Journal articles on the topic 'Robust Control'

To see the other types of publications on this topic, follow the link: Robust Control.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Robust Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

DERAWI, Dafizal, Nurul Dayana SALIM, Hairi ZAMZURI, Yangi YI, Kenzo NONAMI, and Daisuke IWAKURA. "A215 Image-based Robust Hovering Control of Multirotor Aeril Robot." Proceedings of the Symposium on the Motion and Vibration Control 2015.14 (2015): 267–72. http://dx.doi.org/10.1299/jsmemovic.2015.14.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

EISAKA, Toshio. "Robust control." Journal of the Japan Society for Precision Engineering 56, no. 6 (1990): 1014–19. http://dx.doi.org/10.2493/jjspe.56.1014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YIN, Yingjie, and Yoshikazu HAYAKAWA. "Robust Control and Adaptive Robust Control for Robot Manipulators." Transactions of the Japan Society of Mechanical Engineers Series C 67, no. 657 (2001): 1507–14. http://dx.doi.org/10.1299/kikaic.67.1507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sabzevary, A. Sanai, Yasuo Tamura, and Shinichi Iwamoto. "Robust Generator Control with Robust Observer." IEEJ Transactions on Power and Energy 116, no. 3 (1996): 275–84. http://dx.doi.org/10.1541/ieejpes1990.116.3_275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Postlethwaite, Ian, Matthew C. Turner, and Guido Herrmann. "ROBUST CONTROL APPLICATIONS." IFAC Proceedings Volumes 39, no. 9 (2006): 713–25. http://dx.doi.org/10.3182/20060705-3-fr-2907.00122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toumodge, S. "Robust Control [Bookshelf]." IEEE Control Systems 16, no. 4 (August 1996): 93. http://dx.doi.org/10.1109/mcs.1996.526917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rocke, David M. "Robust Control Charts." Technometrics 31, no. 2 (May 1989): 173–84. http://dx.doi.org/10.1080/00401706.1989.10488511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Böhm, Josef. "Robust adaptive control." Automatica 37, no. 5 (May 2001): 793–95. http://dx.doi.org/10.1016/s0005-1098(01)00021-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miyasato, Yoshihiko. "Robust adaptive control." Automatica 38, no. 9 (September 2002): 1628–30. http://dx.doi.org/10.1016/s0005-1098(02)00059-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ackermann, Juergen, Bob Barmish, John Doyle, Georg Gruebel, Ian Petersen, and M. Vidyasagar. "14.6 — Robust Control." IFAC Proceedings Volumes 20, no. 5 (July 1987): 117. http://dx.doi.org/10.1016/s1474-6670(17)55548-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kasenally, E. M. "Robust control toolbox." Automatica 30, no. 5 (May 1994): 919–20. http://dx.doi.org/10.1016/0005-1098(94)90186-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Willems, Jan C. "Linear robust control." Automatica 31, no. 11 (November 1995): 1681. http://dx.doi.org/10.1016/0005-1098(95)90010-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Virk, G. S. "Robust process control." Chemical Engineering Science 45, no. 4 (1990): 1149. http://dx.doi.org/10.1016/0009-2509(90)85041-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Postlethwaite, Ian, Matthew C. Turner, and Guido Herrmann. "Robust control applications." Annual Reviews in Control 31, no. 1 (January 2007): 27–39. http://dx.doi.org/10.1016/j.arcontrol.2007.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Franco, A. L. D., H. Bourles, E. R. De Pieri, and H. Guillard. "Robust Nonlinear Control Associating Robust Feedback Linearization and$ H_infty$Control." IEEE Transactions on Automatic Control 51, no. 7 (July 2006): 1200–1207. http://dx.doi.org/10.1109/tac.2006.878782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Triwiyatno, Aris, Mohammad Nuh, Ari Santoso, and I. Nyoman Sutantra. "Engine Torque Control of Spark Ignition Engine Using Robust Fuzzy Logic Control." International Journal of Engineering and Technology 3, no. 4 (2011): 352–58. http://dx.doi.org/10.7763/ijet.2011.v3.252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

SUDWILAI, Phaisarn, Koichi OKA, Akiyuki SANO, and Yuta HIROKAWA. "2A12 Vibration Control With Linear Actuator Permanent Magnet System using Robust Control." Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2A12–1_—_2A12–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2a12-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Peresada, S., S. Bozhko, S. Kovbasa, and Ye Nikonenko. "ROBUST DIRECT FIELD ORIENTED CONTROL OF INDUCTION GENERATOR." Tekhnichna Elektrodynamika 2021, no. 4 (June 17, 2021): 14–24. http://dx.doi.org/10.15407/techned2021.04.014.

