Dissertations / Theses on the topic 'Robust Object Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Robust Object Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bazzi, Louay Mohamad Jamil 1974. "Robust algorithms for model-based object recognition and localization." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9440.
Full textIncludes bibliographical references (p. 86-87).
We consider the problem of model-based object recognition and localization in the presence of noise, spurious features, and occlusion. We address the case where the model is allowed to be transformed by elements in a given space of allowable transformations. Known algorithms for the problem either treat noise very accurately in an unacceptable worst case running time, or may have unreliable output when noise is allowed. We introduce the idea of tolerance which measures the robustness of a recognition and localization method when noise is allowed. We present a collection of algorithms for the problem, each achieving a different degree of tolerance. The main result is a localization algorithm that achieves any desired tolerance in a relatively low order worst case asymptotic running time. The time constant of the algorithm depends on the ratio of the noise bound over the given tolerance bound. The solution we provide is general enough to handle different cases of allowable transformations, such as planar affine transformations, and scaled rigid motions in arbitrary dimensions.
by Louay Mohamad Jamil Bazzi.
S.M.
Bax, Ingo. "Hierarchical feed forward models for robust object recognition." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984822666.
Full textSchaich, Rainer Manuel. "Robust model predictive control." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:94e75a62-a801-47e1-8cb8-668e8309d477.
Full textCheng, Qifeng. "Robust & stochastic model predictive control." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:89da4934-9de7-4142-958e-513065189518.
Full textGastebois, Jérémy. "Contribution à la commande temps réel des robots marcheurs. Application aux stratégies d'évitement des chutes." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2315/document.
Full textBig walking robots are complex multi-joints mechanical systems which crystallize the human will to confer their capabilities on artefacts, one of them being the bipedal locomotion and more especially the balance keeping against external disturbances. This thesis proposes a balance stabilizer under operating conditions displayed on the locomotor system BIP 2000.This anthropomorphic robot has got fifteen electrically actuated degree of freedom and an Industrial controller. A new software has been developed with an object-oriented programming approach in order to propose the modularity required by the emulated and natural human symmetry. This consideration leads to the development of a mathematical tool allowing the computation of every modelling of a serial robot which is the sum of multiple sub robots with already known modelling. The implemented software also enables the robot to run offline generated dynamic walking trajectories and to test the balance stabilizer.We explore in this thesis the feasibility of controlling the center of gravity of a multibody robotic system with electrostatic fields acting on its virtual counterpart in order to guarantee its balance. Experimental results confirm the potential of the proposed approach
Reynaga, Barba Valeria. "Detecting Changes During the Manipulation of an Object Jointly Held by Humans and RobotsDetektera skillnader under manipulationen av ett objekt som gemensamt hålls av människor och robotar." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174027.
Full textMunoz, Carpintero Diego Alejandro. "Strategies in robust and stochastic model predictive control." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2f6bce71-f91f-4d5a-998f-295eff5b089a.
Full textSpoida, Peter. "Robust pricing and hedging beyond one marginal." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:0315824b-52f7-4e44-9ac6-0a688c49762c.
Full textLee, Sharen Woon Yee. "Bayesian methods for the construction of robust chronologies." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:49c30401-9442-441f-b6b5-1539817e2c95.
Full textFleming, James. "Robust and stochastic MPC of uncertain-parameter systems." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:c19ff07c-0756-45f6-977b-9d54a5214310.
Full textBuerger, Johannes Albert. "Fast model predictive control." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6e296415-f02c-4bc2-b171-3bee80fc081a.
Full textEvans, Martin A. "Multiplicative robust and stochastic MPC with application to wind turbine control." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:0ad9b878-00f3-4cfa-a683-148765e3ae39.
Full textSanchez, Loza Jose Manuel. "Shape sensing of deformable objects for robot manipulation." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC012/document.
Full textDeformable objects are ubiquitous in our daily lives. On a given day, we manipulate clothes into uncountable configurations to dress ourselves, tie the shoelaces on our shoes, pick up fruits and vegetables without damaging them for our consumption and fold receipts into our wallets. All these tasks involve manipulating deformable objects and can be performed by an able person without any trouble, however robots have yet to reach the same level of dexterity. Unlike rigid objects, where robots are now capable of handling objects with close to human performance in some tasks; deformable objects must be controlled not only to account for their pose but also their shape. This extra constraint, to control an object's shape, renders techniques used for rigid objects mainly inapplicable to deformable objects. Furthermore, the behavior of deformable objects widely differs among them, e.g. the shape of a cable and clothes are significantly affected by gravity while it might not affect the configuration of other deformable objects such as food products. Thus, different approaches have been designed for specific classes of deformable objects.In this thesis we seek to address these shortcomings by proposing a modular approach to sense the shape of an object while it is manipulated by a robot. The modularity of the approach is inspired by a programming paradigm that has been increasingly been applied to software development in robotics and aims to achieve more general solutions by separating functionalities into components. These components can then be interchanged based on the specific task or object at hand. This provides a modular way to sense the shape of deformable objects.To validate the proposed pipeline, we implemented three different applications. Two applications focused exclusively on estimating the object's deformation using either tactile or force data, and the third application consisted in controlling the deformation of an object. An evaluation of the pipeline, performed on a set of elastic objects for all three applications, shows promising results for an approach that makes no use of visual information and hence, it could greatly be improved by the addition of this modality
Antonello, Morris. "Semantic models of scenes and objects for service and industrial robotics." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422425.
Full textIl sistema percettivo umano si presta alla risoluzione di compiti che possono sembrare banali, ma che al contrario si rivelano essere delle sfide per i robot. La segmentazione automatica degli elementi di maggiore rilevanza o salienza, vale a dire la semantica, ne è un esempio in quanto è soggetta ai limiti dei sensori di visione e all’elevato grado di variabilità del mondo. In particolar modo ne abbiamo esperienza quando sono presenti più fonti di informazione, spesso ambigue, come nel caso di un robot in movimento. Questa tesi dimostra come si possa sfruttare la disponibilità di indizi contestuali e punti di vista diversi per rendere più facile l’attività di segmentazione. A dimostrazione verranno presentate quattro applicazioni robotiche, due progettate per la robotica di servizio e due per un contesto industriale. Verranno costruiti modelli semantici di scene domestiche arricchendo le ricostruzioni geometriche con delle informazioni semantiche che comprendono oggetti, elementi strutturali ed esseri umani. Il nostro approccio sfrutta il contesto, la molteplicità di fonti di informazioni e dei punti di vista, servendosi di esperimenti esaustivi condotti su diversi dataset per dimostrare come questi siano elementi cruciali per aumentare le prestazioni del robot. Inoltre, considerando scenari con robot che analizzano oggetti anziché esplorare l’ambiente, verranno costruiti modelli semantici di polimeri rinforzati in fibra di carbonio arricchendo i modelli geometrici con le misurazioni precise sull’orientazione delle fibre e i difetti interni non visibili all’occhio umano. Siamo riusciti a raggiungere una precisione di livello industriale rendendo questi modelli utili per il controllo qualità automatico e l’ottimizzazione dei processi. In tutte le applicazioni, un’attenzione particolare sarà dedicata ai metodi più veloci, adatti a robot reali come i due prototipi presentati in questa tesi.
Ray, Zachary J. "Hand Orientation Feedback for Grasped Object Slip Prevention with a Prosthetic Hand." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1461181998.
Full textVoils, Danny. "Scale Invariant Object Recognition Using Cortical Computational Models and a Robotic Platform." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/632.
Full textRusaw, Shawn. "Sensor-based motion planning via nonsmooth analysis." Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:46fa490d-c4ca-45ad-9cd5-b1f11920863d.
Full textKhusheef, Ahmed S. "Investigation on the mobile robot navigation in an unknown environment." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2013. https://ro.ecu.edu.au/theses/537.
Full textChen, Zengshi. "Dynamics and control of collision of multi-link humanoid robots with a rigid or elastic object." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1158442034.
Full textSchallert, Christian [Verfasser], Robert [Akademischer Betreuer] Luckner, Robert [Gutachter] Luckner, and Martin [Gutachter] Otter. "Integrated safety and reliability analysis methods for aircraft system development using multi-domain object-oriented models / Christian Schallert ; Gutachter: Robert Luckner, Martin Otter ; Betreuer: Robert Luckner." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156181852/34.
Full textSouroulla, Timotheos. "Distributed Intelligence for Multi-Robot Environment : Model Compression for Mobile Devices with Constrained Computing Resources." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302151.
Full textMänniska och robot samarbete (förkortat HRC från engelskans Human-Robot Collaboration), där både människor och robotar arbetar samtidigt i samma miljö, är ett växande forskningsområde och har ökat dramatiskt över de senaste decenniet. För att detta samarbetet ska vara möjligt och säkert behöver robotarna genomgå en ordentlig säkerhetsanalys så att farliga situationer kan undvikas. Denna säkerhetsanalys inkluderar komplexa Computer Vision uppgifter som kräver mycket processorkraft. Därför kan inte robotar med begränsad processorkraft utföra dessa beräkningar utan fördröjning, utan måste istället förlita sig på utomstående infrastruktur för att exekvera dem. Vid vissa tillfällen kan dock denna utomstående infrastruktur inte finnas på plats eller vara svår att koppla upp sig till. Även vid dessa tillfällen måste robotar fortfarande kunna navigera sig själva genom en lokal, och samtidigt upprätthålla hög grad av säkerhet. Detta projekt fokuserar på att reducera komplexiteten och det totala antalet parametrar av för-tränade Computer Vision-modeller genom att använda modellkompressionstekniker så som: Beskärning och kunskapsdestilering. Dessa modellkompressionstekniker har starka teoretiska grunder och praktiska belägg, men mängden arbeten kring deras kombinerade effekt är begränsad, därför är just det undersökt i detta arbetet. Resultaten av det här projektet visar att up till 90% av det totala antalet parametrar hos en Computer Vision-modell kan tas bort utan någon noterbar försämring av modellens säkerhet.
Khokar, Karan Hariharan. "Human Intention Recognition Based Assisted Telerobotic Grasping of Objects in an Unstructured Environment." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4909.
Full textLi, Zhongmou. "Theoretical developments and experimental evaluation of a novel collaborative multi-drones grasping and manipulation system Zof large objects." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0019.
Full textThis thesis proposes a new concept of aerial manipulation robot named Flying Gripper that is intended to perform grasping, manipulating, and transporting of large objects autonomously. The Flying Gripper robot is composed of four quadrotors, four self-adaptive fingers and a body structure. The main contributions of these works are: (1) an original mechanical concept using multiple quadrotors to obtain full manipulability in SE(3) and taking advantage of their yaw rotations to actuate a self-adaptive and intrinsically safe grasping mechanism; (2) a wrench capability analysis method taking into account the equality and inequality constraints imposed by actuation limits, mechanical stops and equilibrium relations; (3) a model predictive controller to deal with unknown mass, inertia and center of mass due to the grasped object; (4) a Dynamic Control Allocation algorithm to distribute the control output in a way that guarantees the continuity of actuator's velocity, improves the energy efficiency and satisfies the robot mechanical limits.Numerical simulations and experimental tests have been carried out to validate the controller performances
Zamzow, Scottie L. "Ambassador of American airpower : Major General Robert Olds /." Maxwell AFB, Ala. : School of Advanced Air and Space Studies, 2008. https://www.afresearch.org/skins/rims/display.aspx?moduleid=be0e99f3-fc56-4ccb-8dfe-670c0822a153&mode=user&action=downloadpaper&objectid=e01c5779-0a3b-4ea3-999e-a35a94fd5600&rs=PublishedSearch.
Full textStaub, Nicolas. "Models, algorithms and architectures for cooperative manipulation with aerial and ground robots." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30169/document.
Full textIn recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot
Napier, Ashley A. "Vision & laser for road based navigation." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:faeb2cb6-d97c-43e2-b291-1564d1388bbd.
Full textJebelli, Ali. "Development of Sensors and Microcontrollers for Underwater Robots." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31283.
Full textPaulin, Rémi. "human-robot motion : an attention-based approach." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM018.
Full textFor autonomous mobile robots designed to share their environment with humans, path safety and efficiency are not the only aspects guiding their motion: they must follow social rules so as not to cause discomfort to surrounding people. Most socially-aware path planners rely heavily on the concept of social spaces; however, social spaces are hard to model and they are of limited use in the context of human-robot interaction where intrusion into social spaces is necessary. In this work, a new approach for socially-aware path planning is presented that performs well in complex environments as well as in the context of human-robot interaction. Specifically, the concept of attention is used to model how the influence of the environment as a whole affects how the robot's motion is perceived by people within close proximity. A new computational model of attention is presented that estimates how our attentional resources are shared amongst the salient elements in our environment. Based on this model, the novel concept of attention field is introduced and a path planner that relies on this field is developed in order to produce socially acceptable paths. To do so, a state-of-the-art many-objective optimization algorithm is successfully applied to the path planning problem. The capacities of the proposed approach are illustrated in several case studies where the robot is assigned different tasks. Firstly, when the task is to navigate in the environment without causing distraction our approach produces promising results even in complex situations. Secondly, when the task is to attract a person's attention in view of interacting with him or her, the motion planner is able to automatically choose a destination that best conveys its desire to interact whilst keeping the motion safe, efficient and socially acceptable
Vestin, Albin, and Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Full textMustaki, Simon Éliakim. "Outils de pré-calibration numérique des lois de commande de systèmes de systèmes : application aux aides à la conduite et au véhicule autonome." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0142/document.
Full textThis thesis deals with the tuning of the new Advanced Driving Assistance Systems (ADAS). The development of these systems has become nowadays a strategic line of research for the automotive industry towards the conception of safer and fuel-efficient vehicles.This thesis contributes to a multi-criterion, multi-modeland multi-scenario methodological vision of the tuning process. It is presented through a specific application of the tuning of the Lane Centering Assistance (LCA). It relies on vehicle and environment’s dynamical models of adequate complexity in the aim of formalizing and managing, in a H2/H∞ framework, the trade-off between performance, comfort and robustness. The formulated criteria are easy to compute and defined in a way to be understandable, closely linked to practical specifications. The whole methodology is driven by the research of a pertinent trade-off between realism (being as closest as possible to reality) and complexity (quick evaluation of the criterion). The efficiency and the robustness of the approach is demonstrated through high-fidelity simulations and numerous tests on real vehicles
Huard, Benoît. "Contribution à la modélisation non-linéaire et à la commande d'un actionneur robotique intégré pour la manipulation." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2262/document.
Full textThe realization of dexterous manipulation tasks requires a complexity in robotic hands design as well as in their control laws synthesis. A mecatronical optimization of these systems helps to answer for functional integration constraints by avoiding external force sensors. Back-drivable mechanics allows the free-space positioning determination of such system as far as the detection of its interaction with a manipulated object thanks to proprioceptives measures at electric actuator level. The objective of this thesis is to synthesize a control law adapted to object manipulation by taking into account these mechanical properties in a one degree-of-freedom case. The proposed method is based on a robust control according to structural non-linearities due to gravitational effects and dry frictions on the one hand and with regard to a variable rigidity of manipulated objects on the other hand. The chosen approach requires a precise knowledge of the system configuration at all time. A dynamic representation of its behavior enables a software sensor synthesis for the exteroceptives variables estimation in a control law application purpose. The different steps are experimentally validated in order to justify the chosen approach leading to object manipulation
Cass, Todd A. "Robust 2-D Model-Based Object Recognition." 1988. http://hdl.handle.net/1721.1/6823.
Full textTOSATO, Diego. "Tensor Representations for Object Classification and Detection." Doctoral thesis, 2012. http://hdl.handle.net/11562/393739.
Full textBax, Ingo [Verfasser]. "Hierarchical feed forward models for robust object recognition / Ingo Bax." 2007. http://d-nb.info/984822666/34.
Full textAlter, Tao Daniel. "Robust and Efficient 3D Recognition by Alignment." 1992. http://hdl.handle.net/1721.1/6799.
Full textChen, Kuo-Wei, and 陳國瑋. "Robot Parallel Tracking and Mapping Using Online Sparse-representation Object Model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/86186908796053422473.
Full text淡江大學
機械與機電工程學系碩士班
100
This thesis presents an algorithm of moving object detection and tracking for robot concurrently localization, mapping and moving object tracking in dynamic environment. The major research topics include on-line object model construction as well as moving object detection and tracking. Apparent image features are detected and utilized as the training data for on-line constructing and sparse representing the object model. After the object model is constructed, the model elements are further matched with the image features obtained from the environment in order to recognize the object and search the object position in image and cartesian spaces. Furthermore, the developed algorithm is integrated with the methods of moving object detection, state estimation, and visual sensing to develop a system which is capable of tracking moving objects using moving camera. The detecting and tracking method developed in this thesis is capable of being applied in many systems such as mobile robot, wheelchair, car, and aerial robot to implement the tasks of parallel tracking and mapping in dynamic environments.
Chen, Hsi Che, and 陳希哲. "Robot grasping System with Structure from motion and Shape Reconstruction by 3D Object Model." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/77119073180045270159.
Full text國立臺灣師範大學
機電科技學系
101
This research’s object is used multi-view image rebuild 3D model, and then we use the 3D model detect the stable grasp position. Normally in stereo machine vision research, use binocular vision method is more popular. This method is likely our eyes, use disparity to calculate depth signal between camera and object. But this method can only use on static image, if camera is putted on robot manipulator or moving car. The past method will fail to reconstruction 3D model. So in this research we will use structure from motion to find the relationship between origin cameras to another from sequence images. And we will reconstruction 3D model. We use mono-camera get the image, and use Harris corner detector to find the keypoints. This research have 3 parts process, first extract the feature from images, and calculate the sequence images, tracking keypoints, Final we use Factorization method to get the camera and object’s relationship from 3D coordination.
Yang, Teng-Chih, and 楊登智. "APPLICATION OF DIFFERENTIAL EVOLUTION BASED CEREBELLAR MODEL ARTICULATION CONTROLLER FOR ROBOT MANIPULATOR OBJECT TRACKING VIA SINGLE CAMERA VISION." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/71192357813773234412.
Full text大同大學
電機工程學系(所)
101
In this thesis, the differential evolution cerebellar model articulation controller (DECMAC) which is applied to the robot manipulator object tracking via camera vision is proposed. In conventional CMAC, since there are several parameters which are required to be preset and difficult to be found, the DE is utilized to overcome the foregoing problem. Based on the discrete-type Lyapunov function, the stability of the proposed controller is guaranteed. In order to verify the performance of the DECMAC, it is applied to the robot manipulator object tracking which is based on the computer vision and CAMSHIFT method. The simulation and experimental results are implemented to demonstrate the effectiveness of the proposed the controller.
Chang, Guoting. "Robot Motion and Task Learning with Error Recovery." Thesis, 2013. http://hdl.handle.net/10012/7627.
Full text