Academic literature on the topic 'Robust'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robust.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Robust"

1

Martinez, Kara, Arnab Maity, Robert H. Yolken, Patrick F. Sullivan, and Jung‐Ying Tzeng. "Robust kernel association testing (RobKAT)." Genetic Epidemiology 44, no. 3 (January 14, 2020): 272–82. http://dx.doi.org/10.1002/gepi.22280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DERAWI, Dafizal, Nurul Dayana SALIM, Hairi ZAMZURI, Yangi YI, Kenzo NONAMI, and Daisuke IWAKURA. "A215 Image-based Robust Hovering Control of Multirotor Aeril Robot." Proceedings of the Symposium on the Motion and Vibration Control 2015.14 (2015): 267–72. http://dx.doi.org/10.1299/jsmemovic.2015.14.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

الأنصاري, د. أحمد عبد الرزاق محمد, and د. عبد الرزاق أحمد الرازحي. "A comparison between Robust regression analysis methods Applied statistical study of the most important demographic factors on the total fertility rate in Yemen for the period (1990-2013)." Journal of Social Studies 29, no. 3 (September 27, 2023): 23–47. http://dx.doi.org/10.20428/jss.v29i3.2160.

Full text
Abstract:
the research aims to compare the estimators of robust regression methods (the robustM method - the robust MM method - the robustS method), the detection of the nature of the distribution of data, the discovery of abnormal and extreme data of the study variables, in addition to revealing the stability of time chains, and testing a relationship Joint integration by analyzing the relationship between the studied demographic variables represented in (infant mortality - the number of maternal deaths - raw death rate - the rate of widespread malnutrition - female death rate - child mortality rate under the age For every 1,000 neighborhood births) as independent variables, and the total fertility rate as a variable in the Republic of Yemen for the period (1990-2015). the research aims to compare the estimators of robust regression methods (the robustM method - the robust MM method - the robustS method), the detection of the nature of the distribution of data, the discovery of abnormal and extreme data of the study variables, in addition to revealing the stability of time chains, and testing a relationship Joint integration by analyzing the relationship between the studied demographic variables represented in (infant mortality - the number of maternal deaths - raw death rate - the rate of widespread malnutrition - female death rate - child mortality rate under the age For every 1,000 neighborhood births) as independent variables, and the total fertility rate as a variable in the Republic of Yemen for the period (1990-2015).
APA, Harvard, Vancouver, ISO, and other styles
4

Richard, Patrick. "Robust heteroskedasticity-robust tests." Economics Letters 159 (October 2017): 28–32. http://dx.doi.org/10.1016/j.econlet.2017.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vaswani, Namrata, Thierry Bouwmans, Sajid Javed, and Praneeth Narayanamurthy. "Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery." IEEE Signal Processing Magazine 35, no. 4 (July 2018): 32–55. http://dx.doi.org/10.1109/msp.2018.2826566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baron, Sandra, and Shannon M. Bros. "HERBIVORY AND THE ENDANGERED ROBUST SPINEFLOWER (CHORIZANTHE ROBUSTA VAR. ROBUSTA)." Madroño 52, no. 1 (January 2005): 46–52. http://dx.doi.org/10.3120/0024-9637(2005)52[46:haters]2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

N, Fritzsch, A. "Robust, mobile IT solutions Robuste, mobile IT- Lösungen." GIS Business 12, no. 3 (June 26, 2019): 30–33. http://dx.doi.org/10.26643/gis.v12i3.5189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maronna, Ricardo, and Stephan Morgenthaler. "Robust regression through robust covariances." Communications in Statistics - Theory and Methods 15, no. 4 (January 1986): 1347–65. http://dx.doi.org/10.1080/03610928608829187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katz, Alan J., Michael T. Gately, and Dean R. Collins. "Robust Classifiers without Robust Features." Neural Computation 2, no. 4 (December 1990): 472–79. http://dx.doi.org/10.1162/neco.1990.2.4.472.

Full text
Abstract:
We develop a two-stage, modular neural network classifier and apply it to an automatic target recognition problem. The data are features extracted from infrared and TV images. We discuss the problem of robust classification in terms of a family of decision surfaces, the members of which are functions of a set of global variables. The global variables characterize how the feature space changes from one image to the next. We obtain rapid training times and robust classification with this modular neural network approach.
APA, Harvard, Vancouver, ISO, and other styles
10

Gancarova, Martina, and Michael J. Todd. "A robust robust optimization result." Operations Research Letters 40, no. 1 (January 2012): 2–5. http://dx.doi.org/10.1016/j.orl.2011.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Robust"

1

Nakashima, Paulo Hiroaqui Ruiz. "Controle H2, H∞ e H2/H∞ aplicados a um robô manipulador subatuado." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-08062017-122423/.

Full text
Abstract:
Este trabalho apresenta os resultados da aplicação de três técnicas de controle utilizadas no projeto e implementação do controle de um manipulador subatuado planar de três juntas em série e de elos rígidos, projetado e construído pela Universidade Carnegie Mellon, EUA. Devido ao alto grau de não-linearidade deste sistema, seria muito difícil implementar um controlador H2, H∞ ou H2/H∞ que atuasse sozinho. Assim, propõe-se a utilização de um método de controle combinado: torque computado/H2, H∞ ou H2/H∞. No controle combinado, a porção correspondente ao torque computado lineariza e pré-compensa a dinâmica do modelo da planta nominal, enquanto a porção correspondente ao controle H2, H∞ ou H2/H∞ realiza uma pós-compensação dos erros residuais, que não foram completamente eliminados pelo método torque computado. Testes de acompanhamento de trajetória e testes de robustez são realizados aqui para comprovar a eficiência destes controladores, com resultados de implementação bastante satisfatórios.
This work presents the application results of three control techniques used for the control design and implementation of a serial planar underactuated manipulator with three joints and rigid links, designed and built by the Carnegie Mellon University, USA. Due to the high non-linearity degree of this system, it would be very difficult to implement an H2, H∞ or H2/ H∞ control which would actuate on the system by itself. Therefore, it is proposed a combined control method: computed torque/ H2, H∞ or H2/H∞. In the combined control, the portion corresponding to the computed torque linearizes and pre-compensates the dynamics of the nominal model, while the portion corresponding to the H2, H∞ or H2/H∞ control realizes a pos-compensation of the residual errors, not completely removed by the computed torque method. Trajetory tracking and robustness tests are performed here to demonstrate the efficiency of these controllers, with very satisfatory implementation results.
APA, Harvard, Vancouver, ISO, and other styles
2

Deray, Jérémie. "Robust navigation for industrial service robots." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/669875.

Full text
Abstract:
Robust, reliable and safe navigation is one of the fundamental problems of robotics. Throughout the present thesis, we tackle the problem of navigation for robotic industrial mobile-bases. We identify its components and analyze their respective challenges in order to address them. The research work presented here ultimately aims at improving the overall quality of the navigation stack of a commercially available industrial mobile-base. To introduce and survey the overall problem we first break down the navigation framework into clearly identified smaller problems. We examine the Simultaneous Localization and Mapping (SLAM) problem, recalling its mathematical grounding and exploring the state of the art. We then review the problem of planning the trajectory of a mobile-base toward a desired goal in the generated environment representation. Finally we investigate and clarify the use of the subset of the Lie theory that is useful in robotics. The first problem tackled is the recognition of place for closing loops in SLAM. Loop closure refers to the ability of a robot to recognize a previously visited location and infer geometrical information between its current and past locations. Using only a 2D laser range finder sensor, we address the problem using a technique borrowed from the field of Natural Language Processing (NLP) which has been successfully applied to image-based place recognition, namely the Bag-of-Words. We further improve the method with two proposals inspired from NLP. Firstly, the comparison of places is strengthened by considering the natural relative order of features in each individual sensor reading. Secondly, topological correspondences between places in a corpus of visited places are established in order to promote together instances that are ‘close’ to one another. We then tackle the problem of motion model calibration for odometry estimation. Given a mobile-base embedding an exteroceptive sensor able to observe ego-motion, we propose a novel formulation for estimating the intrinsic parameters of an odometry motion model. Resorting to an adaptation of the pre-integration theory initially developed for inertial motion sensors, we employ iterative nonlinear on-manifold optimization to estimate the wheel radii and wheel separation. The method is further extended to jointly estimate both the intrinsic parameters of the odometry model together with the extrinsic parameters of the embedded sensor. The method is shown to accommodate to variation in model parameters quickly when the vehicle is subject to physical changes during operation. Following the generation of a map in which the robot is localized, we address the problem of estimating trajectories for motion planning. We devise a new method for estimating a sequence of robot poses forming a smooth trajectory. Regardless of the Lie group considered, the trajectory is seen as a collection of states lying on a spline with non-vanishing n-th derivatives at each point. Formulated as a multi-objective nonlinear optimization problem, it allows for the addition of cost functions such as velocity and acceleration limits, collision avoidance and more. The proposed method is evaluated for two different motion planning tasks, the planning of trajectories for a mobile-base evolving in the SE(2) manifold, and the planning of the motion of a multi-link robotic arm whose end-effector evolves in the SE(3) manifold. From our study of Lie theory, we developed a new, ready to use, programming library called `manif’. The library is open source, publicly available and is developed following good software programming practices. It is designed so that it is easy to integrate and manipulate, and allows for flexible use while facilitating the possibility to extend it beyond the already implemented Lie groups.
La navegación autónoma es uno de los problemas fundamentales de la robótica, y sus diferentes desafíos se han estudiado durante décadas. El desarrollo de métodos de navegación robusta, confiable y segura es un factor clave para la creación de funcionalidades de nivel superior en robots diseñados para operar en entornos con humanos. A lo largo de la presente tesis, abordamos el problema de navegación para bases robóticas móviles industriales; identificamos los elementos de un sistema de navegación; y analizamos y tratamos sus desafíos. El trabajo de investigación presentado aquí tiene como último objetivo mejorar la calidad general del sistema completo de navegación de una base móvil industrial disponible comercialmente. Para estudiar el problema de navegación, primero lo desglosamos en problemas menores claramente identificados. Examinamos el subproblema de mapeo del entorno y localización del robot simultáneamente (SLAM por sus siglas en ingles) y estudiamos el estado del arte del mismo. Al hacerlo, recordamos y detallamos la base matemática del problema de SLAM. Luego revisamos el subproblema de planificación de trayectorias hacia una meta deseada en la representación del entorno generada. Además, como una herramienta para las soluciones que se presentarán más adelante en el desarrollo de la tesis, investigamos y aclaramos el uso de teoría de Lie, centrándonos en el subconjunto de la teoría que es útil para la estimación de estados en robótica. Como primer elemento identificado para mejoras, abordamos el problema de reconocimiento de lugares para cerrar lazos en SLAM. El cierre de lazos se refiere a la capacidad de un robot para reconocer una ubicación visitada previamente e inferí información geométrica entre la ubicación actual del robot y aquellas reconocidas. Usando solo un sensor láser 2D, la tarea es desafiante ya que la percepción del entorno que proporciona el sensor es escasa y limitada. Abordamos el problema utilizando 'bolsas de palabras', una técnica prestada del campo de procesamiento del lenguaje natural (NLP) que se ha aplicado con éxito anteriormente al reconocimiento de lugares basado en imágenes. Nuestro método incluye dos nuevas propuestas inspiradas también en NLP. Primero, la comparación entre lugares candidatos se fortalece teniendo en cuenta el orden relativo natural de las características en cada lectura individual del sensor; y segundo, se establece un corpus de lugares visitados para promover juntos instancias que están "cerca" la una de la otra desde un punto de vista topológico. Evaluamos nuestras propuestas por separado y conjuntamente en varios conjuntos de datos, con y sin ruido, demostrando mejora en la detección de cierres de lazo para sensores láser 2D, con respecto al estado del arte. Luego abordamos el problema de la calibración del modelo de movimiento para la estimación de la edometría. Dado que nuestra base móvil incluye un sensor exteroceptivo capaz de observar el movimiento de la plataforma, proponemos una nueva formulación que permite estimar los parámetros intrínsecos del modelo cinemático de la plataforma durante el cómputo de la edometría del vehículo. Hemos recurrido a una adaptación de la teoría de reintegración inicialmente desarrollado para unidades inerciales de medida, y aplicado la técnica a nuestro modelo cinemático. El método nos permite, mediante optimización iterativa no lineal, la estimación del valor del radio de las ruedas de forma independiente y de la separación entre las mismas. El método se amplía posteriormente par idéntica de forma simultánea, estos parámetros intrínsecos junto con los parámetros extrínsecos que ubican el sensor láser con respecto al sistema de referencia de la base móvil. El método se valida en simulación y en un entorno real y se muestra que converge hacia los verdaderos valores de los parámetros. El método permite la adaptación de los parámetros intrínsecos del modelo cinemático de la plataforma derivados de cambios físicos durante la operación, tales como el impacto que el cambio de carga sobre la plataforma tiene sobre el diámetro de las ruedas. Como tercer subproblema de navegación, abordamos el reto de planificar trayectorias de movimiento de forma suave. Desarrollamos un método para planificar la trayectoria como una secuencia de configuraciones sobre una spline con n-ésimas derivadas en todos los puntos, independientemente del grupo de Lie considerado. Al ser formulado como un problema de optimización no lineal con múltiples objetivos, es posible agregar funciones de coste al problema de optimización que permitan añadir límites de velocidad o aceleración, evasión de colisiones, etc. El método propuesto es evaluado en dos tareas de planificación de movimiento diferentes, la planificación de trayectorias para una base móvil que evoluciona en la variedad SE(2), y la planificación del movimiento de un brazo robótico cuyo efector final evoluciona en la variedad SE(3). Además, cada tarea se evalúa en escenarios con complejidad de forma incremental, y se muestra un rendimiento comparable o mejor que el estado del arte mientras produce resultados más consistentes. Desde nuestro estudio de la teoría de Lie, desarrollamos una nueva biblioteca de programación llamada “manif”. La biblioteca es de código abierto, está disponible públicamente y se desarrolla siguiendo las buenas prácticas de programación de software. Esta diseñado para que sea fácil de integrar y manipular, y permite flexibilidad de uso mientras se facilita la posibilidad de extenderla más allá de los grupos de Lie inicialmente implementados. Además, la biblioteca se muestra eficiente en comparación con otras soluciones existentes. Por fin, llegamos a la conclusión del estudio de doctorado. Examinamos el trabajo de investigación y trazamos líneas para futuras investigaciones. También echamos un vistazo en los últimos años y compartimos una visión personal y experiencia del desarrollo de un doctorado industrial.
APA, Harvard, Vancouver, ISO, and other styles
3

Bekit, Biniam Weldai. "Robust nonlinear control of robot manipulators." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Löhning, Matthias [Verfasser]. "Robust Control of Elastic Robots / Matthias Löhning." München : Verlag Dr. Hut, 2011. http://d-nb.info/1015606512/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bando, Yoshiaki. "Robust Audio Scene Analysis for Rescue Robots." Kyoto University, 2018. http://hdl.handle.net/2433/232410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kwok, Chung Tin. "Robust real-time perception for mobile robots /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peel, Vincent Robert. "Robust methods for robust passive sonar." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, Quan T. "Robust and Adaptive Dynamic Walking of Bipedal Robots." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1102.

Full text
Abstract:
Legged locomotion has several interesting challenges that need to be addressed, such as the ability of dynamically walk over rough terrain like stairs or stepping stones, as well as the ability to adapt to unexpected changes in the environment and the dynamic model of the robot. This thesis is driven towards solving these challenges and makes contributions on theoretical and experimental aspects to address: dynamic walking, model uncertainty, and rough terrain. On the theoretical front, we introduce and develop a unified robust and adaptive control framework that enables the ability to enforce stability and safety-critical constraints arising from robotic motion tasks under a high level of model uncertainty. We also present a novel method of walking gait optimization and gait library to address the challenge of dynamic robotic walking over stochastically generated stepping stones with significant variations in step length and step height, and where the robot has knowledge about the location of the next discrete foothold only one step ahead. On the experimental front, our proposed methods are successfully validated on ATRIAS, an underactuated, human-scale bipedal robot. In particular, experimental demonstrations illustrate our controller being able to dynamically walk at 0.6 m/s over terrain with step length variation of 23 to 78 cm, as well as simultaneous variation in step length and step height of 35 to 60cm and -22 to 22cm respectively. In addition to that, we also successfully implemented our proposed adaptive controller on the robot, which enables the ability to carry an unknown load up to 68 lb (31 kg) while maintaining very small tracking errors of about 0.01 deg (0.0017 rad) at all joints. To be more specific, we firstly develop robust control Lyapunov function based quadratic program (CLFQP) controller and L1 adaptive control to handle model uncertainty for bipedal robots. An application is dynamic walking while carrying an unknown load. The robust CLF-QP controller can guarantee robustness via a quadratic program that can be extended further to achieve robust safety-critical control. The L1 adaptive control can estimate and adapt to the presence of model uncertainty in the system dynamics. We then present a novel methodology to achieve dynamic walking for underactuated and hybrid dynamcal bipedal robots subject to safety-critical constraints. The proposed controller is based on the combination of control Barrier functions (CBFs) and control Lyapunov functions (CLFs) implemented as a state-based online quadratic program to achieve stability under input and state constraints. The main contribution of this work is the control design to enable stable dynamical bipedal walking subject to strict safety constraints that arise due to walking over a terrain with randomly generated discrete footholds. We next introduce Exponential Control Barrier Functions (ECBFs) as means to enforce high relativedegree safety constraints for nonlinear systems. We also develop a systematic design method that enables creating the Exponential CBFs for nonlinear systems making use of tools from linear control theory. Our method creates a smooth boundary for the safety set via an exponential function, therefore is called Exponential CBFs. Similar to exponential stability and linear control, the exponential boundary of our proposed method helps to have smoother control inputs and guarantee the robustness under model uncertainty. The proposed control design is numerically validated on a relative degree 4 nonlinear system (the two-link pendulum with elastic actuators and experimentally validated on a relative degree 6 linear system (the serial cart-spring system). Thanks to these advantages of Exponential CBFs, we then can apply the method to the problem of 3D dynamic walking with varied step length and step width as well as dynamic walking on time-varying stepping stones. For the work of using CBF for stepping stones, we use only one nominal walking gait. Therefore the range of step length variation is limited ([25 : 60](cm)). In order to improve the performance, we incorporate CBF with gait library and increase the step length range significantly ([10 : 100](cm)). While handling physical constraints and step transition via CBFs appears to work well, these constraints often become active at step switching. In order to resolve this issue, we introduce the approach of 2-step periodic walking. This method not only gives better step transitions but also offers a solution for the problem of changing both step length and step height. Experimental validation on the real robot was also successful for the problem of dynamic walking on stepping stones with step lengths varied within [23 : 78](cm) and average walking speed of 0:6(m=s). In order to address the problems of robust control and safety-critical control in a unified control framework, we present a novel method of optimal robust control through a quadratic program that offers tracking stability while subject to input and state-based constraints as well as safety-critical constraints for nonlinear dynamical robotic systems under significant model uncertainty. The proposed method formulates robust control Lyapunov and barrier functions to provide guarantees of stability and safety in the presence of model uncertainty. We evaluate our proposed control design on different applications ranging from a single-link pendulum to dynamic walking of bipedal robot subject to contact force constraints as well as safety-critical precise foot placements on stepping stones, all while subject to significant model uncertainty. We conduct preliminary experimental validation of the proposed controller on a rectilinear spring-cart system under different types of model uncertainty and perturbations. To solve this problem, we also present another solution of adaptive CBF-CLF controller, that enables the ability to adapt to the effect of model uncertainty to maintain both stability and safety. In comparison with the robust CBF-CLF controller, this method not only can handle a higher level of model uncertainty but is also less aggressive if there is no model uncertainty presented in the system.
APA, Harvard, Vancouver, ISO, and other styles
9

Larsson, Martin. "Robusta Människor : En förutsättning för ett robust och uthålligt samhälle?" Thesis, Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-13852.

Full text
Abstract:
Samhället och världen vi lever i är föränderlig, kanske mer än någonsin. Det finns en strävan efter tålighet och snabb återhämtning för att på ett så bra sätt som möjligt hantera händelser och förändringar som vi inte kunnat förutse. Robusta samhällen kan anses framstå som önskvärda i en föränderlig värld. Då samhällen består av människor kan det antas att robusta människor skapar goda förutsättningar för robusta samhällen. Syftet med denna studie är att få mer kännedom om hur en robust människa upplevs och om det finns likheter i beskrivningarna av ett robust samhälle och en robust människa. Studien genomfördes i form av tre semistrukturerade intervjuer med tolkande fenomenologisk analys. Tre stycken professionella, som i sin profession mött totalt ca 3000 människor som varit med om större händelser och/eller kriser, intervjuades. Studiens resultat visar att upplevelsen av en robust människa är kärleksfull, ansvarsfull i nuet och känslomedveten: Kärleksfull till sig själv, andra och livet. Ansvarsfull och i nuet, oavsett konsekvenserna Medveten om, och känner, sina känslor och gränser. Studien berör även likheter och skillnader mellan begreppen robust, resiliens, resilient och Känsla Av SAMmanhang (KASAM). Vidare visas att det finns likheter mellan hur robusta samhällen och hur robusta människor beskrivs. Robust samhälle          Robust människa Ekologisk robusthet        Strävar efter god hälsa. Social robusthet             Kan skilja på vad som är sina och andras känslor. Teknisk robusthet           Är kvar i sig själv vid yttre störningar. Studien kommer fram till att robusta människor troligen är en förutsättning för robusta samhällen.
The society and the world we live are in constant change, maybe more now than ever. There is an aim to be robust and to recover fast to be able meet unpredictable events and changes. Robust societies seem desirable in a changing world. Societies consist of individuals and robust individuals can be assumed to create good conditions for a robust society. The purpose of this study is to gain more knowledge regarding how a robust individual is perceived and if there are similarities in the way a robust society and a robust individual are described. The study was conducted using three semi-structured interviews and interpretive phenomenological analysis. Three professionals, who had meet in total about 3000 individuals who had experienced large events and/or crisis, were interviewed. The result of the study demonstrates the experience of a robust individual being loving, responsible in the present and aware of feelings. Loving to himself/herself, others and life. Responsible and in the present, disregarding the consequences Aware of, and feels, his/hers feelings and boundaries. Similarities and differences between robust, resilience, resilient and Sense Of Coherence (SOC) are briefly covered in the study. There are similarities between how a robust society and a robust individual are described. Robust society           Robust individual Ecological robustness    Aims at good health. Social robustness          Able to distinguish between his/her own feelings and others feelings. Technical robustness     Stays as himself/herself when disturbed. The result of the study shows that robust individuals are probably a prerequisite for a robust society.
APA, Harvard, Vancouver, ISO, and other styles
10

Sato, Miki. "Noise-Robust Auditory Systems for Human-Robot Communication." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/123355.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Robust"

1

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. Robust Control of Robots. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Chih-Ming. A robust estimator for wall following. Warren, Mich: General Motors Research Laboratories, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

T, Rachev S., and Fabozzi Frank J, eds. Robust and non-robust models in statistics. Hauppauge, NY: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shevlyakov, Georgy L., and Hannu Oja. Robust Correlation. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119264507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ackermann, Jürgen, Dieter Kaesbauer, Wolfgang Sienel, Reinhold Steinhauser, and Andrew Bartlett. Robust Control. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-3365-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ackermann, Jürgen. Robust Control. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0207-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davisson, L. D., A. G. J. MacFarlane, H. Kwakernaak, J. L. Massey, Ya Z. Tsypkin, A. J. Viterbi, and Shigeyuki Hosoe, eds. Robust Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0114641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Kang-Zhi, and Yu Yao. Robust Control. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016. http://dx.doi.org/10.1002/9781119113072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fabozzi, Frank J., Petter N. Kolm, Dessislava A. Pachamanova, and Sergio M. Focardi, eds. Robust Portfolio. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781119202172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maronna, Ricardo A., R. Douglas Martin, Victor J. Yohai, and Matías Salibián-Barrera, eds. Robust Statistics. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119214656.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Robust"

1

Leppla, Norman C., Bastiaan M. Drees, Allan T. Showler, John L. Capinera, Jorge E. Peña, Catharine M. Mannion, F. William Howard, et al. "Robust." In Encyclopedia of Entomology, 3202. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_3423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kułakowski, Konrad, and Piotr Matyasik. "RobustHX - The Robust Middleware Library for Hexor Robots." In Simulation, Modeling, and Programming for Autonomous Robots, 241–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17319-6_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Experimental Set Up." In Robust Control of Robots, 1–14. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Linear $${\mathcal H}_{\user2 \infty}$$ Control." In Robust Control of Robots, 17–34. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Nonlinear $${\mathcal{H}}_{\varvec\infty}$$ Control." In Robust Control of Robots, 35–58. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Adaptive Nonlinear $${{\mathcal{H}}}_{\user2{\infty}}$$ Control." In Robust Control of Robots, 59–73. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Underactuated Robot Manipulators." In Robust Control of Robots, 77–99. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Markov Jump Linear Systems-Based Control." In Robust Control of Robots, 101–49. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "Underactuated Cooperative Manipulators." In Robust Control of Robots, 153–76. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siqueira, Adriano A. G., Marco H. Terra, and Marcel Bergerman. "A Fault Tolerance Framework for Cooperative Robotic Manipulators." In Robust Control of Robots, 177–95. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-898-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Robust"

1

Hall, E. L., S. M. Alhaj Ali, M. Ghaffari, X. Liao, and M. Cao. "Engineering robust intelligent robots." In IS&T/SPIE Electronic Imaging, edited by David P. Casasent, Ernest L. Hall, and Juha Röning. SPIE, 2010. http://dx.doi.org/10.1117/12.838730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albiez, J., M. Hildebrand, T. Vogele, S. Joyeux, and F. Kirchner. "Robust Robots for Arctic Exploration." In OTC Arctic Technology Conference. Offshore Technology Conference, 2011. http://dx.doi.org/10.4043/22120-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bogoslavskyi, Igor, Mladen Mazuran, and Cyrill Stachniss. "Robust homing for autonomous robots." In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016. http://dx.doi.org/10.1109/icra.2016.7487410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zohdy, M. A., and A. A. Zaher. "Robust control of biped robots." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.879366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sinha, Anirban, and Nilanjan Chakraborty. "Computing Robust Inverse Kinematics Under Uncertainty." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97945.

Full text
Abstract:
Abstract Robotic tasks, like reaching a pre-grasp configuration, are specified in the end effector space or task space, whereas, robot motion is controlled in joint space. Because of inherent actuation errors in joint space, robots cannot achieve desired configurations in task space exactly. Furthermore, different inverse kinematics (IK) solutions map joint space error set to task space differently. Thus for a given task with a prescribed error tolerance, all IK solutions will not be guaranteed to successfully execute the task. Any IK solution that is guaranteed to execute a task (possibly with high probability) irrespective of the realization of the joint space error is called a robust IK solution. In this paper we formulate and solve the robust inverse kinematics problem for redundant manipulators with actuation uncertainties (errors). We also present simulation and experimental results on a 7-DoF redundant manipulator for two applications, namely, a pre-grasp positioning and a pre-insertion positioning scenario. Our results show that the robust IK solutions result in higher success rates and also allows the robot to self-evaluate how successful it might be in any application scenario.
APA, Harvard, Vancouver, ISO, and other styles
6

Cham, Jorge G., Sean A. Bailey, and Mark R. Cutkosky. "Robust Dynamic Locomotion Through Feedforward-Preflex Interaction." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2398.

Full text
Abstract:
Abstract Unlike most legged robotic systems built to date, even simple animals have the ability to quickly and robustly traverse through rough terrain and over large obstacles and gaps. Recent evidence from insect physiology research indicates that arthropods achieve this fast robust locomotion largely without relying on sensory feedback or reflex response. Instead, locomotion is the result of the interaction between a basic feedforward motor pattern and the visco-elastic properties of the mechanical system, termed “preflexes.” In this paper, we consider the implications of this control hypothesis for the design of small running robots for uncertain environments. We present working prototypes that show how robust dynamic locomotion can be achieved without the use of sensory feedback. We then discuss modeling approaches for these kinds of systems and present results from simulations of representative models.
APA, Harvard, Vancouver, ISO, and other styles
7

Halevi, Y., and U. Shaked. "Robust robust model reduction." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chalhoub, N. G., and S. M. A. Matta. "Robust controller for wheeled mobile robots." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6315310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagle, Martin G., Mandyam V. Srinivasan, and Peter J. Sobey. "Robust depth extraction for mobile robots." In Optical Tools for Manufacturing and Advanced Automation, edited by David P. Casasent. SPIE, 1993. http://dx.doi.org/10.1117/12.150199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gustavi, Tove, and Xiaoming Hu. "Robust Formation Adaptation for Mobile Robots." In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iros.2006.281700.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Robust"

1

Morgenthaler, S., and R. Maronna. Robust Regression through Robust Covariances. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada153301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simmons, Reid. Contextual Awareness for Robust Robot Autonomy. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada595778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moura, Jose M. Robust Receivers. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada387845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ives, Robert Lawrence, Eric Montgomery, George Collins, David Marsden, Lou Falce, Kevin Jensen, Rasul Karimov, and Thuc Bui. Robust RF Photocathodes. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1498543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goettler, Richard W. Robust Fiber Coatings. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada407946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaccaro, Richard J. Robust Direction Finding. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada444712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Enns, Dale. Robust Flight Control. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada411755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duffie, Darrell, and Piotr Dworczak. Robust Benchmark Design. Cambridge, MA: National Bureau of Economic Research, October 2014. http://dx.doi.org/10.3386/w20540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thomson, M., and D. Schinazi. Maintaining Robust Protocols. RFC Editor, June 2023. http://dx.doi.org/10.17487/rfc9413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bauer, Michael, and James Hamilton. Robust Bond Risk Premia. Cambridge, MA: National Bureau of Economic Research, June 2017. http://dx.doi.org/10.3386/w23480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography