Academic literature on the topic 'Robotic Device for Mobility-Aid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Robotic Device for Mobility-Aid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Robotic Device for Mobility-Aid"
Yin, ChengXin, Abderraouf Benali, and Frédéric Kratz. "Predictive simulation for the design of robotic solution to mobility aid." Journal of Computational Design and Engineering 8, no. 6 (November 26, 2021): 1576–90. http://dx.doi.org/10.1093/jcde/qwab062.
Full textRaj, Anil K., Peter D. Neuhaus, Adrien M. Moucheboeuf, Jerryll H. Noorden, and David V. Lecoutre. "Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance." Journal of Robotics 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/284352.
Full textMiller, Rebecca, Farshid Abbasi, and Javad Mohammadpour. "Power line robotic device for overhead line inspection and maintenance." Industrial Robot: An International Journal 44, no. 1 (January 16, 2017): 75–84. http://dx.doi.org/10.1108/ir-06-2016-0165.
Full textZhetenbayev, Nursultan, Gani Balbayev, Duisebayeva Aknur, Algazy Zhauyt, and Beibit Shingissov. "Developing of a wearable ankle rehabilitation robotic device." Vibroengineering PROCEDIA 48 (February 11, 2023): 36–41. http://dx.doi.org/10.21595/vp.2023.23168.
Full textLeite, Daniel, Karla Figueiredo, and Marley Vellasco. "Prototype of Robotic Device for Mobility Assistance for the Elderly in Urban Environments." Sensors 20, no. 11 (May 28, 2020): 3056. http://dx.doi.org/10.3390/s20113056.
Full textKoumpouros, Yiannis, Alexandra Karavasili, Eleni Efthimiou, Stavroula-Evita Fotinea, Theodore Goulas, and Anna Vacalopoulou. "User Evaluation of the MOBOT Rollator Type Robotic Mobility Assistive Device." Technologies 5, no. 4 (November 18, 2017): 73. http://dx.doi.org/10.3390/technologies5040073.
Full textOu, Yang-Kun, Yu-Lin Wang, Hua-Cheng Chang, and Chun-Chih Chen. "Design and Development of a Wearable Exoskeleton System for Stroke Rehabilitation." Healthcare 8, no. 1 (January 15, 2020): 18. http://dx.doi.org/10.3390/healthcare8010018.
Full textAbd-ul-Amir, Duha Qais, Auns Qusai Hashim, and Abdulnasir Hussin Ameer. "Design and Implement an Exoskeleton Arm for Reinforcement the Human Muscles after Stroke." Al-Nahrain Journal for Engineering Sciences 22, no. 4 (December 20, 2019): 252–58. http://dx.doi.org/10.29194/njes.22040252.
Full textAnthony, Jacob, Chung-Hyun Goh, Alireza Yazdanshenas, and Yong Tai Wang. "Redesign of Leg Assembly and Implementation of Reinforcement Learning for a Multi-Purpose Rehabilitation Robotic Device (RoboREHAB)." Applied Sciences 14, no. 2 (January 6, 2024): 516. http://dx.doi.org/10.3390/app14020516.
Full textHari Krishnan, R., and S. Pugazhenthi. "Design and development of a robotic self-transfer device for wheelchair users." Journal of Enabling Technologies 11, no. 2 (June 19, 2017): 59–72. http://dx.doi.org/10.1108/jet-12-2016-0025.
Full textDissertations / Theses on the topic "Robotic Device for Mobility-Aid"
Yin, ChengXin. "Predictive Simulation for the Design of Robotic Device for Mobility-Aid." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2020. http://www.theses.fr/2020ISAB0007.
Full textIn this thesis, we have proposed a methodology on design of the robotic exoskeleton. The main work is to help the designer to select adequate dynamical behaviors of the movements induced by an exoskeleton for a person with reduced mobility. Hence by adjusting the parameters for each actuator, the human motion tasks can be assisted by the robotic mobilityaid application via human-device interaction. There is only one group of the most suitable actuator parameters created via optimization for a particular human locomotion. Based on the optimized results, we are able to interpret the human-device interaction as well as to propose the design of control variables for a specified motion task. The first stage of this method consists of the implementation of the neuromusculoskeletal (NMS) modeling and simulation, which is for better describing the human dynamical characteristics. This stage can illustrate the physiological natures of human bodies in the form of 'Muscular ActuatorAcceleration-Trajectory' during a period of motion. For instance, one can search the function of muscles in actuating human locomotion through a motion-tracking simulation. Besides, the 'what if' cases were created to evaluate novel movements and adaptions to different conditions. The implementation of predictive simulation makes it feasible : which also constitutes thesecond stage of our study. To fulfill the predictions, we have to formulate our problems as optimal control processes and then solve them by numerical algorithms. Here, an OpenSimMatlab applicable programming interface (API) was modeled to embed a numerical solver and discretize the problems and solve the processes. These propositions have been validated via a case-study of robotic mobility-aid, the human-ESTA system. ESTA is an exoskeleton designed for compensating degrees-of-freedom (dofs) of the user's arm. The NMS humanoid was modeled as one-side upper extremity limb. Interaction effects between the human and device were considered as the equivalent virtual actuators which provide adjusted forces and moments for particular human joints. An optimal control problem was set to represent the predictive simulations. We also tested a variety of the optimal control variables in order to predict the 'what if' situations. Experimental data were collected for validating the systems as well as setting the referred trajectories to the predictions. Results showthat our method for proposing an actuating pattern for a robotic exoskeleton is promising and allowed to specify the human movement for a given task
LEITE, DANIEL DE SOUSA. "ROBOTIC DEVICE FOR MOBILITY ASSISTANCE TO ELDERLY PEOPLE IN URBAN ENVIRONMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32438@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Com o aumento da expectativa, de vida o envelhecimento da população vem se tornando uma realidade cada vez mais presente no Brasil e no mundo. Esse novo panorama demográfico já é vivenciado por países ricos, que vêm cada vez mais investindo para se enquadrar nessa nova realidade, seja por meio da adaptação de suas cidades ou pelo desenvolvimento de novas tecnologias para melhora da qualidade de vida. Na área da robótica, diversas pesquisas vêm sendo desenvolvidas com o intuito de reabilitação e melhora da qualidade de vida da população idosa. Nesses trabalhos são desenvolvidos, por exemplo, dispositivos que buscam auxiliar o idoso na realização de suas atividades diárias, provendo, principalmente, suporte e prevenção de quedas. Essa dissertação de mestrado apresenta o desenvolvimento do protótipo de um dispositivo para assistência a locomoção de pessoas idosas que possuam alguma deficiência visual, motora e/ou cognitiva. O dispositivo tem como objetivo guiar o usuário em ambientes urbanos de maneira autônoma. O protótipo deve ser capaz de desviar de qualquer obstáculo que possa levar o idoso à queda, além de ter uma estrutura que ofereça apoio para o seu deslocamento. O dispositivo proposto possui uma estrutura semelhante a um andador, cuja base é um robô móvel diferencial. Para que possa obter informações do ambiente, o dispositivo está equipado com sensores de distância, uma central inercial e encoders nas rodas. Todo o processamento ocorre em uma CPU de baixo custo, Raspberry Pi 1 versão 2, embarcada no próprio dispositivo e o controle de navegação ocorre por meio de um algoritmo baseado em lógica Fuzzy. Os acessos ao hardware e software de controle do dispositivo são gerenciados pelo framework de robótica Player (Gerkey e contribuidores, 2010). Para que o dispositivo receba a rota de navegação ele está conectado a um celular, com sistema operacional Android, via protocolo TCP/IP. Esse celular está executando uma API (Application Programming Interface) do Google Maps que fornece direção e distância ao objetivo a cada passo da interação, além da localização global do dispositivo, por meio do sensor GPS do celular. O objetivo deve ser inicialmente estabelecido pelo usuário por meio da API desenvolvida, para que a navegação autônoma ocorra. Além da navegação autônoma, o dispositivo permite que usuário envie comandos diretamente para os motores por meio de sensores de força instalados próximos aos pontos de apoio do usuário.
With the increase in life expectation, the ageing population has become more present in Brazil and the world. This new demographic scenery has been already framed by rich countries, which are increasingly investing to fit this new reality, either through the adaptation of their cities or the development of new technologies to improve the quality of life. In the area of robotics, several researches have been developed with the aim of rehabilitation and improvement of the quality of life of the elderly population. These researches are developing, for example, devices to assist the elderly in carrying out their daily activities, providing support and prevention of falls. This work presents the development of the prototype of a device to assist elderly person with any visual, cognitive and/or motor impairment to locomotion by itself. The device aims to guide the user autonomously in urban environments. The prototype should be able to avoid any obstacle that can cause the elderly to fall, besides having a structure that offers support for his balance. The proposed device has a structure similar to a walker whose base is a differential mobile robot. For the device be able to get information from the environment, it is embedded with range sensors, a measurement central unit and encoders at the wheels. All processing occurs in a low-cost CPU, Raspberry Pi 1 B version 2, which is embedded in the mobile device, and the navigation control algorithm is based on fuzzy logic. The robotic framework Player (Gerkey and contributors, 2010) provides the access to the hardware and software of the device. For the device to receive the navigation route, it is connected to an Android operating system phone, by TCP/IP protocol. This phone runs an API (Application Programming Interface) from Google Maps that provides the direction and the distance to the goal in every step of its interaction, besides the global location of the robot, provided by the GPS sensor of the phone. The user should firstly set the goal with the API developed, so that the autonomous navigation will occur. In addition to the autonomous navigation, the device allows the user to send commands directly to the motors by means of the force sensors installed at the robot cane.
Lindborg, Ann-Louise. "Usability Requirements for User-Controlled Robotic Eating Aids." Licentiate thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54895.
Full textMåltiden är fundamental för de allra flesta, för att få i sig näring men även som en social aktivitet. Att kunna äta självständigt beskrivs som viktigt för upplevelsen av måltiden. I denna avhandling beskrivs utvecklingen av ett robotiserat äthjälpmedel som heter Bestic och hur en lista med användbarhetskriterier för robotiserade äthjälpmedel har växt fram. Arbetet har pågått i 16 år. Bestic är utvecklad genom användarcentrerad design, en iterativ process med återkommande utvärderingar och utvecklingssteg. Designprincipen ”den skall inte bara gå att använda, utan vara värd att använda” har lett arbetet. Återkopplingen från användarna genom hela processen har haft stor inverkan på strategiska val för vilka funktioner som skall prioriteras för fortsatt utveckling och vad som skall behållas som det är. Återkopplingen har även utgjort ett underlag till listan med användbarhetskriterier för robotiserade äthjälpmedel. Miljön som äthjälpmedel används i påverkar också användbarhetskriterierna. För att förstå denna miljö genomfördes studier om måltidssituationen för äldre personer i både en skandinavisk/svensk och japansk kontext. Även sekundära användare (vårdpersonal eller anhöriga) togs i beaktan vid framtagandet av användbarhetskriterierna. Det viktigaste forskningsbidraget från detta arbete är en lista av användbarhetskriterier för robotiserade äthjälpmedel. Kriterierna är uppdelade på funktionella och sociala kriterier. De funktionella användbarhetskriterierna för robotiserade äthjälpmedel inkluderar: · hur bra de fungerar att äta med · hur de styrs · säkerhetsaspekter · bärbarhet · möjlighet att anpassa till olika användare. De sociala användbarhetskriterierna för robotiserade äthjälpmedel inkluderar: · hur den passar in i måltidssituationen · att inte störa konversationen · behoven från de sekundära användarna.
Wood, Evan A. "Design and Prototype of an Active Knee Exoskeleton to Aid Farmers with Mobility Limitations." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/93531.
Full textMaster of Science
As farmers continue to get older, they will likely face age-related disabilities that impede their ability to work and increase risk of suffering serious injuries. One of the major age-related diseases is arthritis, which currently accounts for about 40% of disability cases in agriculture nationwide. The effect of arthritis on farmers is profound because it reduces their physical strength, joint range of motion and is a source of joint pain, all culminating in the lack of ability to perform routine activities regularly and safely. One way to decrease the rate of injuries is by reducing the strength and joint loading required to perform these activities through the use of wearable robotics. As opposed to existing solutions that focus only on injury prevention, this thesis will present an active, knee-assist exoskeleton intent on providing 30% of the necessary joint rotation force to perform activities such as sit-to-stand actions and the ascent/descent of stairs and hills. The device will be a lightweight, unobtrusive cable-driven exoskeleton actuated by distally-worn electric motors. We hope that use of the exoskeleton will result in increased ranges of motion and overall reduction of stress on the wearer’s body, which will minimize the effects of arthritis and ultimately improve safety and quality of life.
Lynch, Amy Katherine. "Robot assisted mobility for very young infants." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 156 p, 2009. http://proquest.umi.com/pqdweb?did=1824925431&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textYu, Mingyue, and Yixuan Lu. "Designing of A Pneumatic Cushion for Supporting Standing and Sitting Process." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16275.
Full textWolm, Patrick. "Dynamic Stability Control of Front Wheel Drive Wheelchairs Using Solid State Accelerometers and Gyroscopes." Thesis, University of Canterbury. Mechanical Engineering, 2009. http://hdl.handle.net/10092/4451.
Full textDow, Malcolm James. "Disabled person's control, communication and entertainment aid: an investigation of the feasibility of using speech control and natural language understanding to control a manipulator and a software application and development environment." Thesis, 1994. https://vuir.vu.edu.au/17907/.
Full textBooks on the topic "Robotic Device for Mobility-Aid"
Collaborative Assistive Robot For Mobility Enhancement Carmen The Bare Necessities Assisted Wheelchair Navigation And Beyond. Springer, 2012.
Find full textBook chapters on the topic "Robotic Device for Mobility-Aid"
Urdiales, Cristina. "On the Why of Robotic Assistive Devices." In Collaborative Assistive Robot for Mobility Enhancement (CARMEN), 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24902-0_1.
Full textPoon, James, and Jaime Valls Miro. "A Multi-modal Utility to Assist Powered Mobility Device Navigation Tasks." In Social Robotics, 300–309. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11973-1_31.
Full textCifuentes, Carlos A., and Anselmo Frizera. "Assistive Devices for Human Mobility and Gait Rehabilitation." In Springer Tracts in Advanced Robotics, 1–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34063-0_1.
Full textMasroor, Salman, Hasan Bulut, Bahrudin, and Chyi-Yeu Lin. "Review on Powered Mobility and Meal Preparing Assistive Devices for Physically Disabled Persons." In Robotics and Mechatronics, 16–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30036-4_2.
Full textUrdiales, Cristina. "A Dummy’s Guide to Assistive Navigation Devices." In Collaborative Assistive Robot for Mobility Enhancement (CARMEN), 19–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24902-0_2.
Full textMishra, Sumit, Praveen Kumar Rajendran, and Dongsoo Har. "Socially Acceptable Route Planning and Trajectory Behavior Analysis of Personal Mobility Device for Mobility Management with Improved Sensing." In Robot Intelligence Technology and Applications 6, 53–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97672-9_6.
Full textShan, Harinee, and Anand Mahendran. "A Cloud Robotic Solution to Assist Medical Application." In Advances in Edge Computing: Massive Parallel Processing and Applications. IOS Press, 2020. http://dx.doi.org/10.3233/apc200012.
Full textRea, Pierluigi, and Erika Ottaviano. "Mechatronic Design of Low-Cost Control Systems for Rehabilitation and Assisting Devices." In Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics, 82–97. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0137-5.ch004.
Full textde Souza, Euzébio D., and Eduardo José Lima II. "Autonomic Computing in a Biomimetic Algorithm for Robots Dedicated to Rehabilitation of Ankle." In Robotic Systems, 955–68. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1754-3.ch047.
Full text"Navigation System for UFES’s Robotic Wheelchair." In Devices for Mobility and Manipulation for People with Reduced Abilities, 57–112. CRC Press, 2014. http://dx.doi.org/10.1201/b16870-8.
Full textConference papers on the topic "Robotic Device for Mobility-Aid"
Thompson, Lara A., Jiajun Xu, and Devdas Shetty. "Devices to Aid Mobility: Biomedical Engineering-Focused Undergraduate Senior Capstone Design Projects." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86826.
Full textPatel, Mitesh, Jaime Valls Miro, and Gamini Dissanayake. "A probabilistic approach to learn activities of daily living of a mobility aid device user." In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014. http://dx.doi.org/10.1109/icra.2014.6906971.
Full textMandala, Mahender, Jonathan Pearlman, Olof Berner, Padmaja Kankipati, and Rory Cooper. "Design and Development of the Single Motor Propelled Drive-Train (SiMPl-D)." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13225.
Full textKoumpouros, Yiannis, Alexandra Karavasili, Eleni Efthimiou, Stavroula-Evita Fotinea, Theodore Goulas, and Anna Vacalopoulou. "User Evaluation of the MOBOT rollator type robotic mobility assistive device." In PETRA '17: 10th International Conference on PErvasive Technologies Related to Assistive Environments. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3056540.3076183.
Full textLeite, Daniel, Marley Vellasco, and Karla Figueiredo. "Robotic device for mobility assistance to elderly people in urban environments." In 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, 2016. http://dx.doi.org/10.1109/la-cci.2016.7885723.
Full textStansfield, Sharon, Carole Dennis, and Helene Larin. "WeeBot: A novel method for infant control of a robotic mobility device." In 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012. http://dx.doi.org/10.1109/icra.2012.6224574.
Full textKoumpouros, Yiannis, Alexandra Karavasili, Petros Maragos, Costas Tzafestas, Evita - Stavroula Fotinea, Eleni Efthimiou, Nikos Papastamatiou, Alexandros Nikolakakis, and Effie Papageorgiou. "Assessment of an Intelligent Robotic Rehabilitation Assistant." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002303.
Full textWu, Molei, Alexander Kandra, and Xiangrong Shen. "An Education-Oriented Robotic Anthropomorphic Hand System." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5962.
Full textWard, Jeffrey A., Joseph Hitt, Thomas Sugar, and Kartik Bharadwaj. "Dynamic Pace Controller for the Robotic Gait Trainer." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99733.
Full textAlqasemi, Redwan, and Rajiv Dubey. "A New 9-DoF Mobile Robotic Device to Enhance the Capabilities of People With Disabilities." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41465.
Full textReports on the topic "Robotic Device for Mobility-Aid"
Shaheen, Susan, Elliot Shaheen, Adam Cohen, Jacquelyn Broader, and Richard Davis. Managing the Curb: Understanding the Impacts of On-Demand Mobility on Public Transit, Micromobility, and Pedestrians. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.1904.
Full text