Dissertations / Theses on the topic 'Robots – Control systems'

To see the other types of publications on this topic, follow the link: Robots – Control systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Robots – Control systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Smith, Brian Stephen. "Automatic coordination and deployment of multi-robot systems." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28248.

Full text
Abstract:
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Dr. Magnus Egerstedt; Committee Co-Chair: Dr. Ayanna Howard; Committee Member: Dr. David Taylor; Committee Member: Dr. Frank Dellaert; Committee Member: Dr. Ian Akyildiz; Committee Member: Dr. Jeff Shamma.
APA, Harvard, Vancouver, ISO, and other styles
2

Bishop, Russell C. "A Method for Generating Robot Control Systems." Connect to resource online, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1222394834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pires, Leo Santana. "Uma contribuição ao estudo da dinamica não linear e controle de um particular sistema robotico levando-se em conta as interações entre as juntas." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264708.

Full text
Abstract:
Orientadores: Helder Anibal Hermini, Jose Manoel Balthazar
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Meêanica
Made available in DSpace on 2018-08-04T10:09:17Z (GMT). No. of bitstreams: 1 Pires_LeoSantana_M.pdf: 9313372 bytes, checksum: a9469afaba08752e7ef419dc781fe926 (MD5) Previous issue date: 2005
Resumo: Uma aproximação unificada para projeto e controle de manipuladores robóticos que retenha todas as não linearidades inerentes na dinâmica é desenvolvido para uma configuração robô-motor considerado como um sistema interagente. Este projeto de sistema interagente, baseado no modelo de teoria de controle de desacoplagem não-linear de Beekmann, desacopla a configuração robô-motor para os subsistemas robô, motor e interação cm série. Esta aproximação está em contraste ao tratamento convencional do motor como uma pura fonte dc torque c o negligenciamento da interação dinâmica entre a junta do robô e o motor, e ao desconsiderar a formulação não-linear
Abstract: A unified approach to a robotic controI design, which retains all the nonlinearities inherent in the dynamics, is developed for the motor-robot configuration considered as an imeracting system. This control system design, based on the Beekmann model's nonlinear decoupling control theory with arbitrary pole placement, decouples the motor-robot configuration into robot, motor, and series compliance (interaction) subsystems. This approch is in contrast to the conventional treatment of the motor as apure torque source and the neglect of dynamic interactions between the robot joint and the motor drive mechanism and not consider the nonlinear formulation
Mestrado
Projeto Mecanico e Mecanica dos Solidos
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
4

Kmelnitsky, Vitaly M. "Automated On-line Diagnosis and Control Configuration in Robotic Systems Using Model Based Analytical Redundancy." Digital WPI, 2002. https://digitalcommons.wpi.edu/etd-theses/167.

Full text
Abstract:
Because of the increasingly demanding tasks that robotic systems are asked to perform, there is a need to make them more reliable, intelligent, versatile and self-sufficient. Furthermore, throughout the robotic system?s operation, changes in its internal and external environments arise, which can distort trajectory tracking, slow down its performance, decrease its capabilities, and even bring it to a total halt. Changes in robotic systems are inevitable. They have diverse characteristics, magnitudes and origins, from the all-familiar viscous friction to Coulomb/Sticktion friction, and from structural vibrations to air/underwater environmental change. This thesis presents an on-line environmental Change, Detection, Isolation and Accommodation (CDIA) scheme that provides a robotic system the capabilities to achieve demanding requirements and manage the ever-emerging changes. The CDIA scheme is structured around a priori known dynamic models of the robotic system and the changes (faults). In this approach, the system monitors its internal and external environments, detects any changes, identifies and learns them, and makes necessary corrections into its behavior in order to minimize or counteract their effects. A comprehensive study is presented that deals with every stage, aspect, and variation of the CDIA process. One of the novelties of the proposed approach is that the profile of the change may be either time or state-dependent. The contribution of the CDIA scheme is twofold as it provides robustness with respect to unmodeled dynamics and with respect to torque-dependent, state-dependent, structural and external environment changes. The effectiveness of the proposed approach is verified by the development of the CDIA scheme for a SCARA robot. Results of this extensive numerical study are included to verify the applicability of the proposed scheme.
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, Khaled Subhi. "Multiagent telerobotics : matching systems to tasks." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/9234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Love, Lonnie J. "Adaptive impedance control." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan, Hongliang. "Control of nonholonomic systems." Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharif, Curtis Shahid. "Development of a supervisory surrogate controller for a robotic workcell." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/17830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shifman, Jeffrey Joseph. "The control of flexible robots." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gargas, Eugene Frank III. "Generation and use of a discrete robotic controls alphabet for high-level tasks." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43651.

Full text
Abstract:
The objective of this thesis is to generate a discrete alphabet of low-level robotic controllers rich enough to mimic the actions of high-level users using the robot for a specific task. This alphabet will be built through the analysis of various user data sets in a modified version of the motion description language, MDLe. It can then be used to mimic the actions of a future user attempting to perform the task by calling scaled versions of the controls in the alphabet, potentially reducing the amount of data required to be transmitted to the robot, with minimal error. In this thesis, theory is developed that will allow the construction of such an alphabet, as well as its use to mimic new actions. A MATLAB algorithm is then built to implement the theory. This is followed by an experiment in which various users drive a Khepera robot through different courses with a joystick. The thesis concludes by presenting results which suggest that a relatively small group of users can generate an alphabet capable of mimicking the actions of other users, while drastically reducing bandwidth.
APA, Harvard, Vancouver, ISO, and other styles
11

Moore, Philip R. "Pneumatic motion control systems for modular robots." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/7033.

Full text
Abstract:
This thesis describes a research study in the design, implementation, evaluation and commercialisation of pneumatic motion control systems for modular robots. The research programme was conducted as part of a collaborative study, sponsored by the Science and Engineering Research Council, between Loughborough University and Martonair (UK) Limited. Microprocessor based motion control strategies have been used to produce low cost pneumatic servo-drives which can be used for 'point-to-point' positioning of payloads. Software based realtime control strategies have evolved which accomplish servo-controlled positioning while compensating for drive system non-linearities and time delays. The application of novel compensation techniques has resulted in a significant improvement in both the static and dynamic performance of the drive. A theoretical foundation is presented based on a linearised model of a pneumatic actuator, servo-valve, and load system. The thesis describes the design and evolution of microprocessor based hardware and software for motion control of pneumatic drives. A British Standards based test-facility has allowed control strategies to be evaluated with reference to standard performance criteria. It is demonstrated in this research study that the dynamic and static performance characteristics of a pneumatic motion control system can be dramatically improved by applying appropriate software based realtime control strategies. This makes the application of computer controlled pneumatic servos in manufacturing very attractive with cost performance ratios which match or better alternative drive technologies. The research study has led to commercial products (marketed by Martonair Ltd), in which realtime control algorithms implementing these control strategy designs are executed within a microprocessor based motion controller.
APA, Harvard, Vancouver, ISO, and other styles
12

Kotzev, Shmuel. "Hierarchical task decomposition and execution for robot manipulation task using a wrist force sensor." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29627.

Full text
Abstract:
The research developed force-motion strategies and subsequent force and position control algorithms, using a PUMA 560 robot arm and its original controller. A task decomposition methodology has been developed that enables a mechanical assembly task to be subdivided into a series of executable subtasks. By applying this methodology to the assembly of a hydraulic gear pump, a library of special purpose, task oriented, subtask programs were created. Most of these programs, though derived for a pump assembly task, are applicable (when used with appropriate parameters) to other assembly tasks. Most of the algorithms require force/torque sensory information that is supplied by a JR³ wrist force sensor. The force control algorithms use that data and system compliance in order to produce new position instructions that are transferred to the controller of the arm. The logic of the control law and system behaviour when contacting the environment, were checked, using the dynamics and compliance of a simplified structure of a robotic arm and its wrist sensor. A demonstration of the pump assembly task, using the arm, force sensor, controller and the derived library algorithms is an integral part of the thesis.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Can. "Formation control of multiple robot systems with motion synchronization concept /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-meem-b23750510f.pdf.

Full text
Abstract:
Thesis (Ph.D.)--City University of Hong Kong, 2009.
"Submitted to Department of Manufacturing Engineering and Engineering Management in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
14

Steven, Andrew. "Hybrid force and position control in robotic surface processing." Thesis, University of Newcastle Upon Tyne, 1989. http://hdl.handle.net/10443/657.

Full text
Abstract:
This programme of research was supported by NEI Parsons Ltd. who sought a robotic means of polishing mechanical components. A study of the problems associated with robot controlled surface processing is presented. From this evolved an approach consistent with the formalisation of the demands of workpiece manipulation which included the adoption of the Hybrid robot control scheme capable of simultaneous force and position control. A unique 3 axis planar experimental manipulator was designed which utilized combined parallel and serial drives. A force sensing wrist was used to measure contact force. A variant of the Hybrid control 'scheme was successfully implemented on a twin computer control system. A number of manipulator control programs are presented. The force control aspect is shown both experimentally and analytically to present control problems and the research has concentrated on this aspect. A general analysis of the dynamics of force control is given which shows force response to be dependent on a number' of important parameters including force sensor, environment and manipulator dynamics. The need for a robust or adaptable force controller is discussed. A series of force controlled manipulator experiments is described and the results discussed in the context of general analyses and specific single degree of freedom simulations. Improvements to manipulator force control are suggested and some were implemented. These are discussed together with their immediate application to the improvement of robot controlled surface processing. This work also lays important foundations for long term related research. In particular the new techniques for actively controlled assembly and force control under 'fast' operation.
APA, Harvard, Vancouver, ISO, and other styles
15

Althaus, Philipp. "Indoor Navigation for Mobile Robots : Control and Representations." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3644.

Full text
Abstract:

This thesis deals with various aspects of indoor navigationfor mobile robots. For a system that moves around in ahousehold or office environment,two major problems must betackled. First, an appropriate control scheme has to bedesigned in order to navigate the platform. Second, the form ofrepresentations of the environment must be chosen.

Behaviour based approaches have become the dominantmethodologies for designing control schemes for robotnavigation. One of them is the dynamical systems approach,which is based on the mathematical theory of nonlineardynamics. It provides a sound theoretical framework for bothbehaviour design and behaviour coordination. In the workpresented in this thesis, the approach has been used for thefirst time to construct a navigation system for realistic tasksin large-scale real-world environments. In particular, thecoordination scheme was exploited in order to combinecontinuous sensory signals and discrete events for decisionmaking processes. In addition, this coordination frameworkassures a continuous control signal at all times and permitsthe robot to deal with unexpected events.

In order to act in the real world, the control system makesuse of representations of the environment. On the one hand,local geometrical representations parameterise the behaviours.On the other hand, context information and a predefined worldmodel enable the coordination scheme to switchbetweensubtasks. These representations constitute symbols, on thebasis of which the system makes decisions. These symbols mustbe anchored in the real world, requiring the capability ofrelating to sensory data. A general framework for theseanchoring processes in hybrid deliberative architectures isproposed. A distinction of anchoring on two different levels ofabstraction reduces the complexity of the problemsignificantly.

A topological map was chosen as a world model. Through theadvanced behaviour coordination system and a proper choice ofrepresentations,the complexity of this map can be kept at aminimum. This allows the development of simple algorithms forautomatic map acquisition. When the robot is guided through theenvironment, it creates such a map of the area online. Theresulting map is precise enough for subsequent use innavigation.

In addition, initial studies on navigation in human-robotinteraction tasks are presented. These kinds of tasks posedifferent constraints on a robotic system than, for example,delivery missions. It is shown that the methods developed inthis thesis can easily be applied to interactive navigation.Results show a personal robot maintaining formations with agroup of persons during social interaction.

Keywords:mobile robots, robot navigation, indoornavigation, behaviour based robotics, hybrid deliberativesystems, dynamical systems approach, topological maps, symbolanchoring, autonomous mapping, human-robot interaction

APA, Harvard, Vancouver, ISO, and other styles
16

Sharif, Z. A. B. M. "Modelling and control of industrial robots." Thesis, City University London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Macdonald, Edward A. "Multi-robot assignment and formation control." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41200.

Full text
Abstract:
Our research focuses on one of the more fundamental issues in multi-agent, mobile robotics: the formation control problem. The idea is to create controllers that cause robots to move into a predefined formation shape. This is a well studied problem for the scenario in which the robots know in advance to which point in the formation they are assigned. In our case, we assume this information is not given in advance, but must be determined dynamically. This thesis presents an algorithm that can be used by a network of mobile robots to simultaneously determine efficient robot assignments and formation pose for rotationally and translationally invariant formations. This allows simultaneous role assignment and formation sysnthesis without the need for additional control laws. The thesis begins by introducing some general concepts regarding multi-agent robotics. Next, previous work and background information specific to the formation control and assignment problems are reviewed. Then the proposed assignment al- gorithm for role assignment and formation control is introduced and its theoretical properties are examined. This is followed by a discussion of simulation results. Lastly, experimental results are presented based on the implementation of the assignment al- gorithm on actual robots.
APA, Harvard, Vancouver, ISO, and other styles
18

Damweber, Michael Frank. "Model independent offset tracking with virtual feature points." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Moretti, Mariana. "Estudo dinâmico e simulação de uma plataforma de Stewart com ênfase na implementação do sistema de controle." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265375.

Full text
Abstract:
Orientador: João Maurício Rosário
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-16T10:12:15Z (GMT). No. of bitstreams: 1 Moretti_Mariana_M.pdf: 12180551 bytes, checksum: 7061efe63e86e5ba1b21c21253c1ee35 (MD5) Previous issue date: 2010
Resumo: Uma nova proposta de modelo dinâmico da Plataforma de Stewart é apresentada neste trabalho. Enquanto a cinemática inversa é usada para posicionar cada um dos seis braços do robô, o vetor de força que atua em seus deslocamentos é dado pelo torque de motores elétricos. A inércia em cada um dos pontos de apoio é aproximada por uma rigidez mecânica associada ao modulo de Young. Ainda, foi implementado um modelo dinâmico que usa a aproximação de Newton-Euler, amplamente aplicada na dinâmica inversa de robôs seriais, para o caso deste robô paralelo. Em ambas as abordagens, as equações foram implementadas em Matlab/SimulinkTM, e os resultados das simulações foram apresentados para validação das aproximações
Abstract: A new proposal for a dynamic model of the Stewart platform is presented. While the inverse kinematics is used to position each of the six arms of the robot, the vector of force acting on the displacement is given by the torque of electric motors. The inertia in each of the support points is approximated by a mechanical stiffness associated with the Young modulus. Still, it was implemented a dynamic model that uses the Newton-Euler approach, widely applied in the inverse dynamics of serial robots, for the case of this parallel robot. In both approaches, the equations were implemented in Matlab/SimulinkTM, and the simulation results were presented for validation of the approaches
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
20

Kinney, Justin P. "Jerk limited reference trajectory generation for motion control." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chunyu, Jiangmin. "Reactive control of autonomous dynamical systems." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4635.

Full text
Abstract:
In order to accommodate a larger class of mobile robots, the fourth paper proposes a reactive control design for unicycle-type mobile robots. With the relative motion among the mobile robot, targets, and obstacles being formulated in polar coordinates, kinematic control laws achieving target-tracking and obstacle avoidance are synthesized using Lyapunov based technique, and more importantly, the proposed control laws also take into account possible kinematic control saturation constraints. The third part of this thesis investigates the cooperative formation control with collision avoidance. In the fifth paper, firstly, the target tracking and collision avoidance problem for a single agent is studied. Instead of directly extending the single agent controls to the multi-agents case, the single agent controls are incorporated with an existing cooperative control design. The proposed decentralized control is reactive, considers the formation feedback and changes in the communication networks. The proposed control is based on a potential field method; its inherent oscillation problem is also studied to improve group transient performance.; This thesis mainly consists of five independent papers concerning the reactive control design of autonomous mobile robots in the context of target tracking and cooperative formation keeping with obstacle avoidance in the static/dynamic environment. Technical contents of this thesis are divided into three parts. The first part consists of the first two papers, which consider the target-tracking and obstacle avoidance in the static environment. Especially, in the static environment, a fundamental issue of reactive control design is the local minima problem (LMP) inherent in the potential field methods (PFMs). Through introducing a state-dependent planned goal, the first paper proposes a switching control strategy to tackle this problem. The control law for the planned goal is presented. When trapped into local minima, the robot can escape from local minima by following the planned goal. The proposed control law also takes into account the presence of possible saturation constraints. In addition, a time-varying continuous control law is proposed in the second paper to tackle this problem. Challenges of finding continuous control solutions of LMP are discussed and explicit design strategies are then proposed. The second part of this thesis deals with target-tracking and obstacle avoidance in the dynamic environment. In the third paper, a reactive control design is presented for Omni-directional mobile robots with limited sensor range to track targets while avoiding static and moving obstacles in a dynamically evolving environment. Towards this end, a multi-objective control problem is formulated and control is synthesized by generating a potential field force for each objective and combining them through analysis and design. Different from standard potential field methods, the composite potential field described in this paper is time-varying and planned to account for moving obstacles and vehicle motion.
ID: 029050648; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references (p. 134-139).
Ph.D.
Doctorate
Department of Electrical Engineering and Computer Science
Engineering
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Kai. "Decentralized control of interconnected systems with applications to mobile robots." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/15012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Palmer, Luther R. "Intelligent control and force redistribution for a high-speed quadruped trot." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1174570965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Celikkanat, Hande. "Control Of A Mobile Robot Swarm Via Informed Robots." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609966/index.pdf.

Full text
Abstract:
In this thesis, we study how and to what extent a self-organized mobile robot flock can be guided by informing some of the robots within the flock about a preferred direction of motion. Specifically, we extend a flocking behavior that was shown to maneuver a swarm of mobile robots as a cohesive group in free space, avoiding obstacles. In its original form, this behavior does not have a preferred direction and the flock would wander aimlessly. In this study, we incorporate a preference for a goal direction in some of the robots. These informed robots do not signal that they are informed (a.k.a. unacknowledged leadership) and instead guide the swarm by their tendency to move in the desired direction. Through experimental results with physical and simulated robots we show that the self-organized flocking of a robot swarm can be effectively guided by an informed minority of the flock. We evaluate the system using a number of quantitative metrics: First, we propose to use the mutual information metric from Information Theory as a dynamical measure of the information exchange. Then, we discuss the accuracy metric from directional statistics and size of the largest cluster as the measures of system performance. Using these metrics, we perform analyses from two points of views: In the transient analyses, we demonstrate the information exchange between the robots as the time advances, and the increase in the accuracy of the flock when the conditions are suitable for an adequate amount of information exchange. In the steady state analyses, we investigate the interdependent effects of the size of the flock in terms of the robots in it, the ratio of informed robots in the flock over the total flock size, the weight of the direction preference behavior, and the noise in the system.
APA, Harvard, Vancouver, ISO, and other styles
25

Potocki, Jon Kyle 1965. "Adaptive control and simulation of the PUMA 560 robot." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277217.

Full text
Abstract:
The computed-torque algorithm is a popular model-based robot trajectory control scheme. Adding an adaptive mechanism to this scheme can improve the error tracking capabilities of the robot controller. This thesis describes the algorithms necessary to develop a computer simulation for the PUMA 560 robot arm. Several robot controllers are outlined with an emphasis on the computed-torque scheme. The PUMA simulation is used to analyze the error tracking capabilities of an adaptive computed-torque controller. Consideration is given to parameter mismatch, unmodeled friction, unknown loading, and path excitation. This thesis shows that even with inaccurate load knowledge the adaptive algorithm enhances the tracking capabilities of the controller.
APA, Harvard, Vancouver, ISO, and other styles
26

Powers, Matthew D. "Applying inter-layer conflict resolution to hybrid robot control architectures." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33979.

Full text
Abstract:
In this document, we propose and examine the novel use of a learning mechanism between the reactive and deliberative layers of a hybrid robot control architecture. Balancing the need to achieve complex goals and meet real-time constraints, many modern mobile robot navigation control systems make use of a hybrid deliberative-reactive architecture. In this paradigm, a high-level deliberative layer plans routes or actions toward a known goal, based on accumulated world knowledge. A low-level reactive layer selects motor commands based on current sensor data and the deliberative layer's plan. The desired system-level effect of this architecture is that the robot is able to combine complex reasoning toward global objectives with quick reaction to local constraints. Implicit in this type of architecture, is the assumption that both layers are using the same model of the robot's capabilities and constraints. It may happen, for example, due to differences in representation of the robot's kinematic constraints, that the deliberative layer creates a plan that the reactive layer cannot follow. This sort of conflict may cause a degradation in system-level performance, if not complete navigational deadlock. Traditionally, it has been the task of the robot designer to ensure that the layers operate in a compatible manner. However, this is a complex, empirical task. Working to improve system-level performance and navigational robustness, we propose introducing a learning mechanism between the reactive layer and the deliberative layer, allowing the deliberative layer to learn a model of the reactive layer's execution of its plans. First, we focus on detecting this inter-layer conflict, and acting based on a corrected model. This is demonstrated on a physical robotic platform in an unstructured outdoor environment. Next, we focus on learning a model to predict instances of inter-layer conflict, and planning to act with respect to this model. This is demonstrated using supervised learning in a physics-based simulation environment. Results and algorithms are presented.
APA, Harvard, Vancouver, ISO, and other styles
27

Ballesteros, Mauricio. "Implementation alternatives for dual rate control systems with command shaping." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Economy, A. Tommy. "A proposed methodology for the control of a semi-robotic convoy." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-12052009-020030/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ladoiye, Jasmeet Singh. "Control of Surgical Robots with Time Delay using Model Predictive Control." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38256.

Full text
Abstract:
Minimum invasive surgery is based on bilateral teleoperation in which surgeon interacts with the master side to the slave side that is located at a distance. The synchronization in between the two ends is through a communication channel. The primary objective in the telesurgery is the position and force tracking providing the surgeon with high fidelity. The presence of time delays in the communication channels makes the realization more difficult, and sometimes it may even destabilize the system. The work focuses on a design of the force control system by using Model Predictive Control to compensate for the effects of the time delay related to the use of surgical arms. Another vital issue of minimum impact velocity during contact with the environment has been tried to achieve by using the prediction from the Model Predictive Control to prevent accidental tissue damage. This work also addresses a problem of the developing a simple delayed free predictive kinematic imaging to understand the type of behavior of the system during contact with the environment when no perception is available.
APA, Harvard, Vancouver, ISO, and other styles
30

Rieber, Jochen M. "L₂-gain based control of a flexible parameter-varying robot link." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Song, and 王松. "Motion planning and control simulation for robot assisted femur fracture reduction." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45161380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rao, Sanjay. "Some issues in the sliding mode control of rigid robotic manipulators." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 1995. https://ro.ecu.edu.au/theses/1183.

Full text
Abstract:
This thesis investigates the problem of robust adaptive sliding mode control for nonlinear rigid robotic manipulators. A number of robustness and convergence results are presented for sliding mode control of robotic manipulators with bounded unknown disturbances, nonlinearities, dynamical couplings and parameter uncertainties. The highlights of the research work are summarized below : • A robust adaptive tracking control for rigid robotic manipulators is proposed. In this scheme, the parameters of the upper bound of system uncertainty are adaptively estimated. The controller estimates are then used as controller parameters to eliminate the effects of system uncertainty and guarantee asymptotic error convergence. • A decentralised adaptive sliding mode control scheme for rigid robotic manipulators is proposed. The known dynamics of the partially known robotic manipulator are separated out to perform linearization. A local feedback controller is then designed to stabilize each subsystem and an adaptive sliding mode compensator is used to handle the effects of uncertain system dynamics. The developed scheme guarantees that the effects of system dynamics are eliminated and that asymptotic error convergence is obtained with respect to the overall robotic control system. • A model reference adaptive control using the terminal sliding mode technique is proposed. A multivariable terminal sliding mode is defined for a model following control system for rigid robotic manipulators. A terminal sliding mode controller is then designed based on only a few uncertain system matrix bounds. The result is a simple and robust controller design that guarantees convergence of the output tracking error in a finite time on the terminal sliding mode.
APA, Harvard, Vancouver, ISO, and other styles
33

Robertson, Michael James. "Methods for generating deflection-limiting commands." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ng, Kam-seng, and 黃錦城. "Multiagent joint control for multi-jointed redundant manipulators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B32046595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gomes, Mario Waldorff. "An examination of control algorithms for a dissipative passive haptic interface." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kalyadin, Dmitry. "Robot data and control server for Internet-based training on ground robots." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dierks, Travis. "Nonlinear control of nonholonomic mobile robot formations." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Dierks_09007dcc803c490d.pdf.

Full text
Abstract:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 28, 2007) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
38

Jagadeesan, Ananda Prasanna. "Real time evolutionary algorithms in robotic neural control systems." Thesis, Robert Gordon University, 2006. http://hdl.handle.net/10059/436.

Full text
Abstract:
This thesis describes the use of a Real-Time Evolutionary Algorithm (RTEA) to optimise an Artificial Neural Network (ANN) on-line (in this context “on-line” means while it is in use). Traditionally, Evolutionary Algorithms (Genetic Algorithms, Evolutionary Strategies and Evolutionary Programming) have been used to train networks before use - that is “off-line,” as have other learning systems like Back-Propagation and Simulated Annealing. However, this means that the network cannot react to new situations (which were not in its original training set). The system outlined here uses a Simulated Legged Robot as a test-bed and allows it to adapt to a changing Fitness function. An example of this in reality would be a robot walking from a solid surface onto an unknown surface (which might be, for example, rock or sand) while optimising its controlling network in real-time, to adjust its locomotive gait, accordingly. The project initially developed a Central Pattern Generator (CPG) for a Bipedal Robot and used this to explore the basic characteristics of RTEA. The system was then developed to operate on a Quadruped Robot and a test regime set up which provided thousands of real-environment like situations to test the RTEA’s ability to control the robot. The programming for the system was done using Borland C++ Builder and no commercial simulation software was used. Through this means, the Evolutionary Operators of the RTEA were examined and their real-time performance evaluated. The results demonstrate that a RTEA can be used successfully to optimise an ANN in real-time. They also show the importance of Neural Functionality and Network Topology in such systems and new models of both neurons and networks were developed as part of the project. Finally, recommendations for a working system are given and other applications reviewed.
APA, Harvard, Vancouver, ISO, and other styles
39

Cheung, Wing-fung Jacob, and 張穎鋒. "Kinematics, dynamics and control of high precision parallel manipulators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B37907116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Du, Winney Y. "Real-time robust feedback control algorithms for vibratory part feeding." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gat, Erann. "Reliable goal-directed reactive control of autonomous mobile robots." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134502/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ma, Mo. "Navigation using one camera in structured environment /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?ECED%202007%20MA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yang, Xuedong. "Modeling and control of two-axis belt-drive gantry robots." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/13061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yokoo, Masahiro. "Robust tracking control design for cooperative robot arms carrying a common object." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Davidson, Ian Joseph. "Tele-operation of a manipulator using the Internet." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Brooks, Douglas Antwonne. "Control of reconfigurability and navigation of a wheel-legged robot based on active vision." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26545.

Full text
Abstract:
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Howard, Ayanna; Committee Member: Egerstedt, Magnus; Committee Member: Vela, Patricio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
47

Nguyen, Quan T. "Robust and Adaptive Dynamic Walking of Bipedal Robots." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1102.

Full text
Abstract:
Legged locomotion has several interesting challenges that need to be addressed, such as the ability of dynamically walk over rough terrain like stairs or stepping stones, as well as the ability to adapt to unexpected changes in the environment and the dynamic model of the robot. This thesis is driven towards solving these challenges and makes contributions on theoretical and experimental aspects to address: dynamic walking, model uncertainty, and rough terrain. On the theoretical front, we introduce and develop a unified robust and adaptive control framework that enables the ability to enforce stability and safety-critical constraints arising from robotic motion tasks under a high level of model uncertainty. We also present a novel method of walking gait optimization and gait library to address the challenge of dynamic robotic walking over stochastically generated stepping stones with significant variations in step length and step height, and where the robot has knowledge about the location of the next discrete foothold only one step ahead. On the experimental front, our proposed methods are successfully validated on ATRIAS, an underactuated, human-scale bipedal robot. In particular, experimental demonstrations illustrate our controller being able to dynamically walk at 0.6 m/s over terrain with step length variation of 23 to 78 cm, as well as simultaneous variation in step length and step height of 35 to 60cm and -22 to 22cm respectively. In addition to that, we also successfully implemented our proposed adaptive controller on the robot, which enables the ability to carry an unknown load up to 68 lb (31 kg) while maintaining very small tracking errors of about 0.01 deg (0.0017 rad) at all joints. To be more specific, we firstly develop robust control Lyapunov function based quadratic program (CLFQP) controller and L1 adaptive control to handle model uncertainty for bipedal robots. An application is dynamic walking while carrying an unknown load. The robust CLF-QP controller can guarantee robustness via a quadratic program that can be extended further to achieve robust safety-critical control. The L1 adaptive control can estimate and adapt to the presence of model uncertainty in the system dynamics. We then present a novel methodology to achieve dynamic walking for underactuated and hybrid dynamcal bipedal robots subject to safety-critical constraints. The proposed controller is based on the combination of control Barrier functions (CBFs) and control Lyapunov functions (CLFs) implemented as a state-based online quadratic program to achieve stability under input and state constraints. The main contribution of this work is the control design to enable stable dynamical bipedal walking subject to strict safety constraints that arise due to walking over a terrain with randomly generated discrete footholds. We next introduce Exponential Control Barrier Functions (ECBFs) as means to enforce high relativedegree safety constraints for nonlinear systems. We also develop a systematic design method that enables creating the Exponential CBFs for nonlinear systems making use of tools from linear control theory. Our method creates a smooth boundary for the safety set via an exponential function, therefore is called Exponential CBFs. Similar to exponential stability and linear control, the exponential boundary of our proposed method helps to have smoother control inputs and guarantee the robustness under model uncertainty. The proposed control design is numerically validated on a relative degree 4 nonlinear system (the two-link pendulum with elastic actuators and experimentally validated on a relative degree 6 linear system (the serial cart-spring system). Thanks to these advantages of Exponential CBFs, we then can apply the method to the problem of 3D dynamic walking with varied step length and step width as well as dynamic walking on time-varying stepping stones. For the work of using CBF for stepping stones, we use only one nominal walking gait. Therefore the range of step length variation is limited ([25 : 60](cm)). In order to improve the performance, we incorporate CBF with gait library and increase the step length range significantly ([10 : 100](cm)). While handling physical constraints and step transition via CBFs appears to work well, these constraints often become active at step switching. In order to resolve this issue, we introduce the approach of 2-step periodic walking. This method not only gives better step transitions but also offers a solution for the problem of changing both step length and step height. Experimental validation on the real robot was also successful for the problem of dynamic walking on stepping stones with step lengths varied within [23 : 78](cm) and average walking speed of 0:6(m=s). In order to address the problems of robust control and safety-critical control in a unified control framework, we present a novel method of optimal robust control through a quadratic program that offers tracking stability while subject to input and state-based constraints as well as safety-critical constraints for nonlinear dynamical robotic systems under significant model uncertainty. The proposed method formulates robust control Lyapunov and barrier functions to provide guarantees of stability and safety in the presence of model uncertainty. We evaluate our proposed control design on different applications ranging from a single-link pendulum to dynamic walking of bipedal robot subject to contact force constraints as well as safety-critical precise foot placements on stepping stones, all while subject to significant model uncertainty. We conduct preliminary experimental validation of the proposed controller on a rectilinear spring-cart system under different types of model uncertainty and perturbations. To solve this problem, we also present another solution of adaptive CBF-CLF controller, that enables the ability to adapt to the effect of model uncertainty to maintain both stability and safety. In comparison with the robust CBF-CLF controller, this method not only can handle a higher level of model uncertainty but is also less aggressive if there is no model uncertainty presented in the system.
APA, Harvard, Vancouver, ISO, and other styles
48

McConnell, David James. "Analysis of model referenced adaptive control applied to robotic devices." Thesis, Kansas State University, 1985. http://hdl.handle.net/2097/17099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lew, Jae Young. "Control of bracing micro/macro manipulators." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kozak, Kristopher C. "Robust command generations for nonlinear systems." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/15849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography