Dissertations / Theses on the topic 'Robust methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Robust methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Peel, Vincent Robert. "Robust methods for robust passive sonar." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305876.
Full textHelmersson, Anders. "Methods for robust gain scheduling." Doctoral thesis, Linköpings universitet, Reglerteknik, 1995. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-75513.
Full textThis thesis considers the analysis of systems with uncertainties and the design of controllers to such systems. Uncertainties are treated in a relatively broad sense covering gain-bounded elements that are not known a priori but could be available to the controller in real time. The uncertainties are in the most general case norm-bounded operators with a given block-diagonal structure. The structure includes parameters, linear time-invariant and time-varying systems as well as nonlinearities. In some applications the controller may have access to the uncertainty, e.g. a parameter that depends on some known condition. There exist well-known methods for determining stability of systems subject to uncertainties. This thesis is within the framework for structured singular values also denoted by μ. Given a certain class of uncertainties, μ is the inverse of the size of the smallest uncertainty that causes the system to become unstable. Thus, μ is a measure of the system's "structured gain". In general it is not possible to compute μ exactly, but an upper bound can be determined using efficient numerical methods based on linear matrix inequalities. An essential contribution in this thesis is a new synthesis algorithm for finding controllers when parametric (real) uncertainties are present. This extends previous results on μ synthesis involving dynamic (complex) uncertainties. Specifically, we can design gain scheduling controllers using the new μ synthesis theorem, with less conservativeness than previous methods. Also, algorithms for model reduction of uncertainty systems are given. A gain scheduling controller is a linear regulator whose parameters are changed as a function of the varying operating conditions. By treating nonlinearities as uncertainties, μ methods can be used in gain scheduling design. In the discussion, emphasis is put on how to take into consideration different characteristics of the time-varying properties of the system to be controlled. Also robustness and its relation with gain scheduling are treated. In order to handle systems with time-invariant uncertainties, both linear systems and constant parameters, a set of scalings and multipliers are introduced. These are matched to the properties of the uncertainties. Also, multipliers for treating uncertainties that are slowly varying, such that the rate of change is bounded, are introduced. Using these multipliers the applicability of the analysis and synthesis results are greatly extended.
Nargis, Suraiya, and n/a. "Robust methods in logistic regression." University of Canberra. Information Sciences & Engineering, 2005. http://erl.canberra.edu.au./public/adt-AUC20051111.141200.
Full textMutapcic, Almir. "Robust optimization : methods and applications /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textNaish-Guzman, Andrew Guillermo Peter. "Sparse and robust kernel methods." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612420.
Full textMwitondi, K. S. "Robust methods in data mining." Thesis, University of Leeds, 2003. http://etheses.whiterose.ac.uk/807/.
Full textHuang, Shu-Pang. "ROBUST METHODS FOR ESTIMATING ALLELE FREQUENCIES." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010614-213208.
Full textHUANG, SHU-PANG. ROBUST METHODS FOR ESTIMATING ALLELE FREQUENCIES (Advisor: Bruce S. Weir) The distribution of allele frequencies has beena major focus in population genetics. Classical approaches usingstochastic arguments depend highly on the choice of mutationmodel. Unfortunately, it is hard to justify which mutation modelis suitable for a particular sample. We propose two methods toestimate allele frequencies, especially for rare alleles, withoutassuming a mutation model. The first method achieves its goalthrough two steps. First it estimates the number of alleles in apopulation using a sample coverage method and then models rankedfrequencies for these alleles using the stretchedexponential/Weibull distribution. Simulation studies have shownthat both steps are robust to different mutation models. Thesecond method uses Bayesian approach to estimate both the numberof alleles and their frequencies simultaneously by assuming anon-informative prior distribution. The Bayesian approach is alsorobust to mutation models. Questions concerning the probability offinding a new allele, and the possible highest (or lowest)probability for a new-found allele can be answered by bothmethods. The advantages of our approaches include robustness tomutation model and ability to be easily extended to genotypic,haploid and protein structure data.
Feng, Chunlin, and 馮淳林. "Robust estimation methods for image matching." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29752693.
Full textEr, Fikret. "Robust methods in statistical shape analysis." Thesis, University of Leeds, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342394.
Full textKudo, Jun S. M. Massachusetts Institute of Technology. "Robust adaptive high-order RANS methods." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95563.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 89-94).
The ability to achieve accurate predictions of turbulent flow over arbitrarily complex geometries proves critical in the advancement of aerospace design. However, quantitatively accurate results from modern Computational Fluid Dynamics (CFD) tools are often accompanied by intractably high computational expenses and are significantly hindered by the lack of automation. In particular, the generation of a suitable mesh for a given flow problem often requires significant amounts of human input. This process however encounters difficulties for turbulent flows which exhibit a wide range of length scales that must be spatially resolved for an accurate solution. Higher-order adaptive methods are attractive candidates for addressing these deficiencies by promising accurate solutions at a reduced cost in a highly automated fashion. However, these methods in general are still not robust enough for industrial applications and significant advances must be made before the true realization of robust automated three-dimensional turbulent CFD. This thesis presents steps towards this realization of a robust high-order adaptive Reynolds-Averaged Navier-Stokes (RANS) method for the analysis of turbulent flows. Specifically, a discontinuous Galerkin (DG) discretization of the RANS equations and an output-based error estimation with an associated mesh adaptation algorithm is demonstrated. To improve the robustness associated with the RANS discretization, modifications to the negative continuation of the Spalart-Allmaras turbulence model are reviewed and numerically demonstrated on a test case. An existing metric-based adaptation framework is adopted and modified to improve the procedure's global convergence behavior. The resulting discretization and modified adaptation procedure is then applied to two-dimensional and three-dimensional turbulent flows to demonstrate the overall capability of the method.
by Jun Kudo.
S.M.
Mantzaflaris, Angelos. "Robust algebraic methods for geometric computing." Nice, 2011. http://www.theses.fr/2011NICE4030.
Full textGeometric computation in computer aided geometric design and solid modelling calls for solving non-linear polynomial systems in an approximate-yet-certified manner. We introduce new subdivision algorithms that tackle this fundamental problem. In particular, we generalize the univariate so-called continued fraction solver to general dimension. Fast bounding functions, unicity tests projection and preconditioning are employed to speed up convergence. Apart for practical experiments, we provide theoretical bit complexity estimates, as well as bounds in the real RAM model, by means of real condition numbers. A man bottleneck for any real solving method is singular isolated points. We employ local inverse systems and certified numerical computations, to provide certification criteria to treat singular solutions. In doing so, we are able to check existence and uniqueness of singularities of a given multiplicity structure using verification methods, based on interval arithmetic and fixed point theorems. Two major geometric applications are undertaken. First, the approximation of planar semi-algebraic sets, commonly occurring in constraint geometric solving. We present an efficient algorithm to identify connected components and, for a given precision, to compute polygonal and isotopic approximation of the exact set Second, we present an algebraic framework to compute generalized Voronoï diagrams, that is applicable to any diagram type in which the distance from a site can be expressed by a bi-variate polynomial function (anisotropic, power diagram etc. ) In cases where this is not possible (eg. Apollonius diagram, VD of ellipses and so on), we extend the theory to implicitly given distance functions
Aranda, Cotta Higor Henrique. "Robust methods in multivariate time series." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC064.
Full textThis manuscript proposes new robust estimation methods for the autocovariance and autocorrelation matrices functions of stationary multivariates time series that may have random additives outliers. These functions play an important role in the identification and estimation of time series model parameters. We first propose new estimators of the autocovariance and of autocorrelation matrices functions constructed using a spectral approach considering the periodogram matrix periodogram which is the natural estimator of the spectral density matrix. As in the case of the classic autocovariance and autocorrelation matrices functions estimators, these estimators are affected by aberrant observations. Thus, any identification or estimation procedure using them is directly affected, which leads to erroneous conclusions. To mitigate this problem, we propose the use of robust statistical techniques to create estimators resistant to aberrant random observations.As a first step, we propose new estimators of autocovariance and autocorrelation functions of univariate time series. The time and frequency domains are linked by the relationship between the autocovariance function and the spectral density. As the periodogram is sensitive to aberrant data, we get a robust estimator by replacing it with the $M$-periodogram. The $M$-periodogram is obtained by replacing the Fourier coefficients related to periodogram calculated by the standard least squares regression with the ones calculated by the $M$-robust regression. The asymptotic properties of estimators are established. Their performances are studied by means of numerical simulations for different sample sizes and different scenarios of contamination. The empirical results indicate that the proposed methods provide close values of those obtained by the classical autocorrelation function when the data is not contaminated and it is resistant to different contamination scenarios. Thus, the estimators proposed in this thesis are alternative methods that can be used for time series with or without outliers.The estimators obtained for univariate time series are then extended to the case of multivariate series. This extension is simplified by the fact that the calculation of the cross-periodogram only involves the Fourier coefficients of each component from the univariate series. Thus, the $M$-periodogram matrix is a robust periodogram matrix alternative to build robust estimators of the autocovariance and autocorrelation matrices functions. The asymptotic properties are studied and numerical experiments are performed. As an example of an application with real data, we use the proposed functions to adjust an autoregressive model by the Yule-Walker method to Pollution data collected in the Vitória region Brazil.Finally, the robust estimation of the number of factors in large factorial models is considered in order to reduce the dimensionality. It is well known that the values random additive outliers affect the covariance and correlation matrices and the techniques that depend on the calculation of their eigenvalues and eigenvectors, such as the analysis principal components and the factor analysis, are affected. Thus, in the presence of outliers, the information criteria proposed by Bai & Ng (2002) tend to overestimate the number of factors. To alleviate this problem, we propose to replace the standard covariance matrix with the robust covariance matrix proposed in this manuscript. Our Monte Carlo simulations show that, in the absence of contamination, the standard and robust methods are equivalent. In the presence of outliers, the number of estimated factors increases with the non-robust methods while it remains the same using robust methods. As an application with real data, we study pollutant concentrations PM$_{10}$ measured in the Île-de-France region of France
Este manuscrito é centrado em propor novos métodos de estimaçao das funçoes de autocovariancia e autocorrelaçao matriciais de séries temporais multivariadas com e sem presença de observaçoes discrepantes aleatorias. As funçoes de autocovariancia e autocorrelaçao matriciais desempenham um papel importante na analise e na estimaçao dos parametros de modelos de série temporal multivariadas. Primeiramente, nos propomos novos estimadores dessas funçoes matriciais construıdas, considerando a abordagem do dominio da frequencia por meio do periodograma matricial, um estimador natural da matriz de densidade espectral. Como no caso dos estimadores tradicionais das funçoes de autocovariancia e autocorrelaçao matriciais, os nossos estimadores tambem sao afetados pelas observaçoes discrepantes. Assim, qualquer analise subsequente que os utilize é diretamente afetada causando conclusoes equivocadas. Para mitigar esse problema, nos propomos a utilizaçao de técnicas de estatistica robusta para a criaçao de estimadores resistentes as observaçoes discrepantes aleatorias. Inicialmente, nos propomos novos estimadores das funçoes de autocovariancia e autocorrelaçao de séries temporais univariadas considerando a conexao entre o dominio do tempo e da frequencia por meio da relaçao entre a funçao de autocovariancia e a densidade espectral, do qual o periodograma tradicional é o estimador natural. Esse estimador é sensivel as observaçoes discrepantes. Assim, a robustez é atingida considerando a utilizaçao do Mperiodograma. O M-periodograma é obtido substituindo a regressao por minimos quadrados com a M-regressao no calculo das estimativas dos coeficientes de Fourier relacionados ao periodograma. As propriedades assintoticas dos estimadores sao estabelecidas. Para diferentes tamanhos de amostras e cenarios de contaminaçao, a performance dos estimadores é investigada. Os resultados empiricos indicam que os métodos propostos provem resultados acurados. Isto é, os métodos propostos obtêm valores proximos aos da funçao de autocorrelaçao tradicional no contexto de nao contaminaçao dos dados. Quando ha contaminaçao, os M-estimadores permanecem inalterados. Deste modo, as funçoes de M-autocovariancia e de M-autocorrelaçao propostas nesta tese sao alternativas vi aveis para séries temporais com e sem observaçoes discrepantes. A boa performance dos estimadores para o cenario de séries temporais univariadas motivou a extensao para o contexto de séries temporais multivariadas. Essa extensao é direta, haja vista que somente os coeficientes de Fourier relativos à cada uma das séries univariadas sao necessarios para o calculo do periodograma cruzado. Novamente, a relaçao de dualidade entre o dominio da frequência e do tempo é explorada por meio da conexao entre a funçao matricial de autocovariancia e a matriz de densidade espectral de séries temporais multivariadas. É neste sentido que, o presente artigo propoe a matriz M-periodograma como um substituto robusto à matriz periodograma tradicional na criaçao de estimadores das funçoes matriciais de autocovariancia e autocorrelaçao. As propriedades assintoticas sao estudas e experimentos numéricos sao realizados. Como exemplo de aplicaçao à dados reais, nos aplicamos as funçoes propostas no artigo na estimaçao dos parâmetros do modelo de série temporal multivariada pelo método de Yule-Walker para a modelagem dos dados MP10 da regiao de Vitoria/Brasil. Finalmente, a estimaçao robusta dos numeros de fatores em modelos fatoriais aproximados de alta dimensao é considerada com o objetivo de reduzir a dimensionalidade. Ésabido que dados discrepantes afetam as matrizes de covariancia e correlaçao. Em adiçao, técnicas que dependem do calculo dos autovalores e autovetores dessas matrizes, como a analise de componentes principais e a analise fatorial, sao completamente afetadas. Assim, na presença de observaçoes discrepantes, o critério de informaçao proposto por Bai & Ng (2002) tende a superestimar o numero de fatores. [...]
Singh, Jagmeet 1980. "Comparative analysis of robust design methods." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35630.
Full textIncludes bibliographical references (p. 161-163).
Robust parameter design is an engineering methodology intended as a cost effective approach to improve the quality of products, processes and systems. Control factors are those system parameters that can be easily controlled and manipulated. Noise factors are those system parameters that are difficult and/or costly to control and are presumed uncontrollable. Robust parameter design involves choosing optimal levels of the controllable factors in order to obtain a target or optimal response with minimal variation. Noise factors bring variability into the system, thus affecting the response. The aim is to properly choose the levels of control factors so that the process is robust or insensitive to the variation caused by noise factors. Robust parameter design methods are used to make systems more reliable and robust to incoming variations in environmental effects, manufacturing processes and customer usage patterns. However, robust design can become expensive, time consuming, and/or resource intensive. Thus research that makes robust design less resource intensive and requires less number of experimental runs is of great value. Robust design methodology can be expressed as multi-response optimization problem.
(cont.) The objective functions of the problem being: maximizing reliability and robustness of systems, minimizing the information and/or resources required for robust design methodology, and minimizing the number of experimental runs needed. This thesis discusses various noise factor strategies which aim to reduce number of experimental runs needed to improve quality of system. Compound Noise and Take-The-Best-Few Noise Factors Strategy are such noise factor strategies which reduce experimental effort needed to improve reliability of systems. Compound Noise is made by combing all the different noise factors together, irrespective of the number of noise factors. But such a noise strategy works only for the systems which show effect sparsity. To apply the Take-The-Best-Few Noise Factors Strategy most important noise factors in system's noise factor space are found. Noise factors having significant impact on system response variation are considered important. Once the important noise factors are identified, they are kept independent in the noise factor array. By selecting the few most important noise factors for a given system, run size of experiment is minimized.
(cont.) Take-The-Best-Few Noise Factors Strategy is very effective for all kinds of systems irrespective of their effect sparsity. Generally Take-The-Best-Few Noise Factors Strategy achieves nearly 80% of the possible improvement for all systems. This thesis also tries to find the influence of correlation and variance of induced noise on quality of system. For systems that do not contain any significant three-factor interactions correlation among noise factors can be neglected. Hence amount of information needed to improve the quality of systems is reduced.
by Jagmeet Singh.
Ph.D.
Mirza, Muhammad Javed. "Robust methods in range image understanding /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu148777912090705.
Full textHeo, Gyeongyong. "Robust kernel methods in context-dependent fusion." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0041144.
Full textZhao, Shiyu. "Nonparametric robust control methods for powertrain control." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548802.
Full textWhitehouse, Emily J. "Robust methods in univariate time series models." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41868/.
Full textFallah, Alireza. "Robust accelerated gradient methods for machine learning." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122881.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-95).
In this thesis, we study the problem of minimizing a smooth and strongly convex function, which arises in different areas, including regularized regression problems in machine learning. To solve this optimization problem, we consider using first order methods which are popular due to their scalability with large data sets, and we study the case that the exact gradient information is not available. In this setting, a naive implementation of classical first order algorithms need not converge and even accumulate noise. This motivates consideration of robustness of algorithms to noise as another metric in designing fast algorithms. To address this problem, we first propose a definition for the robustness of an algorithm in terms of the asymptotic expected suboptimality of its iterate sequence to input noise power.
We focus on Gradient Descent and Accelerated Gradient methods and develop a framework based on a dynamical system representation of these algorithms to characterize their convergence rate and robustness to noise using tools from control theory and optimization. We provide explicit expressions for the convergence rate and robustness of both algorithms for the quadratic case, and also derive tractable and tight upper bounds for general smooth and strongly convex functions. We also develop a computational framework for choosing parameters of these algorithms to achieve a particular trade-off between robustness and rate. As a second contribution, we consider algorithms that can reach optimality (obtaining perfect robustness). The past literature provided lower bounds on the rate of decay of suboptimality in term of initial distance to optimality (in the deterministic case) and error due to gradient noise (in the stochastic case).
We design a novel multistage and accelerated universally optimal algorithm that can achieve both of these lower bounds simultaneously without knowledge of initial optimality gap or noise characterization. We finally illustrate the behavior of our algorithm through numerical experiments.
by Alireza Fallah.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Lee, Ju Hee. "Robust Statistical Modeling through Nonparametric Bayesian Methods." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275399497.
Full textMcCaskey, Suzanne D. "Robust design of dynamic systems." Thesis, Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/24223.
Full textArif, Omar. "Robust target localization and segmentation using statistical methods." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33882.
Full textRamström, Marcus, and Mattias Gungner. "Robust repair methods of primary structures in composite." Thesis, Linköpings universitet, Hållfasthetslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94362.
Full textJugessur, Deeptiman. "Robust object recognition using local appearance based methods." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33472.
Full textThe same approach is further applied in the field of robotics to provide a means for the automatic recognition of locations or landmarks in scenes typically encountered by mobile robots. Hence instead of only recognizing objects, we also present a means of using the same computational model to recognize locations, thus performing coarse localization.
Talaya, López Julià. "Algorithms and Methods for Robust Geodetic kinematic Positioning." Doctoral thesis, Universitat Politècnica de Catalunya, 2003. http://hdl.handle.net/10803/5846.
Full textAquesta tesis es basa en l'estudi de nous algorismes i configuracions de missions que permetin augmentar el nivells de robustesa i fiabilitat en la determinació de trajectòries cinemàtiques aèries. Des d'un punt de vista productiu la robustesa és molt important ja que és la clau per a la automatització dels sistemes de procés de dades.
En concret es proposa el modelatge mitjançant paràmetres estocàstics dels retards ionosfèrics i troposfèrics que afecten als observables GPS, es proposen mètodes per combinar les dades de diverses estacions de referència GPS tot introduint restriccions entre els diferents paràmetres a determinar i considerant les correlacions existents entre les observacions, així com la utilització d'estratègies de selecció de les situacions més favorables per a la determinació de les ambigüitats de cicle que afecten als observables GPS de precisió, addicionalment s'estudien els seus efectes en la robustesa i fiabilitat del posicionament cinemàtic GPS.
Cal destacar la proposta d'integració dels observables de diversos receptors GPS cinemàtics en una configuració multiantena, mitjançant l'ús de les observacions angulars d'un sistema IMU (Inertial Measurement Unit), per aconseguir un posicionament cinemàtic més robust i fiable. Aquesta tècnica obre la possibilitat de superar les oclusions dels satèl·lits GPS durant les maniobres de gir de l'avió, molt freqüents en els vols de recobriment territorial per a missions d'observació de la Terra.
Es presenten i s'analitzen algunes idees per a la integració del posicionament cinemàtic GPS i l'orientació de sensors aerotransportats. S'estudia la utilització de la informació obtinguda mitjançant l'orientació indirecta (total o parcial) de certs sensors per ajudar en la resolució de la ambigüitat que afecta a l'observable fase del sistema GPS. En concret es presenten els casos d'integració de les dades d'orientació d'una càmara fotogramètrica aèria i d'un sensor altímetre làser amb observacions de la constel·lació de satèl·lits GPS.
El treball es completa amb un estudi de la determinació de trajectòries utilitzant dades simulades de les noves constel·lacions de satèl·lits (GPS III i Galileo) que actualment es troben en fase de construcció i desplegament.
The NAVSTAR Global Positioning System, most commonly known as GPS, has played an important role in the development of high precision geodetic positioning techniques. The possibility of using the GPS constellation for kinematic geodetic positioning has provided the geodetic community with a very important tool on its goal to portrait the Earth's shape.
This work focuses on the reliability of geodetic kinematic GPS positioning. Different algorithms and methods for increasing the reliability of kinematic surveys are presented. An increase in reliability implies better chances of solving correct ambiguity parameters, and more redundancy simplifies the automation of the GPS processing. Automating kinematic GPS processing reduces the need for very well trained GPS operators, as well as operational costs.
Several ideas are presented to increase the amount of information available in kinematic GPS processing, such as using several reference stations, dynamical models for the ionosphere, global processing.Although some of these ideas have also been presented previously, a study of the impact on the reliability of surveys has been done.
A novel approach to use multiple kinematic receivers without adding new position parameters by making use of inertial measurements is presented. Their impact on reliability increase has also been proven.
In aerial surveys, GPS kinematic positioning is generally used for georeferencing data taken by airborne sensors. The use of the data observed by these sensors for facilitating GPS positioning is also part of the study. The integration of oriented photogrammetric pairs or laser distance measurements together with kinematic GPS positioning have been investigated, and have been proved very helpful in real life projects.
Finally, the increase in reliability in new constellation scenarios (modernized GPS and Galileo) has also been analyzed in order to know what the situation in future scenarios will be like.
Hong, Zhihong. "Robust Coding Methods For Space-Time Wireless Communications." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-20020117-144929.
Full textHONG, ZHIHONG. Robust Coding Methods For Space-Time Wireless Communications. (Under the direction of Dr. Brian L. Hughes.)Space-time coding can exploit the presence of multiple transmit and receive antennasto increase diversity, spectral efficiency, and received power, to improvethe performance in wireless communication systems. Thus far, most work on space-time coding has assumed highly idealized channel fading conditions (e.g., quasi-static or ideal fast fading)as well as perfect channel state information at the receiver. Both of these assumptionsare often questionable in practice. In this dissertation, we present a new and general coding architecture for multi-antennacommunications, which is designed to perform well under a wide variety of channel fading conditionsand which (when differentially encoded) does not require accurate channel estimatesat the receiver. The architecture combines serial concatenation of short, full-diversityspace-time block codes with bit-interleaved coded modulation. Under slow fadingconditions, we show that codes constructed in this way achieve full diversity and perform close to the best known space-time trellis codes of comparable complexity. Under fast fading conditions, we show that these same codes can achieve higher diversity than all previously knowncodes of the same complexity. When used with differential space-time modulation, thesecodes can be reliably detected with or without channel estimates at the transmitter or receiver. Moreover, when iterative decoding is applied, the performance of these codes couldbe further improved.
Chassein, André [Verfasser]. "Robust Optimization: Complexity and Solution Methods / André Chassein." München : Verlag Dr. Hut, 2017. http://d-nb.info/1135596034/34.
Full textRayamajhi, Milan. "Efficient methods for robust shape optimisation for crashworthiness." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8902.
Full textLee, Sharen Woon Yee. "Bayesian methods for the construction of robust chronologies." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:49c30401-9442-441f-b6b5-1539817e2c95.
Full textLottes, James William. "Toward robust algebraic multigrid methods for nonsymmetric problems." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:f9ac1d47-6d6a-41a9-99b9-2559981a9ba3.
Full textSolano, Charris Elyn Lizeth. "Optimization methods for the robust vehicle routing problem." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0026/document.
Full textThis work extends the Vehicle Routing Problem (VRP) for addressing uncertainties via robust optimization, giving the Robust VRP (RVRP). First, uncertainties are handled on travel times/costs. Then, a bi-objective version (bi-RVRP) is introduced to handle uncertainty in both, travel times and demands. For solving the RVRP and the bi-RVRP different models and methods are proposed to determine robust solutions minimizing the worst case. A Mixed Integer Linear Program (MILP), several greedy heuristics, a Genetic Algorithm (GA), a local search procedure and four local search based algorithms are proposed: a Greedy Randomized Adaptive Search Procedure (GRASP), an Iterated Local Search (ILS), a Multi-Start ILS (MS-ILS), and a MS-ILS based on Giant Tours (MS-ILS-GT) converted into feasible routes via a lexicographic splitting procedure. Concerning the bi-RVRP, the total cost of traversed arcs and the total unmet demand are minimized over all scenarios. To solve the problem, different variations of multiobjective evolutionary metaheuristics are proposed and coupled with a local search procedure: the Multiobjective Evolutionary Algorithm (MOEA) and the Non-dominated Sorting Genetic Algorithm version 2 (NSGAII). Different metrics are used to measure the efficiency, the convergence as well as the diversity of solutions for all these algorithms
Pindza, Edson. "Robust Spectral Methods for Solving Option Pricing Problems." University of the Western Cape, 2012. http://hdl.handle.net/11394/4092.
Full textRobust Spectral Methods for Solving Option Pricing Problems by Edson Pindza PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of Natural Sciences, University of the Western Cape Ever since the invention of the classical Black-Scholes formula to price the financial derivatives, a number of mathematical models have been proposed by numerous researchers in this direction. Many of these models are in general very complex, thus closed form analytical solutions are rarely obtainable. In view of this, we present a class of efficient spectral methods to numerically solve several mathematical models of pricing options. We begin with solving European options. Then we move to solve their American counterparts which involve a free boundary and therefore normally difficult to price by other conventional numerical methods. We obtain very promising results for the above two types of options and therefore we extend this approach to solve some more difficult problems for pricing options, viz., jump-diffusion models and local volatility models. The numerical methods involve solving partial differential equations, partial integro-differential equations and associated complementary problems which are used to model the financial derivatives. In order to retain their exponential accuracy, we discuss the necessary modification of the spectral methods. Finally, we present several comparative numerical results showing the superiority of our spectral methods.
Bruffaerts, Christopher. "Contributions to robust methods in nonparametric frontier models." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209244.
Full textL’ensemble de production est l’ensemble contenant toutes les combinaisons d’inputs et d’outputs qui sont physiquement réalisables dans une économie. De cet ensemble contenant p inputs et q outputs, la notion d’efficacité d ‘une unité de production peut être définie. Celle-ci se définie comme une distance séparant le DMU de la frontière de l’ensemble de production. A partir d’un échantillon de DMUs, le but est de reconstruire cette frontière de production afin de pouvoir y évaluer l’efficacité des DMUs. A cette fin, le chercheur utilise très souvent des méthodes dites « classiques » telles que le « Data Envelopment Analysis » (DEA).
De nos jours, le statisticien bénéficie de plus en plus de données, ce qui veut également dire qu’il n’a pas l’opportunité de faire attention aux données qui font partie de sa base de données. Il se peut en effet que certaines valeurs aberrantes s’immiscent dans les jeux de données sans que nous y fassions particulièrement attention. En particulier, les modèles de frontières sont extrêmement sensibles aux valeurs aberrantes et peuvent fortement influencer l’inférence qui s’en suit. Pour éviter que certaines données n’entravent une analyse correcte, des méthodes robustes sont utilisées.
Allier le côté robuste au problème d’évaluation d’efficacité est l’objectif général de cette thèse. Le premier chapitre plante le décor en présentant la littérature existante dans ce domaine. Les quatre chapitres suivants sont organisés sous forme d’articles scientifiques.
Le chapitre 2 étudie les propriétés de robustesse d’un estimateur d’efficacité particulier. Cet estimateur mesure la distance entre le DMU analysé et la frontière de production le long d’un chemin hyperbolique passant par l’unité. Ce type de distance très spécifique s’avère très utile pour définir l’efficacité de type directionnel.
Le chapitre 3 est l’extension du premier article au cas de l’efficacité directionnelle. Ce type de distance généralise toutes les distances de type linéaires pour évaluer l’efficacité d’un DMU. En plus d’étudier les propriétés de robustesse de l’estimateur d’efficacité de type directionnel, une méthode de détection de valeurs aberrantes est présentée. Celle-ci s’avère très utile afin d’identifier les unités de production influençantes dans cet espace multidimensionnel (dimension p+q).
Le chapitre 4 présente les méthodes d’inférence pour les efficacités dans les modèles nonparamétriques de frontière. En particulier, les méthodes de rééchantillonnage comme le bootstrap ou le subsampling s’avère être très utiles. Dans un premier temps, cet article montre comment améliorer l’inférence sur les efficacités grâce au subsampling et prouve qu’il n’est pas suffisant d’utiliser un estimateur d’efficacité robuste dans les méthodes de rééchantillonnage pour avoir une inférence qui soit fiable. C’est pourquoi, dans un second temps, cet article propose une méthode robuste de rééchantillonnage qui est adaptée au problème d’évaluation d’efficacité.
Finalement, le dernier chapitre est une application empirique. Plus précisément, cette analyse s’intéresse à l ‘efficacité des universités américaines publiques et privées au niveau de leur recherche. Des méthodes classiques et robustes sont utilisées afin de montrer comment tous les outils étudiés précédemment peuvent s’appliquer en pratique. En particulier, cette étude permet d’étudier l’impact sur l’efficacité des institutions américaines de certaines variables telles que l’enseignement, l’internationalisation ou la collaboration avec le monde de l’industrie.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Motamedian, Hamid Reza. "Robust Formulations for Beam-to-Beam Contact." Licentiate thesis, KTH, Hållfasthetslära (Avd.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183980.
Full textKontakt mellan balkelement är en speciell typ av kontaktproblem som först analyserades 1997 av Wriggers och Zavarise med avseende på kontakt i normalriktningen. Teorin utvecklades senare av Zavarise och Wriggers och inkluderade då även kontakt i tangentiella riktningar. I dessa arbeten antas balkelementen ha ett styvt cirkulärt tvärsnitt och varje elementpar kan inte ha mer än en kontaktpunkt. Metodiken i dessa artiklar bygger på att en glipfunktion införs och därefter beräknas den inkrementella förändringen av glipfunktionen, och också dess variation, som funktion av den inkrementella förändringen av förskjutningsvektorn och dess variation. På grund av de komplicerade härledningar som resulterar, speciellt för den tangentiella kontakten, antas det att balkelementen har linjära formfunktioner. Dessutom tas ingen hänsyn till de moment som uppstår vid kontaktpunkten. I de arbeten som presenteras i denna licentiatavhandling har vi valt att inrikta oss mot frågeställningar kring enkla och robusta implementeringar, något som blir viktigt först när problemet innefattar ett stort antal kontakter. I den första artikeln i avhandlingen föreslår vi en robust formulering för normal och tangentiell kontakt mellan balkar i en 3D-rymd.Formuleringen bygger på en kostnadsmetod och på antagandet att kontaktens normal- och tangentriktning samt dess läge förblir detsamma (oberoende av förskjutning) under varje iteration. Dock uppdateras dessa storheter mellan varje iteration. Å andra sidan har inga begränsningar införts för formfunktionerna hos de underliggande balkelementen. Detta leder till en matematiskt enklare härledning samt enklare ekvationer, eftersom variationen hos glipfunktionen försvinner. Resultat framtagna med hjälp av denna formulering har verifierats och jämförts med motsvarande resultat givna av andra metoder. Den föreslagna metoden ger snabbare konvergens vilket ger möjlighet att använda större laststeg eller större omfång hos styvheten i kontaktpunkten (s.k. kostnadsstyrhet). Genom att lösa numeriska exempel påvisas prestanda och robusthet hos den föreslagna formuleringen. I den andra artikeln föreslår vi två alternativa metoder för att hantera rotationer i kontaktplanet hos balkelementen. I den första metoden linjäriseras glipfunktionen. Denna metod presenterades först av Wriggers och Zavarise. För att kunna genomföra beräkningarna ansattes linjära formfunktioner för balkelementen. Den här metoden kan användas både med kostnadsmetoder och metoder baserade på Lagrangemultiplikatorer. I den andra föreslagna metoden har vi valt att följa samma tillvägagångsätt som i vår första artikel. Detta betyder att vi antar att kontaktens normalriktning är oberoende av förskjutningarna under en iteration men uppdateras sedan mellan iterationerna. Detta tillvägagångsätt ger enklare ekvationer och har inga begränsningar vad gäller de formfunktioner som används i balkelementen. Dock är metoden begränsad till att utnyttja kostnadsmetoder. Båda de föreslagna metoderna i denna artikel ger jämförbar konvergens, prestanda och stabilitet vilket påvisas genom att lösningar till olika numeriska exempel presenteras.
QC 20160408
Elago, David. "Robust computational methods for two-parameter singular perturbation problems." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1693_1308039217.
Full textThis thesis is concerned with singularly perturbed two-parameter problems. We study a tted nite difference method as applied on two different meshes namely a piecewise mesh (of Shishkin type) and a graded mesh (of Bakhvalov type) as well as a tted operator nite di erence method. We notice that results on Bakhvalov mesh are better than those on Shishkin mesh. However, piecewise uniform meshes provide a simpler platform for analysis and computations. Fitted operator methods are even simpler in these regards due to the ease of operating on uniform meshes. Richardson extrapolation is applied on one of the tted mesh nite di erence method (those based on Shishkin mesh) as well as on the tted operator nite di erence method in order to improve the accuracy and/or the order of convergence. This is our main contribution to this eld and in fact we have achieved very good results after extrapolation on the tted operator finitete difference method. Extensive numerical computations are carried out on to confirm the theoretical results.
Galler, Michael. "Methods for more efficient, effective and robust speech recognition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0032/NQ64560.pdf.
Full textKelly, John W. "Robust, Automated Methods for Filtering and Processing Neural Signals." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/256.
Full textChung, How James T. H. "Robust video coding methods for next generation communication networks." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364957.
Full textXiong, Hong. "Robust adaptive methods and their applications in quadrupole resonance." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0013387.
Full textChau, Loo Kung Gustavo Ramón. "Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods." Master's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8498.
Full textTesis
Oh, Myungho. "Robust pole assignment by output feedback using optimization methods." Thesis, University of Leicester, 1993. http://hdl.handle.net/2381/34809.
Full textMays, James Edward. "Model robust regression: combining parametric, nonparametric, and semiparametric methods." Diss., Virginia Polytechnic Institute and State University, 1995. http://hdl.handle.net/10919/49937.
Full textPh. D.
incomplete_metadata
Anderson, Joseph T. "Geometric Methods for Robust Data Analysis in High Dimension." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488372786126891.
Full textOwadally, Muhammud Asaad. "Robust electronic circuit design using evolutionary and Taguchi methods." Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/21761.
Full textIn engineering, there is a wide range of applications where genetic optimizers are used. Two genetic optimizers used in this thesis namely, Population Based Incremental Learning ( PBIL ) and Cross generational selection Heterogeneous crossover Cataclysmic mutation ( CHC ), are tested on a series of circuit problems to fmd if robust electronic circuits can be built from evolutionary methods. The evolutionary algorithms were used to search the space of discrete component values from a range of manufactured preferred values to obtain robust electronic circuits. Parasitic effects were also modelled in the simulation to provide for a more realistic circuit.
Hashem, Hussein Abdulahman. "Regularized and robust regression methods for high dimensional data." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9197.
Full textAnderson, Cynthia 1962. "A Comparison of Five Robust Regression Methods with Ordinary Least Squares: Relative Efficiency, Bias and Test of the Null Hypothesis." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc5808/.
Full textSharda, Bikram. "Robust manufacturing system design using petri nets and bayesian methods." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85935.
Full textUysal, Selver Derya [Verfasser]. "Three Essays on Doubly Robust Estimation Methods / Selver Derya Uysal." Konstanz : Bibliothek der Universität Konstanz, 2012. http://d-nb.info/1033059943/34.
Full textBängtsson, Erik. "Robust preconditioned iterative solution methods for large-scale nonsymmetric problems /." Uppsala : Department of Information Technology, Uppsala University, 2005. http://www.it.uu.se/research/reports/lic/2005-006/.
Full textChoo, Wei-Chong. "Volatility forecasting with exponential weighting, smooth transition and robust methods." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489421.
Full textKonya, Iuliu Vasile [Verfasser]. "Adaptive Methods for Robust Document Image Understanding / Iuliu Vasile Konya." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1044869917/34.
Full text