas do LAR melhorem sucessivamente, sendo este um objetivo consequente desta dissertação.
The current progress on computing technology brought the oportunity to offer to developers and researchers of various domains, like informatics, robotics, nano-technology, medicine or aviation, better and more powerful tools in order to improve their skills and task performance ability. Covering almost all technology domains, the simulators present themselves as the most inovative and important tools, remaining in constant development. This thesis has as its main goal, the development of a simulator, using an external physics simulator, that can improve and expedite the investigation and development process of robotic platforms, in a intuitive manner. Being part of Laboratório de Automação e Robótica (LAR), the scope of this work will be extended to the various competitions the group enters. Simulation mechanisms will be created for RoboCup leagues, as RoboCup Middle Size League, RoboCup Soccer Junior, RoboCup@Home, and from Festival Nacional de Robótica, Robot@Factory and Condução Autónoma (autonomous driving). The issue which this project whishes to solve, is the fact that the development of robotic platforms is delayed by the unavailability of test facilities, software, working platforms or means to test them, creating barriers to project advances. Sometimes, when in a league we have two teams facing themselves, there is the need to test (before the competition) with those teams, which in reality is very hard to accomplish out of the competition events. The final product of this thesis offers the end-user the possibility to interact with the robots in the realistic way possible, achieved through manipulation of the simulation elements, realistic mechanisms and 3D visualization. The main goal of the project was achieved, sourcing tools which can solve and help the development of the platforms in different stages, when there are difficulties with the hardware or software layers, usually artificial intelligence, or in the case that the users do not want to use the real robots, expediting the development and test procedures. Creating this tool to improve the development process of the various projects, it is expected that the different LAR’s teams make faster progress, being this a consequent objective of this thesis.
Book chapters on the topic "ROS/Gazebo"
Megalingam, Rajesh Kannan, Darla Vineeth Prithvi, Nimmala Chaitanya Sai Kumar, and Vijay Egumadiri. "Drone Stability Simulation Using ROS and Gazebo." In Advanced Computing and Intelligent Technologies, 131–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2164-2_11.
Full textBernardeschi, Cinzia, Adriano Fagiolini, Maurizio Palmieri, Giulio Scrima, and Fabio Sofia. "ROS/Gazebo Based Simulation of Co-operative UAVs." In Modelling and Simulation for Autonomous Systems, 321–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14984-0_24.
Full textMeyer, Johannes, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von Stryk. "Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo." In Simulation, Modeling, and Programming for Autonomous Robots, 400–411. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34327-8_36.
Full textOkoli, Franklin, Yuchuan Lang, Olivier Kermorgant, and Stéphane Caro. "Cable-Driven Parallel Robot Simulation Using Gazebo and ROS." In ROMANSY 22 – Robot Design, Dynamics and Control, 288–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78963-7_37.
Full textLange, Ralph, Silvio Traversaro, Oliver Lenord, and Christian Bertsch. "Integrating the Functional Mock-Up Interface with ROS and Gazebo." In Studies in Computational Intelligence, 187–231. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45956-7_7.
Full textKaramchandani, Sunil, Saurabh Pednekar, Atharva Pusalkar, Shivani Bhattacharjee, and Disha Issrani. "Autonomous Parking System Perception and Control Simulations on ROS-Gazebo." In Lecture Notes on Data Engineering and Communications Technologies, 345–53. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6601-8_32.
Full textSafin, Ramil, Roman Lavrenov, and Edgar Alonso Martínez-García. "Evaluation of Visual SLAM Methods in USAR Applications Using ROS/Gazebo Simulation." In Proceedings of 15th International Conference on Electromechanics and Robotics "Zavalishin's Readings", 371–82. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5580-0_30.
Full textWang, Shuyuan, and Tianjiang Hu. "ROS-Gazebo Supported Platform for Tag-in-Loop Indoor Localization of Quadrocopter." In Intelligent Autonomous Systems 14, 185–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48036-7_14.
Full textGervais, Owen, and Therese Patrosio. "Developing an Introduction to ROS and Gazebo Through the LEGO SPIKE Prime." In Robotics in Education, 201–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82544-7_19.
Full textde Carvalho, Marcelo E. C., Tiago T. Ribeiro, and Andre G. S. Conceicao. "Comparative Analysis of LiDAR SLAM Techniques in Simulated Environments in ROS Gazebo." In Synergetic Cooperation between Robots and Humans, 275–85. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47272-5_23.
Full textConference papers on the topic "ROS/Gazebo"
Sciortino, Claudio, and Adriano Fagiolini. "ROS/Gazebo-Based Simulation of Quadcopter Aircrafts." In 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2018. http://dx.doi.org/10.1109/rtsi.2018.8548411.
Full textKumar, Krishneel, Sheikh Izzal Azid, Adriano Fagiolini, and Maurizio Cirrincione. "Erle-copter Simulation using ROS and Gazebo." In 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON). IEEE, 2020. http://dx.doi.org/10.1109/melecon48756.2020.9140476.
Full textQian, Wei, Zeyang Xia, Jing Xiong, Yangzhou Gan, Yangchao Guo, Shaokui Weng, Hao Deng, Ying Hu, and Jianwei Zhang. "Manipulation task simulation using ROS and Gazebo." In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2014. http://dx.doi.org/10.1109/robio.2014.7090732.
Full textAlajami, A. A., R. Pous, and G. Moreno. "Simulation of RFID Systems in ROS-Gazebo." In 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). IEEE, 2022. http://dx.doi.org/10.1109/rfid-ta54958.2022.9924062.
Full textKhiabani, Parisa Masnadi, Babak Sistanizadeh Aghdam, Javad Ramezanzadeh, and Hamid D. Taghirad. "Visual servoing simulator by using ROS and Gazebo." In 2016 4th International Conference on Robotics and Mechatronics (ICROM). IEEE, 2016. http://dx.doi.org/10.1109/icrom.2016.7886865.
Full textAgüero, Ian. "Vehicle and city simulation with Gazebo and ROS." In ROSCon2017. Mountain View, CA: Open Robotics, 2017. http://dx.doi.org/10.36288/roscon2017-900257.
Full textAgüero, Ian. "Vehicle and city simulation with Gazebo and ROS." In ROSCon2017. Mountain View, CA: Open Robotics, 2017. http://dx.doi.org/10.36288/roscon2017-900801.
Full textCacace, Jonathan, Nicola Mimmo, and Lorenzo Marconi. "A ROS Gazebo plugin to simulate ARVA sensors." In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9196914.
Full textMillan-Romera, Jose A., Jose Joaquin Acevedo, Angel R. Castano, Hector Perez-Leon, Carlos Capitan, and Anibal Ollero. "A UTM simulator based on ROS and Gazebo." In 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS). IEEE, 2019. http://dx.doi.org/10.1109/reduas47371.2019.8999705.
Full textSuvarna, Sohan, Dibyayan Sengupta, Pavankumar Koratikere, and Rajkumar S. Pant. "Simulation of Autonomous Airship on ROS-Gazebo Framework." In 2019 Fifth Indian Control Conference (ICC). IEEE, 2019. http://dx.doi.org/10.1109/indiancc.2019.8715570.
Full text