Full text
Abstract:
A novel and robust field oriented vector control method for standalone induction generators (IG) is presented. The proposed controller exploits the concept of direct field orientation and provides asymptotic rotor flux modulus and DC-link voltage regulations when a DC-load is constant or slowly varying. Flux subsystem, designed using Lyapunov’s second method, has, in contrast to standard structures, closed loop properties and therefore is robust with respect to rotor resistance variations. A decomposition approach on the base of the two-time scale separation of the voltage and torque current dynamics is used for design of the voltage subsystem. The feedback linearizing voltage controller is designed using a steady state IG power balance equation. The resulting quasi-linear dynamics of the voltage control loop allows use of simple controllers tuning procedure and provides an improved dynamic performance for variable speed and flux operation. Results of a comparative experimental study with standard indirect field oriented control are presented. In contrast to existing solutions, the designed controller provides system performances stabilization when speed and flux are varying. It is experimentally shown that a robust field oriented controller ensures robust flux regulation and robust stabilization of the torque current dynamics leading to improved energy efficiency of the electromechanical conversion process. The proposed controller is suitable for energy generation systems with variable speed operation. References 18, figures 8.
APA, Harvard, Vancouver, ISO, and other styles
19

Korobov, V. I., and T. V. Revina. "On Robust Feedback for Systems with Multidimensional Control." Zurnal matematiceskoj fiziki, analiza, geometrii 13, no. 1 (March 25, 2017): 35–56. http://dx.doi.org/10.15407/mag13.01.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

SALIM, Nurul Dayana, Dafizal DERAWI, Hairi ZAMZURI, Yang YI, Kenzo NONAMI, and Daisuke IWAKURA. "A212 Robust LQR Attitude Control of Hexarotor UAVs." Proceedings of the Symposium on the Motion and Vibration Control 2015.14 (2015): 251–56. http://dx.doi.org/10.1299/jsmemovic.2015.14.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Landau, I. D. "From robust control to adaptive control." Control Engineering Practice 7, no. 9 (September 1999): 1113–24. http://dx.doi.org/10.1016/s0967-0661(99)00076-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wei, Bin. "A Tutorial on Robust Control, Adaptive Control and Robust Adaptive Control—Application to Robotic Manipulators." Inventions 4, no. 3 (August 23, 2019): 49. http://dx.doi.org/10.3390/inventions4030049.

Full text
Abstract:
A tutorial on robust control, adaptive control, robust adaptive control and adaptive control of robotic manipulators is presented in a systematic manner. Some limitations of the above methods are also illustrated. The relationships between the robust control, adaptive control and robust adaptive control are demonstrated. Basic information on the joint space control, operational space control and force control is also given. This tutorial summarizes the most advanced control techniques currently in use in a very simple manner, and applies to robotic manipulators, which can provide an informative guideline for students who have little knowledge of controls or who want to understand the adaptive control of robotics in a systematic way.
APA, Harvard, Vancouver, ISO, and other styles
23

Rustamov, G. A. "Absolutely robust control systems." Automatic Control and Computer Sciences 47, no. 5 (September 2013): 227–41. http://dx.doi.org/10.3103/s0146411613050052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Luque, Juan C. Cutipa, and Decio Crisol Donha. "AUV Robust Guidance Control*." IFAC Proceedings Volumes 41, no. 1 (2008): 85–90. http://dx.doi.org/10.3182/20080408-3-ie-4914.00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rahman, Ayu Abdul, Sharipah Soaad Syed-Yahaya, and Abdu Mohammed Ali Atta. "Robust Synthetic Control Charting." International Journal of Technology 12, no. 2 (April 13, 2021): 349. http://dx.doi.org/10.14716/ijtech.v12i2.4216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rustamov, G. A. "K∞-Robust Control Systems." MEHATRONIKA, AVTOMATIZACIA, UPRAVLENIE 16, no. 7 (July 2015): 435–43. http://dx.doi.org/10.17587/mau.16.435-443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Plummer, A. R. "Robust electrohydraulic force control." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 221, no. 4 (June 2007): 717–31. http://dx.doi.org/10.1243/09596518jsce370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thompson, S. "Robust Control — An Introduction." Measurement and Control 26, no. 8 (October 1993): 235–41. http://dx.doi.org/10.1177/002029409302600802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

FUNAHASHI, YASUYUKI, and HISAO KATOH. "Robust-tracking deadbeat control." International Journal of Control 56, no. 1 (July 1992): 213–25. http://dx.doi.org/10.1080/00207179208934310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nazir, Hafiz Zafar, Muhammad Riaz, Ronald J. M. M. Does, and Nasir Abbas. "Robust CUSUM Control Charting." Quality Engineering 25, no. 3 (July 2013): 211–24. http://dx.doi.org/10.1080/08982112.2013.769057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Singh, T., and S. R. Vadali. "Robust Time-Delay Control." Journal of Dynamic Systems, Measurement, and Control 115, no. 2A (June 1, 1993): 303–6. http://dx.doi.org/10.1115/1.2899035.

Full text
Abstract:
A method is presented to minimize residual vibration of structures or lightly damped servomechanisms. The method, referred to as the proportional plus multiple delay (PPMD) control, involves the use of multiple time delays in conjunction with a proportional part to cancel the dynamics of the system in a robust fashion. An interesting characteristic of the controller involves addition of a basic single time-delay control unit in cascade to the existing controller, for every additional requirement of robustness. It is shown that the proposed time-delay controller produces results that are exactly the same as those obtained by the shaped input technique. In addition, it is simpler to arrive at the relative amplitudes of the time-delayed signals for any number of delays even in a multi-input setting.
APA, Harvard, Vancouver, ISO, and other styles
32

Tsypkin, Ya Z. "Robust Internal Model Control." Journal of Dynamic Systems, Measurement, and Control 115, no. 2B (June 1, 1993): 419–25. http://dx.doi.org/10.1115/1.2899082.

Full text
Abstract:
This paper discusses the method of control systems design for dynamic plants under bounded uncertainty. The structure of these systems coincides with the structure of systems with an internal model. But the choice of an internal model and a controller depends on the demand of the bounded decrease of system sensitivity to the change of plant characteristics and external action and on the demand of modal control. The absorption principle is used for the synthesis of a controller of such robust modal control systems. The realization conditions of robust systems of modal control are stated.
APA, Harvard, Vancouver, ISO, and other styles
33

Messer, Alastair C., and Michael J. Grimble. "Robust Track Keeping Control." IFAC Proceedings Volumes 25, no. 3 (April 1992): 371–80. http://dx.doi.org/10.1016/s1474-6670(17)50313-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tsypkin, Ya Z., and B. T. Polyak. "High-Gain Robust Control." European Journal of Control 5, no. 1 (January 1999): 3–9. http://dx.doi.org/10.1016/s0947-3580(99)70132-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Azzam, M. "Robust automatic generation control." Energy Conversion and Management 40, no. 13 (September 1999): 1413–21. http://dx.doi.org/10.1016/s0196-8904(99)00040-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Qiu, Li. "Essentials of robust control." Automatica 38, no. 5 (May 2002): 910–12. http://dx.doi.org/10.1016/s0005-1098(01)00272-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Colaneri, Patrizio. "Robust and H∞-control." Automatica 39, no. 4 (April 2003): 760–62. http://dx.doi.org/10.1016/s0005-1098(02)00282-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Weiss, M. "Robust and optimal control." Automatica 33, no. 11 (November 1997): 2095. http://dx.doi.org/10.1016/s0005-1098(97)00132-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mäkilä, Pertti M. "Robust Control-Oriented Identification." IFAC Proceedings Volumes 30, no. 11 (July 1997): 125–30. http://dx.doi.org/10.1016/s1474-6670(17)42834-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Alvarez-Ramirez, Jose, America Morales, and Ilse Cervantes. "Robust Proportional−Integral Control." Industrial & Engineering Chemistry Research 37, no. 12 (December 1998): 4740–47. http://dx.doi.org/10.1021/ie980180+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Khalifa, I. H., and A. A. R. Hanafy. "Robust Hybrid Adaptive Control." IFAC Proceedings Volumes 20, no. 5 (July 1987): 29–34. http://dx.doi.org/10.1016/s1474-6670(17)55474-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Joel, W., D. Johnson, and Abdallah T. Chaouki. "Robust control of accelerators." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 304, no. 1-3 (July 1991): 364–67. http://dx.doi.org/10.1016/0168-9002(91)90887-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Engell, Sebastian. "Robust multivariable feedback control." Automatica 27, no. 4 (July 1991): 749–50. http://dx.doi.org/10.1016/0005-1098(91)90070-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dorato, P., R. Tempo, and G. Muscato. "Bibliography on robust control." Automatica 29, no. 1 (January 1993): 201–13. http://dx.doi.org/10.1016/0005-1098(93)90183-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

KACZOREK, Tadeusz. "Robust and optimal control." Control Engineering Practice 4, no. 8 (August 1996): 1189–90. http://dx.doi.org/10.1016/0967-0661(96)83721-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tanaka, E., and J. Hasegawa. "Robust Load Frequency Control." IFAC Proceedings Volumes 22, no. 9 (August 1989): 49–54. http://dx.doi.org/10.1016/s1474-6670(17)53244-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kouvaritakis, B., J. A. Rossiter, and J. Schuurmans. "Efficient robust predictive control." IEEE Transactions on Automatic Control 45, no. 8 (2000): 1545–49. http://dx.doi.org/10.1109/9.871769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhong-Ping Jiang and I. Marcels. "Robust nonlinear integral control." IEEE Transactions on Automatic Control 46, no. 8 (2001): 1336–42. http://dx.doi.org/10.1109/9.940947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jaśkiewicz, Anna, and Andrzej S. Nowak. "Robust Markov control processes." Journal of Mathematical Analysis and Applications 420, no. 2 (December 2014): 1337–53. http://dx.doi.org/10.1016/j.jmaa.2014.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ocali, O., and M. E. Sezer. "Robust sampled-data control." IEEE Transactions on Automatic Control 37, no. 10 (1992): 1591–97. http://dx.doi.org/10.1109/9.256390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography