Academic literature on the topic 'Robust passivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robust passivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Robust passivity"

1

Lin, Zhongwei, Jizhen Liu, and Yuguang Niu. "Robust Passivity and Feedback Design for Nonlinear Stochastic Systems with Structural Uncertainty." Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/460348.

Full text
Abstract:
This paper discusses the robust passivity and global stabilization problems for a class of uncertain nonlinear stochastic systems with structural uncertainties. A robust version of stochastic Kalman-Yakubovitch-Popov (KYP) lemma is established, which sustains the robust passivity of the system. Moreover, a robust strongly minimum phase system is defined, based on which the uncertain nonlinear stochastic system can be feedback equivalent to a robust passive system. Following with the robust passivity theory, a global stabilizing control is designed, which guarantees that the closed-loop system is globally asymptotically stable in probability (GASP). A numerical example is presented to illustrate the effectiveness of our results.
APA, Harvard, Vancouver, ISO, and other styles
2

Bu, Ni, and Mingcong Deng. "Passivity-Based Tracking Control for Uncertain Nonlinear Feedback Systems." Journal of Robotics and Mechatronics 28, no. 6 (December 20, 2016): 837–41. http://dx.doi.org/10.20965/jrm.2016.p0837.

Full text
Abstract:
[abstFig src='/00280006/07.jpg' width='300' text='The asymptotic tracking performance and the passivity property' ] The tracking control problem for the uncertain nonlinear feedback systems is considered in this paper by using passivity-based robust right coprime factorization method. Concerned with the passivity for the nonlinear feedback system, two stable controllers are designed such that the nonlinear feedback system is robust stable and the plant output asymptotically tracks to the reference output. A numerical example is given to show the validity of the control scheme as well as the tracking performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Shanrong, Yanli Huang, and Erfu Yang. "Passivity and Synchronization of Coupled Different Dimensional Delayed Reaction-Diffusion Neural Networks with Dirichlet Boundary Conditions." Complexity 2020 (January 8, 2020): 1–21. http://dx.doi.org/10.1155/2020/4987962.

Full text
Abstract:
Two types of coupled different dimensional delayed reaction-diffusion neural network (CDDDRDNN) models without and with parametric uncertainties are analyzed in this paper. On the one hand, passivity and synchronization of the raised network model with certain parameters are studied through exploiting some inequality techniques and Lyapunov stability theory, and some adequate conditions are established. On the other hand, the problems of robust passivity and robust synchronization of CDDDRDNNs with parameter uncertainties are solved. Finally, two numerical examples are given to testify the effectiveness of the derived passivity and synchronization conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Samorn, Nayika, Narongsak Yotha, Pantiwa Srisilp, and Kanit Mukdasai. "LMI-Based Results on Robust Exponential Passivity of Uncertain Neutral-Type Neural Networks with Mixed Interval Time-Varying Delays via the Reciprocally Convex Combination Technique." Computation 9, no. 6 (June 10, 2021): 70. http://dx.doi.org/10.3390/computation9060070.

Full text
Abstract:
The issue of the robust exponential passivity analysis for uncertain neutral-type neural networks with mixed interval time-varying delays is discussed in this work. For our purpose, the lower bounds of the delays are allowed to be either positive or zero adopting the combination of the model transformation, various inequalities, the reciprocally convex combination, and suitable Lyapunov–Krasovskii functional. A new robust exponential passivity criterion is received and formulated in the form of linear matrix inequalities (LMIs). Moreover, a new exponential passivity criterion is also examined for systems without uncertainty. Four numerical examples indicate our potential results exceed the previous results.
APA, Harvard, Vancouver, ISO, and other styles
5

Sheng, Yin, and Zhigang Zeng. "Passivity and robust passivity of stochastic reaction–diffusion neural networks with time-varying delays." Journal of the Franklin Institute 354, no. 10 (July 2017): 3995–4012. http://dx.doi.org/10.1016/j.jfranklin.2017.03.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Gui Fang, Yong Cheng Sun, and Sheng Guo Huang. "Robust Passivity Control for Uncertain Time-Delayed Systems." Applied Mechanics and Materials 29-32 (August 2010): 2025–30. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2025.

Full text
Abstract:
This paper focuses on the robust passivity synthesis problem for a class of linear time-delayed systems subject to parameter uncertainties. The time delay is assumed to be unknown, and the parameter uncertainties are allowed to appear in all matrices of the model. The aim lies in designing observer-based dynamic controller that render the closed-loop system be strongly robustly stable and strict passive for all admissible uncertainties, independently of time delay. Using a scaling parameterization approach, the problem being considered is transformed into a class of strongly stable and strictly passive control problem for a parameterized system without uncertainties. And then, the controller gain and the observer gain are obtained in terms of a linear matrix inequality. Finally, a numerical example is provided to demonstrate the validity of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
7

Gallegos, Javier A., Norelys Aguila‐Camacho, and Manuel A. Duarte‐Mermoud. "Robust adaptive passivity‐based PI λ D control." International Journal of Adaptive Control and Signal Processing 34, no. 11 (October 12, 2020): 1572–89. http://dx.doi.org/10.1002/acs.3167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Loría, Antonio, Gerardo Espinosa-Pérez, and Erik Chumacero. "Robust passivity-based control of switched-reluctance motors." International Journal of Robust and Nonlinear Control 25, no. 17 (November 11, 2014): 3384–403. http://dx.doi.org/10.1002/rnc.3270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bao, J., P. L. Lee, F. Wang, and W. Zhou. "Robust Process Control Based on the Passivity Theorem." Developments in Chemical Engineering and Mineral Processing 11, no. 3-4 (May 15, 2008): 287–308. http://dx.doi.org/10.1002/apj.5500110407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deng, Mingcong, and Ni Bu. "Robust Control for Nonlinear Systems Using Passivity-Based Robust Right Coprime Factorization." IEEE Transactions on Automatic Control 57, no. 10 (October 2012): 2599–604. http://dx.doi.org/10.1109/tac.2012.2188426.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Robust passivity"

1

Abroug, Neil. "Commande robuste multi-variable des systèmes de comanipulation." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD027/document.

Full text
Abstract:
À l'aube de la quatrième révolution industrielle, la comanipulation robotique est une technologie clé tant elle allie la dextérité de l'opérateur humain à la puissance de la machine. Ce partage de tache entre humain et la machine, en sus dans un environnement incertain et inconnu à l'avance, apporte un lot de difficultés intrinsèques à la nature de cette interaction. Cette problématique a été intensivement étudiée durant les vingt dernières années, par diverses équipes de recherches, le plus souvent sur des dispositifs à un seul degré de liberté et avec des hypothèses fortes sur la nature du contrôleur. Dans la présente thèse, nous traitons la problématique de la comanipulation robotique à travers la commande Hoo structurée, cadre de travail particulièrement adapté aux systèmes multivariables et pouvant être étendu à une certaine classe de systèmes non linéaires – les robots manipulateurs en font partie – à travers une modélisation linéaire à paramètres variants (LPV). Les exigences de performance et de stabilité propres aux systèmes de comanipulation sont exprimées en termes de contraintes Hoo et de conditions de secteurs à respecter. Les objectifs de commande ainsi formalisés, sont résolus par optimisation non lisse afin de tirer profit des structures particulières des contrôleurs de robots de comanipulation. La validation de la méthodologie est réalisée par des simulations intensives et des expérimentations sur des dispositifs réels
At the dawn of the fourth industrial revolution, robotic comanipulation is a key technology as it combines the dexterity of the human operator with the power of the machine. This task sharing between human and machine, in an uncertain and previously unknown environment, brings a lot of intrinsic difficulties to the nature of this interaction. This problem has been intensively studied over the last two decades by various research teams, mostly on devices with a single degree of freedom and with strong hypotheses about the controller structure. In this thesis, we deal with the problem of robotic comanipulation through the scope of the structured Hoo control, a framework particularly adapted to multivariable systems and which can be extended to a certain class of non-linear systems – manipulating robots are part of it – through linear parameter varying (LPV) models. The performance and stability requirements specific to comanipulation systems are expressed in terms of Hoo constraints and sector bounds. The control objectives thus formalised are solved by non-smooth optimization in order to take advantage of the particular structures of the comanipulation robot controllers. The validity of the methodology is carried out by intensive simulations and experiments on real devices
APA, Harvard, Vancouver, ISO, and other styles
2

Ryalat, Mutaz. "Design and implementation of nonlinear and robust control for Hamiltonian systems : the passivity-based control approach." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/398131/.

Full text
Abstract:
Recently, control techniques that adopt the geometrical structure and physical properties of dynamical systems have gained a lot of interest. In this thesis, we address nonlinear and robust control problems for systems represented by port-controlled Hamiltonian (PCH) models using the interconnection and damping assignment passivity-based control(IDA-PBC) methodology, which is the most notable technique facilitating the PCH framework. In this thesis, a novel constructive framework to simplify and solve the partial differential equations (PDEs) associated with IDA-PBC for a class of underactuated mechanical systems is presented. Our approach focuses on simplifying the potential energy PDEs to shape the potential energy function which is the most important procedure in the stabilization of mechanical systems. The simplification is achieved by parametrizing thedesired inertia matrix that shapes the kinetic energy function, thus achieving total energy shaping. The simplification removes some constraints (conditions and assumptions) that have been imposed in recently developed methods in literature, thus expanding the class of systems for which the methods can be applied including the separable PCH systems(systems with constant inertia matrix) and non-separable PCH systems (systems with non-constant inertia matrix). The results are illustrated through software simulations and hardware experiments on real engineering applications. We also propose an integral control and adaptive control schemes to improve the robustness of the IDA-PBC method in presence of uncertainty. We first provide some results for the case of fully-actuated mechanical systems, and then extend those results to underactuated systems which are more complex. Integral action control on both the passive and non-passive outputs in the IDA-PBC construction, a strategy to ensure the robustness of the systems by preserving its stability in face of external disturbances, is introduced, establishing the input-to-state stability (ISS) property. The results are applied to both the separable and non-separable PCH systems and illustrated via several simulations. The extension to the non-separable case exhibits more complicated design as we need to take into account the derivative of the inertia matrix. Finally, the IDA-PBC method is employed to solve an important nonlinear phenomenon called ‘pull-in’ instability associated with the electrostatically actuated microelectromechanical systems (MEMSs). The control construction is an output-feedback controller that ensures global asymptotic stability and avoids velocity measurement which may not be practically available. Furthermore, the integral, adaptive and ISS control schemes proposed in this thesis for mechanical systems are extended to facilitate the stabilization of electromechanical systems which exhibit strong coupling between different energy domains.
APA, Harvard, Vancouver, ISO, and other styles
3

Hui, Xin. "Cascade Control of a Hydraulic Prosthetic Knee." Cleveland State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=csu1459772543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ihle, Ivar-Andre Flakstad. "Coordinated Control of Marine Craft." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-945.

Full text
Abstract:

This thesis contains new results on the problem of coordinating a group of vehicles. The main motivation driving this work is the development of control laws that steer individual members of a formation, such that desired group behavior emerges. Special attention is paid to analysis of coordination issues, in particular formation control of marine craft where robustness to unknown environmental forces is important. Coordinated control applications for marine craft include: underway replenishment, maintaining a formation for increased safety during travel and instrument resolution, and cooperative transportation. A review of formation control structures is given, together with a discussion of special issues that arise in coordination of independent vehicles.

The main contributions of this thesis may be grouped into two categories:

• Path-following designs for controlling a group of vehicles

• Multi-body motivated formation modeling and control

A previously developed path following design is used to control a group of vehicles by synchronizing the individual path parameters. The path following design is advantageous since the path parameter, i.e., that parameter which determines position along a path, is scalar; hence coordination is achieved with a little amount of real-time communication. The path following design is also extended to the output-feedback case for systems where only parts of the state vector are known. The path following scheme is exploited further in a passivity-based design for coordination where the structural properties render an extended selection of functions for synchronization available. Performance and robustness properties in different operational conditions can be enhanced with a careful selection of these functions. Two designs are presented; a cascaded interconnection where a consensus system provides synchronized path parameters as input to the individual path following systems renders time-varying formations possible and increases robustness to communication problems; a feedback interconnection which is more robust to vehicle failures. Both designs are extended to sampled-data designs where plant and controller dynamics are updated in continuous-time and path parameters are exchanged over a communication network where transmission occurs at discrete intervals. Bias estimation is included to provide integral action against slowlyvarying environmental forces and model uncertainties.

A scheme for formation modeling and control, inspired by analytical mechanics of multi-body systems and Lagrangian multipliers, is proposed. In this approach to formation control, various formation behaviors are determined by imposing constraint functions on group members. Several examples illustrate these formation behaviors. The stabilization scheme presented is made more robust with respect to unknown time-varying disturbances. In addition, the scheme is extended towards adaptive estimation of unknown plant and parameters. Furthermore, it can be applied with no major modifications to the case of position control for a single vehicle.

The formation control scheme is such that it may be used in combination with a set of position control laws for a single vessel, thus enabling the designer to choose from a large class of control laws available in the literature. The input-to-state stability (ISS) framework is utilised to investigate robustness to environmental and communication disturbances. A loop-transform, together with the ISS framework, yields an upper bound on the inter-vessel time delay below which formation stability is maintained.

APA, Harvard, Vancouver, ISO, and other styles
5

Romero, Velázquez José Guadalupe. "Commande robuste par façonnement d’énergie de systèmes non-linéaires." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112019/document.

Full text
Abstract:
Cette thèse porte sur la conception de commandes robustes pour les systèmes non linéaires, mettant l'accent sur les systèmes mécaniques. Des résultats concluants sont présentés pour résoudre deux situations très abordées dans la théorie du contrôle : 1) La stabilité des systèmes non linéaires perturbés ; 2) Le suivi global de trajectoire dans les systèmes mécaniques en ayant seulement connaissance de la position. Nous avons commencé par donner une méthode de conception des commandes robustes pour assurer une régulation de sortie non passive. En outre, si le système est perturbé (pas appariés), des preuves rigoureuses pour les rejeter sont fournies. Ce résultat est principalement inspiré d'un changement de coordonnées et de l'action intégrale dynamique. Si le scénario à traiter concerne des systèmes mécaniques avec des perturbations variant dans le temps, nous dotons le système de propriétés comme IISS (Integral Input- State Stable) et ISS (Input-State Stable). Ce résultat est obtenu en modifiant la procédure de conception de manière à rejeter les perturbations constantes (pas appariés). Cependant, en raison de la non-linéarité du système, les commandes qui en résultent ont une grande complexité. Pour le même problème, un deuxième et élégant résultat est donné au cas où un changement préalable de variable (impulsions) est réalisé. Finalement, une réponse convaincante au problème de suivi de trajectoire pour les systèmes mécaniques est donnée en tenant compte uniquement des informations de position. Nous résolvons ce problème en deux étapes. Premièrement, quelques modifications sont apportées à la preuve de stabilité d'un observateur de vitesse basée sur la théorie de l'invariance et l’Immersion récemment publié. Notez que ceci est un observateur satisfaisant la convergence exponentielle de vitesse dans les systèmes mécaniques. Deuxièmement et sur la base du changement de coordonnées (impulsions), un contrôleur de suivi avec stabilité exponentielle, tenant compte de la position et de la vitesse, est proposé. De telle sorte qu'avec la combinaison des deux résultats, le suivi de trajectoire exponentielle avec retour de position est donné
This thesis focuses on the design of robust control for nonlinear systems, mainly on mechanical systems. The results presented are to two situations widely discussed in control theory: 1) The stability of nonlinear systems disturbed; 2) The global tracking trajectory in mechanical systems having only knowledge of the position. We started giving a design method of robust controls to ensure regulation on non-passive output. In addition, if the system is perturbed (constant unmatched), rigorous proof to its rejection is provided. This result is based mainly on change of coordinates and integral dynamic control. When the scenario to deal are mechanical systems with time-varying matched and unmatched, disturbance, the system is endowed with strong properties as IISS (Integral Input-State Stable) and ISS (Input-State Stable). This is achieved based on the design method to rejection of constant disturbances (unmatched). However, due to the nonlinearity of the system, the controllers have a high complexity. For the same problem, a second and elegant result is given making a initial change of coordinate on the momenta variable, such that the controller significantly simplifies, preserving the aforementioned robustness properties. Finally, a convincing answer to the problem of global exponential tracking of mechanical systems is given taking into account only the position information. We solve this problem in two steps. First, some slight variation is presented to the proof of stability of a speed observer based on Immersion and Invariance theory recently published. Note that this is a speed observer satisfying the exponential convergence speed in mechanical systems. Secondly, and based on the change of coordinates (momenta), a globally exponentially stable tracking controller with position and velocity known is proposed. The combination of both results give the first global exponential tracking controller of mechanical systems without velocity measurements
APA, Harvard, Vancouver, ISO, and other styles
6

Maya, Gonzalez Martin. "Frequency domain analysis of feedback interconnections of stable systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/frequency-domain-analysis-of-feedback-interconnections-of-stable-systems(c6415a11-3417-48ba-9961-ecef80b08e0e).html.

Full text
Abstract:
The study of non-linear input-output maps can be summarized by three concepts: Gain, Positivity and Dissipativity. However, in order to make efficient use of these theorems it is necessary to use loop transformations and weightings, or so called ”multipliers”.The first problem this thesis studies is the feedback interconnection of a Linear Time Invariant system with a memoryless bounded and monotone non-linearity, or so called Absolute Stability problem, for which the test for stability is equivalent to show the existence of a Zames-Falb multiplier. The main advantage of this approach is that Zames–Falb multipliers can be specialized to recover important tools such as Circle criterion and the Popov criterion. Albeit Zames-Falb multipliers are an efficient way of describing non-linearities in frequency domain, the Fourier transform of the multiplier does not preserve the L1 norm. This problem has been addressed by two paradigms: mathematically complex multipliers with exact L1 norm and multipliers with mathematically tractable frequency domain properties but approximate L1 norm. However, this thesis exposes a third factor that leads to conservative results: causality of Zames-Falb multipliers. This thesis exposes the consequences of narrowing the search Zames-Falb multipliers to causal multipliers, and motivated by this argument, introduces an anticausal complementary method for the causal multiplier synthesis in [1].The second subject of this thesis is the feedback interconnection of two bounded systems. The interconnection of two arbitrary systems has been a well understood problem from the point of view of Dissipativity and Passivity. Nonetheless, frequency domain analysis is largely restricted for passive systems by the need of canonically factorizable multipliers, while Dissipativity mostly exploits constant multipliers. This thesis uses IQC to show the stability of the feedback interconnection of two non-linear systems by introducing an equivalent representation of the IQC Theorem, and then studies formally the conditions that the IQC multipliers need. The result of this analysis is then compared with Passivity and Dissipativity by a series of corollaries.
APA, Harvard, Vancouver, ISO, and other styles
7

Kasal, Roshan Nivas. "Analysis of Passivity for Compliantly Controlled Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1599138459663234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jaballah, Belgacem. "Observateurs robustes pour le diagnostic et la dynamique des véhicules." Phd thesis, Université Paul Cézanne - Aix-Marseille III, 2011. http://tel.archives-ouvertes.fr/tel-00734379.

Full text
Abstract:
Le cadre général du travail de recherche est l'amélioration de la sécurité routi ère pour les véhicules automobiles et les conducteurs en utilisant les outils automatique. Dans le cadre de la dynamique du véhicule, les e orts d'interaction entre le pneumatique et la chaussée sont des données indispensables d'où la nécessité d'estimer en temps réel les variables qui caractérisent ces e orts. Cette estimation est réalisée à l'aide des observateurs non linéaires tel que les observateurs à mode glissant d'ordre 1 et d'ordre supérieure. Une proposition de découpage de modèle dynamique complet de véhicule en trois sous-systèmes (caisse, suspensions et roues) en se basant sur la théorie de passivité. Tous ces théories sont validées à l'aide de deux simulateur de véhicule SCANeRstudio et SIMK106N.
APA, Harvard, Vancouver, ISO, and other styles
9

Welge-Lüssen, Tobias Carsten Lutz. "Design of a passively actuated robot manipulator /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mohammed, Ali. "PASSIVITY-BASED TRACKING CONTROL OF A ROBOT MANIPULATOR USING AN EXTENDED STATE OBSERVER." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1590253786792864.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Robust passivity"

1

T, Wen John, and NASA Center for Intelligent Robotic Systems for Space Exploration., eds. A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm. Troy, NY: NASA Center for Intelligent Robotic Systems for Space Exploration, Rensselaer Polytechnic Institute, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arimoto, Suguru. Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Oxford: Clarendon Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sicard, Pierre. A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm: Annual report. Troy, N. Y: Rensselaer Polytechnic Institute, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

T, Wen John, and United States. National Aeronautics and Space Administration., eds. A family of asymptotically stable control laws for flexible robots based on a passivity approach. Troy, N.Y: Rensselaer Polytechnic Institute, Electrical, Computer, and Systems Engineering, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chopra, Nikhil, Masayuki Fujita, Takeshi Hatanaka, and Mark W. Spong. Passivity-Based Control and Estimation in Networked Robotics. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chopra, Nikhil, Masayuki Fujita, Takeshi Hatanaka, and Mark W. Spong. Passivity-Based Control and Estimation in Networked Robotics. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chopra, Nikhil, Masayuki Fujita, Takeshi Hatanaka, and Mark W. Spong. Passivity-Based Control and Estimation in Networked Robotics. Springer International Publishing AG, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A family of asymptotically stable control laws for flexible robots based on a passivity approach. Troy, N.Y: Rensselaer Polytechnic Institute, Electrical, Computer, and Systems Engineering, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Robust passivity"

1

Ding, Chunyan, and Qin Li. "Robust Control for Time-Delay Singular Systems Based on Passivity Analysis." In Lecture Notes in Electrical Engineering, 792–802. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3648-5_100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arunkumar, A., K. Mathiyalagan, R. Sakthivel, and S. Marshal Anthoni. "Robust Passivity of Fuzzy Cohen-Grossberg Neural Networks with Time-Varying Delays." In Mathematical Modelling and Scientific Computation, 263–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28926-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rajchakit, Grienggrai, Praveen Agarwal, and Sriraman Ramalingam. "Robust Finite-Time Passivity of Markovian Jump Discrete-Time BAM Neural Networks." In Stability Analysis of Neural Networks, 341–71. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6534-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de la Sen, M. "A robust discrete adaptive control approach based on passivity results for non-linear systems." In Analysis and Optimization of Systems, 786–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0042264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ortega, Romeo, Antonio Loría, Per Johan Nicklasson, and Hebertt Sira-Ramírez. "Feedback interconnected systems: Robots with AC drives." In Passivity-based Control of Euler-Lagrange Systems, 441–65. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3603-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spong, Mark W. "The Passivity Paradigm in the Control of Bipedal Robots." In Climbing and Walking Robots, 775–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-29461-9_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hatanaka, T., N. Chopra, J. Yamauchi, and M. Fujita. "A Passivity-Based Approach to Human–Swarm Collaboration and Passivity Analysis of Human Operators." In Trends in Control and Decision-Making for Human–Robot Collaboration Systems, 325–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40533-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stauter, Peter, Hubert Gattringer, Wolfgang Höbart, and Hartmut Bremer. "Passivity Based Backstepping Control of an Elastic Robot." In ROMANSY 18 Robot Design, Dynamics and Control, 315–22. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0277-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van Breugel, Floris, Zhi Ern Teoh, and Hod Lipson. "A Passively Stable Hovering Flapping Micro-Air Vehicle." In Flying Insects and Robots, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89393-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Staufer, Peter, and Hubert Gattringer. "Passivity-Based Tracking Control of a Flexible Link Robot." In Multibody System Dynamics, Robotics and Control, 95–112. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-1289-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Robust passivity"

1

Cruz, Francisco Panuncio, and Wen Yu. "Robust feedback passivity via dynamic neural networks." In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6707089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCourt, Michael J., Zachary I. Bell, and Scott A. Nivison. "Passivity-Based Target Tracking Robust to Intermittent Measurements." In 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

S., Shirouchi, and Murakami T. "Robust Motion Control in Mechanical System with Passivity." In 4th Asia International Symposium on Mechatronics. Singapore: Research Publishing Services, 2010. http://dx.doi.org/10.3850/978-981-08-7723-1_p142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Wei-Zhong, Yan-Li Huang, Jin-Liang Wang, and Shun-Yan Ren. "Passivity and robust passivity of reaction-diffusion Cohen-Grossberg neural networks with multiple time-varying delays." In 2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017. http://dx.doi.org/10.1109/ccdc.2017.7978063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gustavsen, Bjorn. "Robust passivity enforcement of frequency dependent transmission line models." In 2007 IEEE Workshop on Signal Propagation on Interconnects. IEEE, 2007. http://dx.doi.org/10.1109/spi.2007.4512241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Serrano, Javier, Santiago Cobreces, Emilio J. Bueno, and Mario Rizo. "Passivity-based Robust Current Control of Grid-connected VSCs." In 2020 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2020. http://dx.doi.org/10.1109/apec39645.2020.9124599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bu, Ni, and Mingcong Deng. "Passivity-based robust control for uncertain nonlinear feedback systems." In 2015 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE, 2015. http://dx.doi.org/10.1109/icamechs.2015.7287131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahmood, Zohaib, Alessandro Chinea, Giuseppe C. Calafiore, Stefano Grivet-Talocia, and Luca Daniel. "Robust localization methods for passivity enforcement of linear macromodels." In 2013 17th IEEE Workshop on Signal and Power Integrity (SPI). IEEE, 2013. http://dx.doi.org/10.1109/sapiw.2013.6558312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mansouri, A., M. Chenafa, A. Bouhenna, A. Belaidi, and E. Etein. "Passivity based control with robust observer for induction motor." In 2004 IEEE International Symposium on Industrial Electronics. IEEE, 2004. http://dx.doi.org/10.1109/isie.2004.1572013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mihaly, Vlad, Mircea Susca, Dora Morar, and Petru Dobra. "Polytopic Robust Passivity Cascade Controller Design for Nonlinear Systems." In 2022 European Control Conference (ECC). IEEE, 2022. http://dx.doi.org/10.23919/ecc55457.2022.9838073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography