Academic literature on the topic 'Rolling Contact'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rolling Contact.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rolling Contact"

1

Fernandez Rico, J. E., A. Hernandez Battez, and D. Garcia Cuervo. "Rolling contact fatigue in lubricated contacts." Tribology International 36, no. 1 (January 2003): 35–40. http://dx.doi.org/10.1016/s0301-679x(02)00097-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuo, Chang Hung. "Elasto-Plastic Contact Stress Analysis of Hardened Elements under Repeated Contact Loading." Key Engineering Materials 823 (September 2019): 91–96. http://dx.doi.org/10.4028/www.scientific.net/kem.823.91.

Full text
Abstract:
An elastic-plastic contact stress analysis is presented to study cyclic plastic deformation of surface hardened rolling elements under repeated contacts. The rolling contact is simulated by a Hertz contact loading moving across an elastic-plastic half-space. An exponential model with hardness varying with depth is employed for the surface hardened components, and the Chaboche nonlinear hardening rule is used to model cyclic plastic behavior of contact elements. Numerical results show that the hardened layer can effectively reduce the plastic deformation near contact surface. The contact elements with sufficient surface hardness may reach elastic shakedown state under repeatedly rolling contact. As the hardened layer reaches a certain depth, e.g. two times of half contact length, however, the effects of case depth on plastic strain and residual stress become negligible after hundred contact cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Dubina, Radek, and Jan Eliáš. "Effect of Rolling Resistance in Dem Models With Spherical Bodies." Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series. 16, no. 2 (December 1, 2016): 11–18. http://dx.doi.org/10.1515/tvsb-2016-0009.

Full text
Abstract:
Abstract The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.
APA, Harvard, Vancouver, ISO, and other styles
4

YASHIKI, Takuya, Tekehiro MORITA, Yoshinori SAWAE, and Tetsuo YAMAGUCHI. "Transonic rolling / sliding contact." Proceedings of Mechanical Engineering Congress, Japan 2018 (2018): J0420203. http://dx.doi.org/10.1299/jsmemecj.2018.j0420203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dumitrascu, Alina Corina, Gelu Ianus, and Dumitru Olaru. "Influence of the Contact Pressure on the Rolling Resistance Moments in Dry Ball-Race Contacts." Applied Mechanics and Materials 658 (October 2014): 305–10. http://dx.doi.org/10.4028/www.scientific.net/amm.658.305.

Full text
Abstract:
Based on a theoretical model and an experimental methodology for defining the rolling resistance moments in a modified thrust ball bearing having only 3 balls, the authors experimentally investigated the influence of the Hertzian contact pressure on rolling resistance moments between a ball and a race. The experiments were realized with balls having diameters between 1.588 mm and 4.762 mm with maximum Hertzian pressure between 0.2GPa and 1GPa, operating for rotational speed between 60rpm to 210 rpm. The experiments evidenced that the measured values of the rolling resistance moments have higher values that the theoretical hysteresis and curvature rolling resistance moments for low contact pressure. By increasing of the contact pressure to 1GPa the experimental values for rolling resistance moments are in good agreement with the theoretical models.
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, L., Yongwu Zhao, P. B. Hall, R. Thom, and C. Moore. "On Heat Generation in Rolling Contacts Under Boundary and Mixed Lubrication." Journal of Tribology 123, no. 1 (August 17, 2000): 61–66. http://dx.doi.org/10.1115/1.1330733.

Full text
Abstract:
This paper reports on experiments and theoretical analyses of heat generation and scuffing failure in rolling contacts. The experiments were conducted with dry contacts, and the theoretical analyses were carried out using a deterministic thermal contact model. The research reveals that heat generated by asperity plastic deformation in the direction normal to the contact can be significant in high-load, high-speed contacts under boundary and mixed lubrication conditions. Under near rolling conditions, heat generated by the plastic deformation largely dominates that by the friction and is the main source leading to contact scuffing. This heat generation is shown to be significant compared to frictional heating even at relatively large slide-to-roll ratios. Parametric studies show that the ratio of asperity-plastic-deformation heating to frictional heating is sensitive to slide-to-roll ratio, hardness and surface finish but insensitive to contact load, rolling velocity and fluid/asperity load sharing.
APA, Harvard, Vancouver, ISO, and other styles
7

Loewenthal, S. H. "Spin Analysis of Concentrated Traction Contacts." Journal of Mechanisms, Transmissions, and Automation in Design 108, no. 1 (March 1, 1986): 77–84. http://dx.doi.org/10.1115/1.3260788.

Full text
Abstract:
Spin, the result of a mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. This investigation examines the kinematics of spin-producing contact geometries and the subsequent effect on traction and power loss. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed.
APA, Harvard, Vancouver, ISO, and other styles
8

Patzer, Gregor, Mathias Woydt, Raj Shah, Curtis Miller, and Philip Iaccarino. "Test Modes for Establishing the Tribological Profile under Slip-Rolling." Lubricants 8, no. 5 (May 25, 2020): 59. http://dx.doi.org/10.3390/lubricants8050059.

Full text
Abstract:
The complex nature of slip-rolling contacts in many applications such as gear tooth flanks, rolling bearings, and heavy machinery often makes determining the friction and wear properties, as well as the fatigue resistance, of tribosystems difficult. The establishment of the tribological profile of a tribocouple under high Hertzian contact pressure and under slip-rolling will allow for the measurement and comparison of friction and wear coefficients as well as slip-rolling resistance by continuously monitoring the wear rate, coefficient of friction, temperature, oil film thickness, and/or electrical contact resistance using high-resolution signal analysis (HRA). A twin disc system can provide insight into the adhesive behavior of material and lubricant products such as alternative base oils and additives, ceramics, alloys, and thin film coatings. The strength and endurance of these products are often characterized through fatigue and resistance tests, which apply high Hertzian contact pressures to the rolling contact until seizure or failure is obtained. The further observation of the formation of tribofilms on the surface of contact yields information about the reactivity and thermochemical properties of additives. This review aims to illustrate how the implementation of different screening methodologies can be used as a meaningful tool for assessing the aforementioned tribological profile properties for the development of slip-rolling tribosystems.
APA, Harvard, Vancouver, ISO, and other styles
9

Nishida, Shin-ichi, Nobusuke Hattori, and Tsubasa Miyake. "OS11W0289 Study on contact rolling fatigue of rails." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS11W0289. http://dx.doi.org/10.1299/jsmeatem.2003.2._os11w0289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wirsching, Sven, and Marcel Bartz. "Using exact macroscopic geometry in elastohydrodynamic simulations of point and elliptical contacts." Tribologie und Schmierungstechnik 69, no. 5-6 (February 15, 2023): 54–61. http://dx.doi.org/10.24053/tus-2022-0045.

Full text
Abstract:
In rib-guided roller bearings, there are a large number of different tribological contact forms. These include not only line contacts on the raceways, the cage and the rolling elements, but also point and elliptical contacts between the rolling element end face and the ring rib. Load is transmitted via these lubricated, concentrated rolling and rolling-sliding contacts. Depending on the load situation, these contacts contribute differently to the operating behavior of the roller bearing. Axial loads on rib-guided roller bearings are mainly transmitted via the point and elliptical contacts between the roller end and the ring rib. These oil-lubricated point and elliptical contacts can be calculated and designed using thermos-elastohydrodynamic (TEHD) simulations. In existing methods for the TEHD calculation of point and elliptical contacts, the macroscopic geometries of the contact partners are described in a simplified manner, similar to the theory according to HERTZ, using ellipsoids. However, contacts of real, complex geometry pairings of rolling elements and ribs, as used to optimize the axial load capacity or the frictional torque of roller bearings, can only be determined inaccurately with this method. Compared to the exact consideration of the macroscopic geometry, larger discrepancies in the lubricant film height, contact pressure and friction can be observed. For this reason, this paper presents a TEHD simulation that considers the exact macroscopic geometry of point or elliptical contacts. The macroscopic geometry is generated using mathematical functions and a ray-tracing method is used to generate the equivalent body for the TEHD simulation. Different geometry pairings of sphere, plane, cone and torus are investigated. The results for lubricant film height, contact pressure and friction are compared with the results from conventional TEHD simulations, which use a geometry description via ellipsoids. By comparing the calculated geometry pairings, the possibilities and limitations of the modified geometry description are assessed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rolling Contact"

1

Smith, Lindsey. "Rolling contact fatigue in wheel-rail contact." Thesis, University of Newcastle Upon Tyne, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alshahrany, Shaya. "Rolling contact fatigue in heavily loaded gear transmission contacts." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/90422/.

Full text
Abstract:
This thesis examines the influence of asperities such as found on the teeth of gears and discs, and failure mechanisms associated with rough surface Elastohydrodynamic Lubrication (EHL). The principal outcomes of the research provide a good insight into fatigue life, residual stress effects, damage prediction and surface contact failures. In particular, the study is intended to provide understanding into the residual stress distribution resulting from plastic deformation of surface asperities in the running in process. The residual stress is then added to the asperity elastic stress distribution and examined in detail to see the effects on fatigue damage and fatigue life. So, a theoretical model has been developed to assist design against the residual stress effect and surface contact fatigue, such as micropitting. The technique used in the study starts with developing an elastic plastic model of the rough surface by using the Abaqus Finite Element analysis software package. This is a nonlinear problem and ranges of applied loads have been applied to the as-manufactured surfaces causing the asperity features to experience varying degrees of plastic deformation. The pre and post running roughness profiles are studied in order to assess the level of plastic deformation actually occurring at significant surface asperity features by aligning the pre and post running profiles. This results in a new technique that has helped to identify the level of plastic deformation occurring in the practice, and also to make a comparison with FEA contact analysis for the same asperity features to identify the appropriate residual stress field. The residual stress field associated with the plastic deformation was extracted and evaluated. The extracted residual stress field was transferred to a form that facilitated IV inclusion in stress evaluation code to obtain the stress history for the material subject to loading in an EHL contact. The research carried out considers surface fatigue analysis with and without a residual stress field, so as to establish the influence of asperity plastic deformation on the fatigue properties of the surface. All the work is based on numerical simulation of surface fatigue failure in EHL situations and carried out numerically. The procedure can be applied quickly and gives the opportunity to apply several models and investigate the influence of all the model parameters on material deformation and fatigue life.
APA, Harvard, Vancouver, ISO, and other styles
3

Hadfield, Mark. "Rolling contact fatigue of ceramics." Thesis, Brunel University, 1993. http://bura.brunel.ac.uk/handle/2438/6622.

Full text
Abstract:
Ceramic/ceramic and ceramic/steel contacts under lubricated rolling conditions are studied. This work is of interest to ball bearing manufacturers as the use of ceramics in the design of these components has some advantages over traditional bearing-steel materials. Low density and increased stiffness are the mechanical properties which gas-turbine and machine tool manufacturers are most likely to realise. Much research over the past two decades on material structure, quality control and manufacturing techniques has produced a material which can seriously challenge bearing steel in ball-bearing design. This is especially the case for hybrid ball-bearings, ie ceramic balls with steel bearing races which are now used as standard components. The purpose of this study is to examine the rolling contact fatigue failure modes of ceramics. This study concentrates on silicon nitride as this material has most potential for use by industry. The primary reason for studying ceramic balls is because of interest in ball-bearing applications, hence a modified four-ball machine is employed which correctly models ball motions and precisely defines ball load. Experimental and theoretical kinematic analysis of ball motion during modified four ball machine tests is presented. The kinematic analysis reveals that in practice, lower ball tracking exists at high speeds. Test conditions of lubricated contacts under high compressive stress show delamination type failures. Delamination failures are classified in terms of propagation and initiation from scanning electron microscope observations. Residual stresses are measured on delaminated surfaces, which implies plastic deformation of the ceramic. Also, chemical analysis implies that disruption of silicon, nitrogen and oxygen levels may take place on delaminated surfaces. Experiments illustrating various fatigue failure modes using artificially pre-cracked ceramic balls in contact with a steel upper ball are presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Slocum, Alexander Henry Jr. "Rolling contact orthopaedic joint design." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81736.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Arthroplasty, the practice of rebuilding diseased biological joints using engineering materials, is often used to treat severe arthritis of the knee and hip. Prosthetic joints have been created in a "biomimetic" manner to reconstruct the shape of the biological joint. We are at a disadvantage, however, in that metals and polymers used to replace bone and articular cartilage often wear out too soon, leading to significant morbidity. This thesis explores the use of kinetic-mimicry, instead of bio-mimicry, to design prosthetic rolling contact joints, including knee braces, limb prosthetics, and joint prostheses, with the intent of reducing morbidity and complications associated with joint/tissue failure. A deterministic approach to joint design is taken to elucidating six functional requirements for a prosthetic tibiofemoral joint based on anatomical observations of human knee kinetics and kinematics. Current prostheses have a high slide/roll ratio, resulting in unnecessary wear. A rolling contact joint, however, has a negligible slide/roll ratio; rolling contact prostheses would therefore be more efficient. A well-established four-bar linkage knee model, in a sagittal plane that encapsulates with the knee's flexion/extension degree of freedom, is used to link human anatomy to the shape of rolling cam surfaces. The first embodiment of the design is a flexure coupling-based joint for knee braces. Failure mode analysis, followed by cyclic failure testing, has shown that the prototype joint is extremely robust and withstood half a million cycles during the first round of tests. Lubrication in the joint is also considered: micro- and nano-textured porous coatings are investigated for their potential to support the formation of favorable lubrication regimes. Hydrodynamic lubrication is optimal, as two surfaces are separated by a fluid gap, thus mitigating wear. Preliminary results have shown that shear stress is reduced by more than 60% when a coating is combined with a shear thinning lubricant like synovial fluid. These coatings could be incorporated into existing joint prostheses to help mitigate wear in current technology. This thesis seeks to describe improvements to the design of prosthetic joints, both existing and future, with the intent of increasing the overall quality of care delivered to the patient.
by Alexander Henry Slocum, Jr.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Balcombe, Robbie. "A study of rolling contact fatigue cracks in lubricated contacts." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9848.

Full text
Abstract:
A novel method for coupling fluid pressure and crack deformation for the purpose of analysing rolling contact fatigue (RCF) cracks in lubricated, hydrodynamic and elastohydrodynamic, contacts is presented. The model addresses some of the simplifying assumptions applied to existing models presented in the literature such as: (i) using an imposed fluid pressure gradient inside the crack, (ii) using an imposed fluid pressure at the crack mouth, and (iii) adopting a surface contact pressure, Hertzian or EHL, that does not account for the fluid flow in and out of the crack during loading. The model has been used to model the effect of lubricant/crack interaction in various RCF configurations as the rolling element passes over the pre-formed crack; which has direct application to bearings and rail/wheel contacts. The results of the simulations performed with the fully-coupled fluid/solid solver developed by the author suggest that the cracked component/lubricant interaction contributes significantly to accelerate the rate of surface breaking crack growth in rolling element bearings and wheel/rail type contacts. It is shown through simulations that the lubricant works as a catalyst inside the crack to convert the compressive contact load into a crack opening, tensile fatigue mechanism, through the effect of fluid pressurisation inside the crack. The results obtained using such a model suggest that the opening associated with the fluid action within the crack induces large mode I stress intensity factors. This has been shown to be the principal factor that promotes and influences the rate of rolling contact fatigue crack growth in lubricated contacts. In addition to the modelling work, an experimental method of analysing RCF cracks in real time has been developed. The technique is based on laser induced fluorescence that allows the penetration of the fluid within the crack to be observed. Though the method would require development to be used to provide results that could be used for quantitative comparisons with crack models, some encouraging preliminary results have been obtained: the technique has been shown to be suitable for measuring, at least qualitatively, the real time evolution of the film thickness in RCF cracks.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, W. "Rolling contact fatigue of silicon nitride." Thesis, Bournemouth University, 2010. http://eprints.bournemouth.ac.uk/17764/.

Full text
Abstract:
Silicon Nitride has traditionally been used as rolling contact bearing material owing to its superior performance compared to bearing steels. Its successful application as a bearing element has led to the development of Silicon Nitride in other rolling contact applications in the automotive industry and the power industry. However, a major limitation of its wider application is its high material and machining cost, especially the cost associated with the finishing process. In the present study, a low cost sintered and reaction-bonded Silicon Nitride is used to study the surface machining effects on its rolling contact fatigue performance. Studies have been carried out to link the surface strengths of Silicon Nitride derived from half-rod and C-Sphere flexure strength specimens to the rolling contact lives of Silicon Nitride rod and ball specimens. The rolling contact fatigue tests were carried out on ball-on-rod and modified four-ball machines. Three types of surface with coarse, fine and RCF-conventional finishing conditions were examined. Flexure strength tests on half-rod and C-Sphere showed an increasing surface strength from specimens with coarse, fine to RCF-conventionally machined conditions. During rolling contact fatigue tests of as-machined specimens, no failures were observed on either ball-on-rod or four-ball tests after 100 million stress cycles. However, a trend of decreasing wear volumes was measured on the contact path of rods and balls with coarse, fine and RCF-conventional conditions. In four-ball tests, spall failures were observed on pre-cracked specimens. There was a trend of increasing rolling contact fatigue lifetime from pre-cracked specimens with coarse, fine to RCF-conventional machining conditions. The study of Silicon Nitride machining was also carried out using an eccentric lapping machine to investigate the effect of eccentricity on the finishing rate of hot isostatically-pressed and sintered and reaction-bonded Silicon Nitride. The eccentricity had no significant impact on finishing rate as concluded in this study. The effect of lubricant viscosity and chemistry on the rolling contact fatigue performance of Silicon Nitride was also studied. The result is inconclusive.
APA, Harvard, Vancouver, ISO, and other styles
7

Halverson, Peter Andrew. "Multi-stable Compliant Rolling-contact Elements." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1832.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Everitt, Carl-Magnus. "Initiation of rolling contact fatigue from asperities in elastohydrodynamic lubricated contacts." Licentiate thesis, KTH, Hållfasthetslära (Avd.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-222371.

Full text
Abstract:
Rolling contacts are utilized in many technical applications, both in bearings and in the contact between gear teeth. These components are often highly loaded, which makes them susceptible to suffer from rolling contact fatigue. This work focuses on the rolling contact fatigue mechanism of pitting. In order to attain a better understanding of why pitting initiates and grows, detailed simulations of rolling contacts have been performed. In particular the contact between two gears in a truck retarder was here used as a case study. The investigated contact experienced elastohydrodynamic lubrication conditions since the load was high enough to causes the surfaces in contact to deform and the viscosity of the lubricant to increase significantly. In Paper A it was investigated if surface irregularities in the size of the surface roughness are large enough to cause surface initiated fatigue. The investigation focused on the pitch line since small surface initiated pits were found here even though there was no slip present. Since there were pits present at the pitch line, it is important that the theories of pitting can explain the development of pits also in the absence of slip. The conclusion of the work was that surface irregularities of the size of normal surface roughness are enough to cause surface initiated fatigue at the pitch line. In Paper B it was investigated why pits are more likely to initiate in the dedendum of pinion gears than in the addendum. In both areas slip is present but in different directions. In the dedendum the friction from slip is against the rolling direction which enhances the risk for pitting. The investigation was performed by studying the effect of the temperature rise in the contact caused by the slip. The conclusion drawn was that the temperature rise in the contact explained why pitting was more common in the dedendum than in the addendum.
Rullande kontakter förekommer i många applikationer, till exempel i lager och mellan kugghjulständer. Både lager och kugghjul utsätts ofta för höga laster vilket gör att dess ytor löper stor risk att utmattas, vilket kallas rullande kontaktutmattning. Denna studie fokuserar på pitting, även kallat spalling, vilket är en typ av rullande kontaktutmattning där en utmattninsspricka växer fram som får delar av ytan att ramla av. För att få en bättre förståelse varför pittingskador uppkommer har noggranna simuleringar utförts av rullande kontakter. Kontakten mellan två tänder på kugghjul i en lastbilsretarder har används som underlag då många pittingskador påträffats på dem.  För att minska friktionen och nötningen i kontakten mellan kuggtänderna användes smörjmedel. De höga lasterna lastbilsretardern utsattes för deformerade kuggarnas ytor elastiskt samtidigt de kraftigt ökade viskositeten hos smörjmedlet. Dessa förhållanden gör att kontakten kallas för elastohydrodynamiskt smord, vilket på engelska förkortas till EHL. I Artikel A undersöktes om små ytojämnheter kan orsaka ytinitierade pittingskador. Eftersom skadan påträffats i friktionslösa kontakter, så som vid rullcirkeln på de undersökta kugghjulen, är det viktigt att teorierna som förklarar uppkomsten inte är beroende av friktion. Undersökningen fokuserade därför på förhållandena vid rullcirkeln.  Slutsatsen från arbetet var att små ytojämnheter, av samma storleksordning som ytojämnheterna på de undersökta kugghjulen, är tillräckligt stora för att orsaka utmattningsskador. I Artikel B undersöktes varför det är vanligare att pitts initieras i dedendum än addendum på drivande kugghjul. Kontakten på båda sidorna om rullcirkeln slirar svagt åt olika håll. Att kontakten slirar skapar friktion som är motriktad rullriktningen i dedendum vilket ökar risken för pittingskador. För att undersöka varför dessa förhållanden ökar risken för skador fördjupades analysen av kontakten genom att inkludera temperaturfältet. Simuleringarna visade att temperaturen ökar genom kontakten vilket orsakar en asymmetrisk spänningsfördelning. Denna asymmetriska spänningsfördelning gör att ytojämnheter i dedendum är troligare att orsaka skador än ytojämnheter i addendum.

QC 20180213

APA, Harvard, Vancouver, ISO, and other styles
9

楊貴永 and Kwai-wing Yeung. "Elastic-plastic analysis of rolling elliptical contacts and the effects of axial superimposed stresses on rolling contact fatiguefailure." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31231032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yeung, Kwai-wing. "Elastic-plastic analysis of rolling elliptical contacts and the effects of axial superimposed stresses on rolling contact fatigue failure /." [Hong Kong] : University of Hong Kong, 1987. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12333669.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rolling Contact"

1

Jacobson, Bo, and Joost J. Kalker, eds. Rolling Contact Phenomena. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2782-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1942-, Jacobson Bo O., Kalker Joost J, and International Centre for Mechanical Sciences, eds. Rolling contact phenomena. Wien, [Austria]: Sprinter, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hadfield, Mark. Rolling contact fatigue of ceramics. Uxbridge: Brunel University, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danyluk, Michael, and Anoop Dhingra. Rolling Contact Fatigue in a Vacuum. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11930-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kalker, J. J. Three-dimensional elastic bodies in rolling contact. Dordrecht: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kalker, J. J. Three-Dimensional Elastic Bodies in Rolling Contact. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-015-7889-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kalker, J. J. Three-Dimensional Elastic Bodies in Rolling Contact. Dordrecht: Springer Netherlands, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Svidenko, V. N. Silovye parametry pri uprugoplasticheskom kontakte. Alma-Ata: "Nauka" Kazakhskoĭ SSR, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

United States. National Aeronautics and Space Administration., ed. investigation of rolling contact fatigue of ball bearings. Washington, D.C: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harris, Tedric A. Rolling bearing analysis. 3rd ed. New York: Wiley, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rolling Contact"

1

Wetter, Robbin, Valentin L. Popov, and Markus Heß. "Rolling Contact." In Method of Dimensionality Reduction in Contact Mechanics and Friction, 87–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53876-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sextro, Walter. "Rolling Contact." In Dynamical Contact Problems with Friction, 109–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-46871-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Popov, Valentin L. "Rolling Contact." In Contact Mechanics and Friction, 119–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10803-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Popov, Valentin L. "Rolling Contact." In Contact Mechanics and Friction, 137–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53081-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stolarski, T. A., and S. Tobe. "Rolling Contact Bearings." In Rolling Contacts, 145–99. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903001.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stanworth, C. "Rolling Noise." In Rolling Contact Phenomena, 329–54. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2782-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stolarski, T. A., and S. Tobe. "Machine Elements in Rolling Contact." In Rolling Contacts, 239–315. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903001.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stolarski, T. A., and S. Tobe. "Coated Surfaces in Rolling Contact." In Rolling Contacts, 365–90. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903001.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalker, J. J. "Rolling Contact Phenomena." In Rolling Contact Phenomena, 1–84. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2782-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stolarski, T. A., and S. Tobe. "Elements of Surface Contact of Solids." In Rolling Contacts, 11–54. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903001.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rolling Contact"

1

Cannon, Jesse R., Craig P. Lusk, and Larry L. Howell. "Compliant Rolling-Contact Element Mechanisms." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84073.

Full text
Abstract:
This paper presents three planar mechanisms capable of performing the functions of a bearing and a spring: the compliant rolling-contact element (CORE), the CORE bearing, and the elliptical CORE bearing. The designs use compliant rolling-contact joints to achieve low friction rotation and to bear high in-plane lateral loads. A model for predicting the behavior of the designs is presented, and manufacturing considerations are discussed for the macro, meso, and micro scales. A case study is presented, and the designs are shown to be capable of meeting the demanding design constraints of the study.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Ke-Jung, and Pei-Chun Lin. "Rolling SLIP: A model for running locomotion with rolling contact." In 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2012. http://dx.doi.org/10.1109/aim.2012.6266018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Rao-Sheng, and Harvey P. Nixon. "A Contact Stress Model for Predicting Rolling Contact Fatigue." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cummings, Scott M., Patricia Schreiber, and Harry M. Tournay. "Parametric Simulation of Rolling Contact Fatigue." In ASME 2008 Rail Transportation Division Fall Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/rtdf2008-74012.

Full text
Abstract:
Simulations of dynamic vehicle performance were used by the Wheel Defect Prevention Research Consortium (WDPRC) to explore which track and vehicle variables affect wheel fatigue life. A NUCARS® model was used to efficiently examine the effects of a multitude of parameters including wheel/rail profiles, wheel/rail lubrication, truck type, curvature, speed, and track geometry. Results from over 1,000 simulations of a loaded 1,272 kN (286,000-pound) hopper car are summarized. Rolling contact fatigue (RCF) is one way that wheels can develop treads defects. Thermal mechanical shelling (TMS) is a subset of wheel shelling in which the heat from tread braking reduces a wheel’s fatigue resistance. RCF and TMS together are estimated to account for approximately half of the total wheel tread damage problem [1]. Other types of tread damage can result from wheel slides. The work described in this paper concerns pure RCF, without regard to temperature effects or wheel slide events. Much work has been conducted in the past decade in an attempt to model the occurrence of RCF on wheels and rails. The two primary methods that have gained popularity are shakedown theory and wear model. The choice of which model to use is somewhat dependent on the type of data available, as each model has advantages and disadvantages. The wear model was selected for use in this analysis because it can account for the effect of wear on the contacting surfaces and is easily applied to simulation data in which the creep and creep force are available. The findings of the NUCARS simulations in relation to the wear model include the following: • Degree of curvature is the single most important factor in determining the amount of RCF damage to wheels; • The use of trucks (hereafter referred to as M-976) that have met the Association of American Railroads’ (AAR) M-976 Specification with properly maintained wheel and rail profiles should produce better wheel RCF life on typical routes than standard trucks; • In most curves, the low-rail wheel of the leading wheelset in each truck is most prone to RCF damage; • While the use of flange lubricators (with or without top of rail (TOR) friction control applied equally to both rails) can be beneficial in some scenarios, it should not be considered a cure-all for wheel RCF problems, and may in fact exacerbate RCF problems for AAR M-976 trucks in some instances; • Avoiding superelevation excess (operating slower than curve design speed) provides RCF benefits for wheels in cars with standard three-piece trucks; • Small track perturbations reduce the overall RCF damage to a wheel negotiating a curve.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, C. H., and W. E. Hsu. "Non-Hertzian rolling contact stress analysis." In CMEM 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/cmem070571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Myśliński, A., and A. Chudzikiewicz. "Power dissipation modelling in rolling contact." In 16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics. CIMNE, 2024. http://dx.doi.org/10.23967/c.wccm.2024.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, W., A. A. Wereszczak, and M. Hadfield. "C-sphere strength as an indicator of rolling contact performance of silicon nitride." In CONTACT/SURFACE 2007. Southampton, UK: WIT Press, 2007. http://dx.doi.org/10.2495/secm070111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zawada-Tomkiewicz, A., and B. Storch. "Comparative analysis of the machined surface image after the process of burnishing rolling." In CONTACT/SURFACE 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/secm090101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leocadio, Hormando, CWM van der Geld, and Julio Cesar Passos. "HEAT TRANSFER COEFFICIENT DURING WATER JET COOLING OF HIGH-TEMPERATURE STEEL." In 11th International Rolling Conference. Blucher, 2019. http://dx.doi.org/10.5151/9785-9785-32400.

Full text
Abstract:
Impinging water jets promote high heat flux extraction rate. Steel industry widely employs the process for accurate temperature control to improve the microstructure and to ensure adequate mechanical properties. The range of surface temperatures, heat fluxes and cooling rates are very large, which makes it important to obtain an accurate value of the heat transfer coefficient. This paper presents an experimental and numerical study of the heat transfer behavior of a high temperature (450°C - 900°C) steel plate cooled by a water jet at 20°C to 70°C. High-speed imaging (up to 20,000 fps) within water jet impingement zone allowed the characterization of the boiling regimes in the early stages of cooling. The effects of initial temperature, water jet temperature and velocity and on the heat transfer coefficient were analyzed by inverse heat conduction method that predicts the heat flux and temperature on the top surface from temperatures measured with thermocouples inserted in test plate. Heat transfer is strongly affected by the initial temperature of the hot steel, water jet temperature and, less intensely, by jet velocity. High cooling rates start when liquid water is in direct contact with surface temperatures above 700°C.The results will contribute to the enhancement of the temperature cooling control on the runout table and cooling model employed at Usiminas Hot Strip Mill.
APA, Harvard, Vancouver, ISO, and other styles
10

So¨derberg, Anders, and Christer Spiegelberg. "Modelling Transient Behavior of a Mechanical System Including a Rolling and Sliding Contact." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80906.

Full text
Abstract:
The friction and wear of rolling and sliding contacts are critical factors for the operation of machine elements such as bearings, gears, and cam mechanisms. In precision machines, for example, the main concern is to compensate for frictional losses, so as to improve control accuracy. In other applications it is often desirable to minimize friction losses to improve efficiency, though sometimes high friction is desired to prevent sliding and wear. The aim of this study is to simulate the behavior of a test equipment and show that simulations can be used to study and optimize mechanical systems that include rolling and sliding contact. Simulations can be used to study the system as a whole, as well as the contact conditions. The test equipment and the measurement procedure used are described. In the simulations, a contact model designed to handle transient contact conditions is integrated into a system model. The results show that the contact strongly influences the system. The simulations show that the use of a contact model allows the simulation of systems that contain contacts with different amounts of slip, and that such simulations can be used to study the contact as well as the system. Surface roughness influences the contact stiffness and is included in the simulations.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rolling Contact"

1

Wereszczak, A. A., W. Wang, Y. Wang, M. Hadfield, W. Kanematsu, T. P. Kirkland, and O. M. Jadaan. Rolling Contact Fatigue of Ceramics. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/947387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wereszczak, Andrew A., W. Wang, Y. Wang, M. Hadfield, W. Kanematsu, Timothy Philip Kirkland, and Osama M. Jadaan. Rolling Contact Fatigue of Ceramics. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/947572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arroyo, Marcos, Riccardo Rorato, Marco Previtali, and Matteo Ciantia. 2D Image-based calibration of rolling resistance in 3D discrete element models of sand. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001229.

Full text
Abstract:
Contact rolling resistance is the most widely used method to incorporate particle shape effects in the discrete element method (DEM). The main reason for this is that such approach allows for using spherical particles hence offering substantial computational benefits compared to non-spherical DEM models. This paper shows how rolling resistance parameters for 3D DEM models can be easily calibrated with 2D sand grain images.
APA, Harvard, Vancouver, ISO, and other styles
4

Tordesillas, Antoinette. A Large Deformation Finite Element Analysis of Soil-Tire Interaction Based on the Contact Mechanics Theory of Rolling and/or Sliding Bodies. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada384198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, I. R. Surficial geology, La Biche River northwest, Yukon-Northwest Territories, NTS 95-C/11, 12, 13, and 14. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330591.

Full text
Abstract:
This map is situated in the Hyland Plateau, west of the Mackenzie Mountains, southeast Yukon. The area was inundated by the Cordilleran Ice Sheet during the Late Wisconsinan glaciation. Ice advanced east to northeast across the rolling bedrock terrain, producing dense networks of sometimes cross-cutting bedrock flutings and drumlinoid ridges. During deglaciation, ice flow became increasingly topographically constrained, shifting to more northward flow along major valleys. Meltwater flowing north initially crossed the divide into the Nahanni River basin. Later, as ice retreated south and eastwards, ice-contact deltas and kame terraces formed along the retreating margins. The area is largely covered by till veneer, with bedrock exposed along most ridge crests and glacially-incised valley walls. Shale units within the Besa River and Mattson formations appear prone to failure, and large rotational landslides are common.
APA, Harvard, Vancouver, ISO, and other styles
6

Dredge, L. A. Reconnaissance surficial geology, Joe Lake north, Nunavut, NTS 66-J north. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329417.

Full text
Abstract:
The northwest part of the Joe Lake North map area is dominated by glaciated granitic and gneissic bedrock, and small lake basins. The remainder of the area is gently rolling terrain consisting of a major north-trending drumlin field, four esker systems, and marine deposits that lie between the drumlins. Postglacial marine deposits occupy much of the terrain in the north part of the map area. The limit of postglacial marine submergence is at about 180 m a.s.l. in the southwest, and at about 170 m elsewhere, as determined by wave-washed trimlines on drumlins, and several ice-contact deltas on eskers. Well formed beaches are rare, but drumlins have been reworked to varying degrees. Those at higher elevations in the south have been only slightly modified by postglacial seas, whereas those at lower elevations in the north are covered by a veneer of marine deposits.
APA, Harvard, Vancouver, ISO, and other styles
7

Sakhare, Rahul Suryakant, Jairaj Desai, Jijo K. Mathew, John McGregor, Mischa Kachler, and Darcy M. Bullock. Measuring and Visualizing Freeway Traffic Conditions: Using Connected Vehicle Data. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317751.

Full text
Abstract:
Historically, a network of roadside sensors and cameras have been used to monitor freeway conditions. Although these systems are effective, they are typically not operational in and around work zones. Furthermore, it is often not financially viable to deploy in-road sensors and cameras in rural areas. Connected vehicle trajectory data has emerged as a viable source of data and provides a unique opportunity for monitoring freeways. This monograph describes how these connected vehicles can be used to directly measure queue lengths and travel times and this description is summarized in a graphical format easily used by agencies to make management decisions. Approximately 50 use cases are described to demonstrate these techniques under diverse conditions, such as lane reductions, short term closures, rolling slowdowns, work zone set up, work zone removal and inclement weather. A number of the use cases were selected from Indiana locations that had good ITS camera coverage to provide context-sensitive information to help the reader understand the graphics. In addition, several case studies are presented from selected states around the country to demonstrate the scalability of these techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Yong-Yi, Zhili Feng, Wentao Cheng, and Sudarsanam Suresh Babu. L51939 Weldability of High-Strength Enhanced Hardenability Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2003. http://dx.doi.org/10.55274/r0010384.

Full text
Abstract:
Since the 1970s, the development of high-strength pipeline steels has followed the route of progressively reduced harden ability through lower carbon and alloying element contents. Micro-alloying, controlled rolling (CR), and thermo-mechanical controlled processing (TMCP) have been used extensively to achieve the high-strength and other material property requirements despite the trend towards lower carbon content. The primary driving force behind the evolution of these alloying and processing strategies stems from the concerns over the weld ability, particularly the hydrogen induced cracking (HIC), at ever-increasing strength levels. Accompanying the extensive reliance on micro-alloying, CR, and TMCP, there has been a movement to tighter restrictions on micro-alloy variability, the increased use of heavy reduction at low inter-critical temperatures and, in some instances, the reliance on cold expansion. The objective of this project was to evaluate alternate steels with enhanced harden ability and identify those that would have a potential to (1) meet the high strength/high toughness requirement but without the adverse effects of the early trial heats of micro-alloyed TMCP X80 and X100 line pipe steels, and (2) exhibit sufficient resistance to hydrogen induced cracking (HIC) when welded with processes and consumables representative of state-of-the-art, low-hydrogen field girth welding practices. The focus of the project was on the weld ability and properties of the base metal and the heat-affected zone (HAZ). The selection and development of suitable weld consumables were not part of this project.
APA, Harvard, Vancouver, ISO, and other styles
9

Patchett, B. M., and A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1993. http://dx.doi.org/10.55274/r0010418.

Full text
Abstract:
The welding of high strength steels in general, and for pipeline fabrication in particular, has shown that cracking due to hydrogen absorption during welding is more complex in these steels than in older, lower strength steels. In older steels, primary strengthening was accomplished with carbon, which caused hydrogen cracking in the base metal HAZ under reasonably predictable conditions involving microstructure, residual stress and hydrogen level. Pipeline steels were and are in the vanguard of change in strengthening philosophy. The change involves two areas of steel making, chemical composition and deformation processing. Pipeline steels now contain low carbon levels, in many cases less than 0.10%, and the resulting lack of strength is reclaimed by adding higher alloy levels to promote solution hardening (e.g. Mn), precipitation hardening (e.g. Cb, Cu) or transformation hardening (e.g. MO). In addition, alloy elements are added to improve toughness at high strength levels (e.g. Ni). At the same time, improvements have been made in reducing impurity and residual element levels, notably for S, P and O and N. Limitations on the effects of alloying additions on strength and toughness encouraged the use of deformation processing, primarily during rolling, to promote fine-grained microstructures to increase strength andtoughness simultaneously. Electrodes for the SMAW process have been developed for welding high-strength pipeline steels by using core wires made from high-strength microalloyed skelp extruded with cellulosic (Exx10) and low hydrogen (Exx16) flux coatings. The required alloy elements for high-strength deposits were therefore obtained from the core wire and not ferroalloy powders added to the flux, as is standard industrial practice. The idea behind this change was two fold: to avoid the possibility of introducing impurities from the varying sources of ferro alloy powders, including oxygen from the oxidized powder surfaces, and also to provide a closer match of the microalloy level to modern pipeline steel chemistries. The unknowns in this work were the effects of lower impurities/similar alloy content on the mechanical properties in the cast microstructure of a weld, compared to a pipe, and of the effect on electrode welding behaviour of a flux containing no ferro powders other than FeSi.
APA, Harvard, Vancouver, ISO, and other styles
10

Groeneveld. L51690 Evaluation of Modern X-70 HFER Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1992. http://dx.doi.org/10.55274/r0010316.

Full text
Abstract:
In recent years, several pipe mills have produced heavy-wall, large diameter pipe from plates of microalloyed steels that were controlled-rolled to develop properties to meet the API 5LX Grade 70 or Grade 80 requirements and that were electric resistance welded (ERW) using advanced techniques. The use of advanced electric seam-welding practices on the steels produced using advanced steel making and processing methods offers the possibility of obtaining high strength line pipe at a lower cost than pipes produced from similar steels but with double submerged arc seam welds. The present study was undertaken to evaluate the properties of the pipe body and the ERW seam-weld region of a recently produced heavy-wall X70 line pipe. This report describes the evaluation of that pipe. The mechanical properties of the weld zone from this pipe were evaluated and reported under Task 18-89. Those data are included in this report. A high-frequency electric resistance welded (HFERW) X70 line pipe was evaluated to assess the strength properties, fracture behavior, thermal stability, and susceptibility to environmentally induced degradation that may affect its behavior in gas transmission service. A 20-inch-(508 mm)-diameter by 0.500-inch-(12.7 mm)-wall high-frequency, electric-resistance-welded (HFERW) X70 line pipe was evaluated to assess the strength properties, fracture behavior, thermal stability, and susceptibility to environmentally induced degradation that may affect its behavior in gas transmission service. The steel from which the pipe was produced was processed using advanced steel-making practices that resulted in a low sulfur content and was microalloyed with Cb, V, and Ti. The steel was controlled rolled with 75 percent of the rolling reduction being accomplished at temperatures below 1418 F (770 C); the finishing temperature was 1328 F (720 C) and the steel was hot coiled after finishing. The seam weld was produced by high frequency electric resistance welding and the seam weld region was post-weld normalized.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography