Academic literature on the topic 'Room-temperature sodium sulfur battery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Room-temperature sodium sulfur battery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Room-temperature sodium sulfur battery"

1

Park, Cheol-Wan, Jou-Hyeon Ahn, Ho-Suk Ryu, Ki-Won Kim, and Hyo-Jun Ahn. "Room-Temperature Solid-State Sodium∕Sulfur Battery." Electrochemical and Solid-State Letters 9, no. 3 (2006): A123. http://dx.doi.org/10.1149/1.2164607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yanjie, Yingjie Zhang, Hongyu Cheng, Zhicong Ni, Ying Wang, Guanghui Xia, Xue Li, and Xiaoyuan Zeng. "Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review." Molecules 26, no. 6 (March 11, 2021): 1535. http://dx.doi.org/10.3390/molecules26061535.

Full text
Abstract:
Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.
APA, Harvard, Vancouver, ISO, and other styles
3

Xin, Sen, Ya-Xia Yin, Yu-Guo Guo, and Li-Jun Wan. "A High-Energy Room-Temperature Sodium-Sulfur Battery." Advanced Materials 26, no. 8 (December 12, 2013): 1261–65. http://dx.doi.org/10.1002/adma.201304126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, Xiang, Wei Li, and Jianbing Jiang. "Sulfur-Biological Carbon for Long-Life Room-Temperature Sodium-Sulfur Battery." Journal of Biobased Materials and Bioenergy 14, no. 4 (August 1, 2020): 487–91. http://dx.doi.org/10.1166/jbmb.2020.1982.

Full text
Abstract:
Room-temperature sodium-sulfur (RT-Na/S) batteries are gaining much attention particularly in large-scale energy storage due to high theoretical energy density and low cost. However, low conductivity and volume expansion of sulfur, as well as severe shuttle effect of soluble sodium polysulfides largely hamper their practical applications. Herein, we report an architecture of sulfur embedded in biological carbon (SBC) as cathode for RT-Na/S batteries. The SBC with N, P co-doping biological carbon and hierarchically porous structure afford fast electron and ion transportation, as well as good mechanical limitation of volume expansion and shuttle effect, therefore achieving excellent cyclic stability (544.7 mAh · g–1 at current density of 200 mA · g –1 after 984 cycles).
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Jiahui, Yue Yang, Yingchao Zhang, Shuaikang Duan, Xia Zhou, Wei Sun, and Shengming Xu. "Sulfur in Amorphous Silica for an Advanced Room‐Temperature Sodium–Sulfur Battery." Angewandte Chemie 133, no. 18 (March 22, 2021): 10217–24. http://dx.doi.org/10.1002/ange.202015932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Jiahui, Yue Yang, Yingchao Zhang, Shuaikang Duan, Xia Zhou, Wei Sun, and Shengming Xu. "Sulfur in Amorphous Silica for an Advanced Room‐Temperature Sodium–Sulfur Battery." Angewandte Chemie International Edition 60, no. 18 (March 22, 2021): 10129–36. http://dx.doi.org/10.1002/anie.202015932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Icpyo, Chang Hyeon Kim, Sun hwa Choi, Jae-Pyoung Ahn, Jou-Hyeon Ahn, Ki-Won Kim, Elton J. Cairns, and Hyo-Jun Ahn. "A singular flexible cathode for room temperature sodium/sulfur battery." Journal of Power Sources 307 (March 2016): 31–37. http://dx.doi.org/10.1016/j.jpowsour.2015.12.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Nana, Yunxiao Wang, Zhongchao Bai, Zhiwei Fang, Xiao Zhang, Zhongfei Xu, Yu Ding, et al. "High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion." Energy & Environmental Science 13, no. 2 (2020): 562–70. http://dx.doi.org/10.1039/c9ee03251g.

Full text
Abstract:
Developing novel gold nanoclusters as an electrocatalyst can facilitate a completely reversible reaction between S and Na, achieving advanced high-energy-density room-temperature sodium–sulfur batteries.
APA, Harvard, Vancouver, ISO, and other styles
9

Adelhelm, Philipp, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger, and Juergen Janek. "From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries." Beilstein Journal of Nanotechnology 6 (April 23, 2015): 1016–55. http://dx.doi.org/10.3762/bjnano.6.105.

Full text
Abstract:
Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhu, Jianhui, Amr Abdelkader, Denisa Demko, Libo Deng, Peixin Zhang, Tingshu He, Yanyi Wang, and Licong Huang. "Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe." Molecules 25, no. 7 (March 30, 2020): 1585. http://dx.doi.org/10.3390/molecules25071585.

Full text
Abstract:
Room temperature sodium-sulfur batteries have been considered to be potential candidates for future energy storage devices because of their low cost, abundance, and high performance. The sluggish sulfur reaction and the “shuttle effect” are among the main problems that hinder the commercial utilization of room temperature sodium-sulfur batteries. In this study, the performance of a hybrid that was based on nitrogen (N)-doped carbon nanospheres loaded with a meagre amount of Fe ions (0.14 at.%) was investigated in the sodium-sulfur battery. The Fe ions accelerated the conversion of polysulfides and provided a stronger interaction with soluble polysulfides. The Fe-carbon nanospheres hybrid delivered a reversible capacity of 359 mAh·g−1 at a current density of 0.1 A·g−1 and retained a capacity of 180 mAh·g−1 at 1 A·g−1, after 200 cycles. These results, combined with the excellent rate performance, suggest that Fe ions, even at low loading, are able to improve the electrocatalytic effect of carbon nanostructures significantly. In addition to Na-S batteries, the new hybrid is anticipated to be a strong candidate for other energy storage and conversion applications such as other metal-sulfur batteries and metal-air batteries.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Room-temperature sodium sulfur battery"

1

Martine, Milena. "Na-Sb-Sn-based negative electrode materials for room temperature sodium cells for stationary applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226494.

Full text
Abstract:
The implementation of energy storage systems in the current electrical grid will increase the grid's reliability and e ciency. Room temperature sodium batteries are seen as potential technology, especially to assist renewable energy generation sources. Currently, suggested negative electrode materials, however, are still not satisfactory for practical use in terms of fabrication costs, gravimetric /volumetric energy densities, cyclability, and irreversible capacity losses occur at the rst cycle. The literature describes various strategies that enhance the specific capacity and/or the cyclability of negative electrode materials but all involve increasing the fabrication costs due to the chosen synthesis or the complexity of the electrode's design. Furthermore, strategies, that reduce the irreversible capacity loss at first cycle, are not discussed. In this present experimental research work, presodiating bulk metallic negative electrode materials prior to cycling, prepared via a simple, cheap and easy-to-scaleup synthesis route, is introduced as a new strategy to improve the cyclability and to effectively reduce the first cycle irreversible capacity loss. Electrochemical and structural experiments were carried out to investigate sodiumtin-antimony powders. Presodiating mechanically bulk Sn-Sb negative electrode materials e ectively reduces the irreversible capacity loss at first cycle and enhances the specific capacity when compared to the non-presodiated powder, while the proper choice of electrode composite and electrolyte formulation improves the cycle life of the electrodes. The enhancement of the electrochemical properties of the presodiated NaSnSb powder, composed of the ternary phase Na5Sb3Sn and an unknown ternary phase crystallising in a hexagonal setting P6, is associated with the stabilisation of the SnSb as desodiation product. Presodiating bulk SnSb negative electrode material is a viable strategy to reduce the first cycle irreversible capacity loss, alleviating the volume changes. With an optimised system, this approach may be extended to other negative electrode materials, reducing the fabrication costs of high capacity negative electrode materials for room temperature sodium batteries. Presodiated NaSnSb negative electrode material may be combined with non-sodiated positive electrode material, such as sulphur to develop competitive room temperature sodium-sulphur batteries
Die Implementierung von Energiespeichersystemen im bereits bestehenden Stromnetz ist eine der Lösungen, um die Zuverlässigkeit und die Effizienz des Netzes zu nutzen. Raumtemperatur Natrium-Batterien gelten als erfolgsversprechende Technologie insbesondere zur Unterstützung erneuerbarer Energieerzeugungsquellen. Jedoch sind die naheliegenden negativen Elektrodenmaterialien für eine praktische Anwendung hinsichtlich Herstellungskosten, gravimetrischer oder volumetrischer Energiedichte, Zyklenfestigkeit und irreversiblen Kapazitätsverlusten im ersten Zyklus noch nicht zufriedenstellend. Die Literatur beschreibt verschiedene Strategien, die die spezifische Kapazität und / oder die Zyklenfestigkeit von negativen Elektrodenmaterialien verbessern. Diese führen jedoch alle zu einer Erhöhung der Herstellungskosten aufgrund der gewählten Synthese oder des Designs der komplexierten Elektrode. Darüber hinaus werden Strategien zur Reduzierung des irreversiblen Kapazitätsverlusts im ersten Zyklus nicht erörtert. Diese experimentelle Forschungsarbeit präsentiert mit Natrium angereicherte metallische negative Elektrodenmaterialien vor der Wechselbeanspruchung/dem periodischen Durchlaufen, die durch einen schlichten, billigen und einfach zu skalierenden Syntheseweg hergestellt wurden, als eine neue Strategie zur Verbesserung der Zyklenfestigkeit und zur wirksamen Verringerung des irreversiblen Kapazitätsverlusts im ersten Zyklus. Elektrochemische und strukturelle Experimente wurden durchgeführt, um mit Natrium angereichertes Zinn-Antimon-Pulver zu untersuchen. Die mechanischen mit Natrium angereichertes Sn-Sb-negativen Elektrodenmaterialien verringert effektiv den irreversiblen Kapazitätsverlust im ersten Zyklus und erhöht die spezische Kapazität im Vergleich zu dem ohne Natrium angereicherte Pulver, während die richtige Wahl der Elektrodenzusammensetzung und der Elektrolytformulierung die Lebenszyklus der Elektroden verbessert. Die Verbesserung der elektrochemischen Eigenschaften des mit Natrium angereicherten NaSnSb-Pulvers, bestehend aus der ternären Phase Na5Sb3Sn und einer unbekannten ternären Phase, die in einer hexagonalen Aufbau P6 kristallisiert, ist mit der Stabilisierung des Enddesodiationsproduktes beim periodischen Zyklus verbunden, wobei das intermetallische SnSb nach Rekristallisation vorliegt. Mit Natrium angereicherte SnSb negativen Elektrodenmaterialien sind eine tragfähige Strategie zur Verringerung des irreversiblen Kapazitätsverlustes im ersten Zyklus, die Volumenänderungen abschwächen. Mit einem optimierten System kann dieser Ansatz auf andere negative Elektrodenmaterialien erweitert werden um die Herstellungskosten von negativen Elektrodenmaterialien mit hoher Kapazität für Raumtemperatur-Natrium-Batterien zu verringern. Mit Natrium angereichertes NaSnSb-negatives Elektrodenmaterial kann mit nicht mit Natrium versetztem positivem Elektrodenmaterial wie Schwefel kombiniert werden, um realisierbare Raumtemperatur Natrium-Schwefel-Batterien zu entwickeln
APA, Harvard, Vancouver, ISO, and other styles
2

Hao, Yong. "Sulfur Based Electrode Materials For Secondary Batteries." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2582.

Full text
Abstract:
Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes exhibited an unusual phenomenon of capacity increase upon cycling which was ascribed to the decreased cell resistance and enhanced interfacial charge storage. In summary, this dissertation provides investigation of sulfur based electrode materials with sulfur/N-doped graphene composites and MnS nanocrystals. Their electrochemical performances have been evaluated and discussed. The understanding of their reaction mechanisms and electrochemical enhancement could make progress on development of secondary batteries.
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Po-Chia, and 張博嘉. "The electrochemical reaction mechanism of pyrite FeS2 as Cathode for Room Temperature Sodium-Sulfur Battery." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/71292640543441077898.

Full text
Abstract:
碩士
國立臺灣師範大學
化學系
103
Efficient electrical energy storage has attracted intense attention due to power demend in next generation of electric vehicles and stationary applications. Rechargeable battery has viewed as good approach for energy storage. To aspire the higher energy density than traditional lithium ion battery used wildly, room temperature sodium-sulfur batteries (RT Na-S batteries) are especially attractive because of their high specific energy. In this thesis, a iron pyrite FeS2 material was investigated as sulfur source in the cathode electrode of RT Na-S battery. We found that iron disulfide as cathode materials (FeS2/Na-S battery) exhibited first discharge and charge capacity of 1360 mAhg-1 and 1086 mAhg-1 at a current density of 50 mAg-1 with a suitable electrolyte and potential range. The irreversible capacity at first cycle is approximately 20%. The capacity of FeS2 still remained 745 mAh g-1 after 50th cycles. During rapid charge - discharge test, FeS2/Na-S battery showed a high capacity of 520 mAh g-1 at a current density of 8920 mAg-1. In the detailed characterization by Raman and X-ray absorption spectra, we found that No polysulfide was formed by sulfur in FeS2 reacting with sodium and dissolved in electrolyte, resulting in remaining good capacity retention. Overall results indicated that The FeS2 cathode materials used in RT Na-S battery exhibited long cycle performance, high Coulombic efficiency and good capacity retention at high charge-discharge rate.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography