Academic literature on the topic 'RNP granule'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RNP granule.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RNP granule"
Aoki, Scott T., Aaron M. Kershner, Craig A. Bingman, Marvin Wickens, and Judith Kimble. "PGL germ granule assembly protein is a base-specific, single-stranded RNase." Proceedings of the National Academy of Sciences 113, no. 5 (January 19, 2016): 1279–84. http://dx.doi.org/10.1073/pnas.1524400113.
Full textKrüger, Timothy, Mario Hofweber, and Susanne Kramer. "SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains." Molecular Biology of the Cell 24, no. 13 (July 2013): 2098–111. http://dx.doi.org/10.1091/mbc.e13-01-0068.
Full textHanazawa, Momoyo, Masafumi Yonetani, and Asako Sugimoto. "PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans." Journal of Cell Biology 192, no. 6 (March 14, 2011): 929–37. http://dx.doi.org/10.1083/jcb.201010106.
Full textVan Treeck, Briana, David S. W. Protter, Tyler Matheny, Anthony Khong, Christopher D. Link, and Roy Parker. "RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome." Proceedings of the National Academy of Sciences 115, no. 11 (February 26, 2018): 2734–39. http://dx.doi.org/10.1073/pnas.1800038115.
Full textAn, Haiyan, and Tatyana A. Shelkovnikova. "Stress granules regulate paraspeckles: RNP granule continuum at work." Cell Stress 3, no. 12 (December 9, 2019): 385–87. http://dx.doi.org/10.15698/cst2019.12.207.
Full textDavis, Michael, Andrea Montalbano, Megan P. Wood, and Jennifer A. Schisa. "Biphasic adaptation to osmotic stress in the C. elegans germ line." American Journal of Physiology-Cell Physiology 312, no. 6 (June 1, 2017): C741—C748. http://dx.doi.org/10.1152/ajpcell.00364.2016.
Full textAn, Haiyan, Jing Tong Tan, and Tatyana A. Shelkovnikova. "Stress granules regulate stress-induced paraspeckle assembly." Journal of Cell Biology 218, no. 12 (October 21, 2019): 4127–40. http://dx.doi.org/10.1083/jcb.201904098.
Full textCorbet, Giulia Ada, and Roy Parker. "RNP Granule Formation: Lessons from P-Bodies and Stress Granules." Cold Spring Harbor Symposia on Quantitative Biology 84 (2019): 203–15. http://dx.doi.org/10.1101/sqb.2019.84.040329.
Full textKim, Younghoon, Christian Eckmann, Clifford P. Brangwynne, and Sua Myong. "DEAD Box Helicases in Rnp Granule." Biophysical Journal 106, no. 2 (January 2014): 71a. http://dx.doi.org/10.1016/j.bpj.2013.11.471.
Full textAbolhassani-Dadras, S., G. H. Vázquez-Nin, O. M. Echeverría, and S. Fakan. "The use of an internal standard in the application of quantitative image-EELS in biology." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 50–51. http://dx.doi.org/10.1017/s0424820100162715.
Full textDissertations / Theses on the topic "RNP granule"
Pushpalatha, Kavya Vinayan. "Remodelage des condensats RNP neuronaux au cours du vieillissement chez la drosophile." Electronic Thesis or Diss., Université Côte d'Azur, 2021. http://theses.univ-cotedazur.fr/2021COAZ6007.
Full textNascent mRNAs complex with RNA binding proteins (RBPs) to form highly dynamic, phase-separated organelles termed ribonucleoprotein (RNP) granules. These macromolecular assemblies can regulate gene expression by controlling the transport, decay and/or translation of associated RNA molecules. As mostly shown in vitro, RNP granule assembly and function rely on the interaction networks established by individual components and on their stoichiometry. To date, how the properties of constitutive RNP granules are regulated in different physiological context is unclear. In particular, the impact of physiological aging is unclear. My PhD project aimed at addressing this question by analyzing in vivo in long-lived neuronal cells the properties of RNP granules. To this end, I have analysed in flies of increasing age RNP granules characterized by the presence of the conserved RBP Imp/ZBP1 and DEAD-box RNA helicase Me31B/DDX6. Strikingly, a progressive increase in the condensation of Imp and Me31B into granules was observed upon aging. The large granules observed in aged flies were dynamic, contained profilin mRNA, and did not colocalize with Ubiquitin or aggregation markers, suggesting that they do not correspond to static protein aggregates. Increased condensation also associated with the loss of Me31B+ Imp- granules observed in young brains and the collapse of RNP component into a unique class of Me31B+ Imp+ granule. Furthermore, it was accompanied by a specific inhibition of the translation of granule-associated mRNAs, among which the Imp RNA target profilin. Through functional analysis, I uncovered that changes in Me31B stoichiometry trigger Me31B condensation in aged flies. While an increase in Me31B protein levels was observed upon aging, decreasing the dosage of Me31B suppressed its age-dependent condensation. As Imp condensation was only partially suppressed in this context, I performed a selective screen to identify regulators of this process. This revealed that downregulating PKA activity by different genetic means both drastically reduced Imp recruitment and prevented the age-dependent translational repression of granule-associated mRNAs. Taken together, my work thus showed for the first time in vivo that the properties of neuronal RNP granules change upon aging, a phenomenon that does not reflect general alterations in RNA homeostasis but rather specific modulation of RNP component stoichiometry and kinase activity. These results demonstrate how biological systems can modulate key parameters initially defined based on in vitro framework, and also open new perspectives in the field of age-dependent regulation of gene expression
Vijayakumar, Jeshlee Cyril. "Rôle du domaine de type prion de Imp dans la régulation des granules RNP neuronaux." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4099/document.
Full textEukaryotic mRNAs are bound by RNA Binding Proteins (RBP) and packaged into diverse range of macromolecular assemblies named RNP granules. In neurons, transport RNP granules are implicated in the transport of specific mRNAs to axons or dendrites, and in their local translation in response to external cues. Although little is known about the assembly and regulation of these granules in vivo, growing evidence indicates that the presence of Prion Like domains (PLD) within RBPs favours multivalent protein–protein and protein-RNA interactions, promoting the transition of soluble complexes into RNP granules. The conserved RBP Imp is as a core component of RNP granules that are actively transported to axons upon neuronal remodelling in Drosophila. Furthermore, Imp function was shown to be required for axonal remodelling during Drosophila nervous system maturation. Analyses of the domain architecture of the Imp protein revealed that, in addition to four RNA binding domains (RBD), Imp contains a Cterminal domain showing a striking enrichment in Glutamines and Serines, which is one of the characteristics of a PLD. During my PhD, I explored the function of the PLD in the context of granule assembly and transport. In cultured cells, I observed that Imp granules assembled in the absence of the PLD, however their number and size were increased. Proteins with scrambled PLD sequence accumulated in granules of normal size and number, implying that the degree of disorder of this domain, and not its sequence, is essential for granule homeostasis. Moreover, FRAP experiments, performed on cultured cells and in vivo, revealed that Imp PLD is important to maintain the turnover of these granules. In vivo, this domain is both necessary and sufficient for efficient transport of Imp granules to axons. These defects are associated with a reduction on the number of motile granules in axons. Furthermore, mutant forms lacking the PLD do not rescue the axon remodelling defects observed upon imp loss of function. Finally, a swapping experiment in which I moved Imp PLD from the C-terminus to the N-terminus of the protein revealed that the functions of Imp PLD in granule transport and homeostasis are uncoupled, and that PLD-dependent modulation of Imp granule properties is dispensable in vivo. Together, my results show that Imp PLD of is not required for the assembly of RNP granules, but rather regulates granule number and dynamics. Furthermore, my work uncovered an unexpected in vivo function for a PLD in axonal transport and remodelling during nervous system maturation
Oh, Seong-Wook. "Functional Analysis of RIG-I and RNP Complexes in the Antiviral Interferon System." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215973.
Full textCid, Samper Fernando 1991. "Computational approaches to characterize RNP granules." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/668449.
Full textLos gránulos ribonucleoproteicos (gránulos RNP, por sus siglas en inglés) son complejos producidos mediante separación líquido-líquido y están constituidos principalmente por proteínas y ARN. Son responsables de numerosos procesos involucrados con la regulación del ARN. Alteraciones en la dinámica de estos complejos de proteínas y ARN están asociadas con la aparición de diversas enfermedades neurodegenerativas como el ELA o FXTAS. Sin embargo, todavía se desconocen muchos aspectos relativos a su organización interna así como las contribuciones específicas del RNA en la formación y funcionamiento de estos complejos. A fin de estudiar la estructura y formación de los gránulos RNP, hemos integrado varias bases de datos de alto rendimiento de reciente aparición. Esto incluye datos sobre la composición proteica y en ARN de los RNP, sobre la interacción de proteínas y ARN extraída de experimentos de eCLIP y sobre la estructura secundaria del transcriptoma (producida mediante PARS). Todos estos datos han sido procesados para comprender las propiedades fundamentales de los ARNs que integran los gránulos, mediante el empleo de métodos computacionales como el análisis de redes o algoritmos de agrupamiento. De esta manera, hemos producido un modelo que integra varias de estas propiedades e identifica candidatos denominados ARNs de andamiaje. Definimos ARNs de andamiaje como moléculas de ARN con una alta propensión a formar gránulos y reclutar un gran número de componentes proteicos a los gránulos RNP. También hemos encontrado que las interacciones proteína-ARN conectan los principales componentes proteicos de consenso de los gránulos de estrés (un tipo específico de gránulos RNP). También hemos estudiado la contribución de las interacciones ARN-ARN y las modificaciones post-transcriptionales del RNA en la organización interna del gránulo. Hemos aplicado estos resultados para la comprensión de la fisiopatología molecular de FXTAS, empleando también algunos datos experimentales originales. En FXTAS, una mutación en el gen FMR1 produce una repetición de microsatélite en 5´ que incrementa su capacidad como ARN de andamiaje. Este mARN mutado es capaz de secuestrar algunas proteínas importantes como TRA2A (un factor de ayuste alternativo) en gránulos RNP nucleares, impidiendo su normal funcionamiento y por consiguiente produciendo algunos síntomas asociados con el progreso de la enfermedad. Una mejor comprensión de los principios que gobiernan la formación y estructura de los gránulos puede permitir desarrollar nuevas terapias (ej: aptámeros) para mitigar el desarrollo de diversas enfermedades neurodegenerativas.
Agostini, Federico 1985. "Predictions of RNA-binding ability and aggregation propensity of proteins." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/318159.
Full textLas proteínas de unión de ARN son responsables de controlar el destino de una multitud de transcriptos codificantes y no codificantes. De hecho, la formación de complejos de ribonucleoproteínas (RNP) afina la regulación de una serie de eventos post-transcripcionales e influye en la expresión génica. Recientemente, se ha observado que las proteínas con capacidad no canónica de unión al ARN se enriquecen en las regiones estructuralmente desordenadas y de baja complejidad, que son las que participan generalmente en asociaciones funcionales y disfuncionales. Por lo tanto, es posible que interactuar con el ARN pudiera ser una manera de proteger las proteínas no estructuradas de asociaciones aberrantes o de agregación. Sin embargo, los mecanismos que impiden la agregación de proteínas y la función del ARN en tales procesos no están bien descritas. En este trabajo, se describen los me ́todos que he desarrollado para predecir la solubilidad de proteínas y para estimar la capacidad de transcriptos y proteínas de interactuar. De otra parte, voy a ilustrar sus aplicaciones y explicar como los métodos de bajo rendimiento han evolucionado a un mayor rendimiento. El objetivo final es proporcionar instrumentos a los investigadores experimentales que se pueden utilizar para facilitar la investigación de los mecanismos reguladores que controlan la homeostasis molecular.
Formicola, Nadia. "Remodelage des granules ARN en réponse à l’activité neuronale." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://theses.univ-cotedazur.fr/2019AZUR6008.
Full textOne of the most fascinating – and still open – questions in neuroscience is how neuronal cells can form, store and then recall memories. Previous work has shown that Long-term memory (LTM) formation requires de novo protein synthesis, involving not only translation of newly transcribed RNAs, but also local, experience-induced translation of quiescent mRNAs carried and stored at synapses. For their transport and translational control, mRNAs are packaged with regulatory RNA binding proteins (RBPs), mainly translational repressors, into ribonucleoprotein (RNP) granules. To date, how neuronal RNP granules are remodelled in response to neuronal activity to relieve translation repression of mRNAs is unclear. Furthermore, the functional impact of such a remodelling in the establishment of long-term memories remains to be demonstrated in vivo. The objective of my PhD was to 1) investigate the in vivo mechanisms underlying activity-dependent remodelling of neuronal RNP granules; 2) test the hypothesis that RNPs could be involved in LTM-underlying mechanisms by regulating gene expression. To this end, I used as paradigm RNPs containing the conserved RBP Imp in Drosophila. First, I studied the impact of neuronal activity on Imp RNP properties by treating Drosophila brain explants with either KCl or the tyramine neuropeptide. In both cases, a disassembly of Imp RNPs was observed, characterized by a loss of both Imp and other RNP-component granular patterns, and a de-clustering of RNP-associated mRNA molecules. RNP disassembly could be reverted upon Tyramine withdrawal and was not observed in hyperpolarized neurons. Furthermore, my data suggest that RNP-disassembly is linked to increased translation of associated mRNAs, consistent with a model in which activity-induced RNP remodelling would lead to translational de-repression. Second, I investigated the mechanisms controlling RNP remodelling. A candidate regulator was CamkII, a conserved Ca2+ -activated kinase identified as a partner of Imp in an IP-Mass Spectrometry analysis. During my PhD, I could validate the Imp-CamkII interaction and showed that it is not mediated by RNA but depends on CamkII activity. Furthermore, I showed that inactivating CamkII function prevents the disassembly of Imp RNPs observed upon neuronal activation of brain explants, suggesting that CamkII may be involved in the activity-dependent remodelling of Imp RNP granules. These results are particularly interesting in the context of establishment of LTM, as CamkII has long been recognized as essential for LTM. Moreover, we recently showed in Drosophila that interfering with Imp function in a population of CNS neurons involved in learning and memory – the Mushroom Body γ neurons -, dramatically impairs LTM and that this effect relies on Imp C-terminal Prion-like domain, a domain known to be involved in RNP homeostasis. Altogether, my thesis work suggests a model where CamkII-dependent remodelling of Imp RNPs in response to neuronal activation might underlie LTM formation in vivo
Al-Sailawi, Majid. "Investigating RNA granules formation during caliciviruses infection." Thesis, University of Surrey, 2015. http://epubs.surrey.ac.uk/809289/.
Full textShah, Khyati H. "REGULATION, COMPOSITION AND FUNCTIONS OF RNP GRANULES IN QUIESCENT CELLS OF SACCHAROMYCES CEREVISIAE." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417541239.
Full textLockwood, Donovan Blair. "TDP-43 Modulation of PABP Positive, RNA Stress Granule Formation during Oxidative Stress." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/579304.
Full textSchreier, Juliane [Verfasser]. "Role of PKCε in RNA granule formation and protein translation / Juliane Schreier." Berlin : Freie Universität Berlin, 2013. http://d-nb.info/104162090X/34.
Full textBooks on the topic "RNP granule"
Souza, Gustavo Henrique Silva de. Administração e empreendedorismo: temas emergentes e aplicações contemporânea. Editora Amplla, 2021. http://dx.doi.org/10.51859/amplla.aet474.1121-0.
Full textBook chapters on the topic "RNP granule"
Sarkar, Jaya, and Sua Myong. "Single-Molecule and Ensemble Methods to Probe Initial Stages of RNP Granule Assembly." In Methods in Molecular Biology, 325–38. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8591-3_19.
Full textJønson, Lars, Finn Cilius Nielsen, and Jan Christiansen. "Isolation of RNP Granules." In RNA, 265–73. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-248-9_18.
Full textSidibé, Hadjara, and Christine Vande Velde. "RNA Granules and Their Role in Neurodegenerative Diseases." In Advances in Experimental Medicine and Biology, 195–245. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31434-7_8.
Full textFan, Alexander C., and Anthony K. L. Leung. "RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD." In Advances in Experimental Medicine and Biology, 263–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29073-7_11.
Full textNagamori, Ippei, Adam Cruickshank, and Paolo Sassone-Corsi. "The Chromatoid Body: A Specialized RNA Granule of Male Germ Cells." In Epigenetics and Human Reproduction, 311–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14773-9_14.
Full textNakamura, Hideki. "Engineering Hydrogel Production in Mammalian Cells to Synthetically Mimic RNA Granules." In Methods in Molecular Biology, 253–76. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1441-9_15.
Full textMateju, Daniel, Laura Mediani, Federica F. Morelli, Simon Alberti, and Serena Carra. "Molecular Chaperones Regulating the Dynamics, Composition and Functionality of RNP Granules: Implications for Age-Related Diseases." In HSP70 in Human Diseases and Disorders, 205–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89551-2_10.
Full textXavier, Vanessa Joanne, and Jean-Claude Martinou. "Visualization of Mitochondrial RNA Granules in Cultured Cells Using 5-Bromouridine Labeling." In Methods in Molecular Biology, 69–73. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0834-0_6.
Full textSaito, Makoto, Vytautas Iestamantavicius, Daniel Hess, and Patrick Matthias. "Monitoring Acetylation of the RNA Helicase DDX3X, a Protein Critical for Formation of Stress Granules." In Methods in Molecular Biology, 217–34. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0935-4_14.
Full textA. Schisa, Jennifer. "New Insights into the Regulation of RNP Granule Assembly in Oocytes." In International Review of Cell and Molecular Biology, 233–89. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-394306-4.00013-7.
Full textConference papers on the topic "RNP granule"
Prates Jr., Nelson G., Allex Magno Andrade, Emerson Ribeiro de Mello, Michelle Silva Wangham, and Michele Nogueira. "Um Ambiente de Experimentação em Cibersegurança para Internet das Coisas." In Workshop do Testbed FIBRE. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/fibre.2021.15771.
Full textArun, Vedant, Joseph Wiley, Zia Karim, and Abhijit Guha. "Abstract 4023: Novel role of neurofibromin in transport of RNA granules." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4023.
Full textAbugharara, Abdelsalam N., John Molgaard, Charles A. Hurich, and Stephen D. Butt. "Study of the Relationship Between Oriented Downhole Dynamic Weight on Bit and Drilling Parameters in Coring Isotropic Natural and Synthetic Rocks." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96176.
Full textMagalhães, Luiz Claudio Schara, and Diogo Menezes Ferrazani Mattos. "Caracterização do Uso de uma Rede Sem Fio de Grande Porte Distribuída por uma Ampla Área." In XVII Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/wperformance.2018.3326.
Full textMittelbach, Livia. "Numerical simulation of rip-raps with the distinct element method." In POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. AIP, 2013. http://dx.doi.org/10.1063/1.4812147.
Full textKolobova, Elena, M. Cecilia Larocca, and James R. Goldenring. "Abstract 3560: Evaluation of RNA-stress granules formation as an indicator of response to Darinaparsin in cancer cell lines." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3560.
Full textHeck, Leandro, Cristiano Künas, and Edson Padoin. "Análise de Desempenho e Efetividade de Redes Neurais Convolucionais em Plataformas de GPU e CPU Aplicadas ao Reconhecimento de Emoções Através de Expressões Faciais em Seres Humanos." In XXI Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wscad_estendido.2020.14083.
Full textDeleuze, G., N. Villaume, and N. Brinzei. "Représentation des DCC d’un système programmé de grande taille par RdP colorés, temporisés et hiérarchiques." In Congrès Lambda Mu 19 de Maîtrise des Risques et Sûreté de Fonctionnement, Dijon, 21-23 Octobre 2014. IMdR, 2015. http://dx.doi.org/10.4267/2042/56159.
Full textGutierrez Klinsky, Luis Miguel, Mario Alexander Castañeda López, William Fedrigo, Thaís Radünz Kleinert, Washington Peres Núñez, Jorge Augusto Pereira Ceratti, and Valeria Cristina De Faria. "Estudio de fatiga en mezclas asfálticas recicladas con cemento a través de ensayo en viga cuatro puntos." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.3486.
Full textPranto Filho, Frederico N., Renan Oliveira, Lindemberg Silva Pereira, and Joir Ramalho. "A iniciativa da construção do Plano de Dados Abertos do Tribunal de Contas do Rio Grande do Norte através de parceria acadêmica com a Universidade Federal do Rio Grande do Norte." In VI Workshop de Transparência em Sistemas. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/wtrans.2018.3096.
Full textReports on the topic "RNP granule"
Thembeka Ncube, Ayanda, and Antonio Bobet. Use of Recycled Asphalt. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317316.
Full text