Academic literature on the topic 'RNN NETWORK'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RNN NETWORK.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RNN NETWORK"
Yin, Qiwei, Ruixun Zhang, and XiuLi Shao. "CNN and RNN mixed model for image classification." MATEC Web of Conferences 277 (2019): 02001. http://dx.doi.org/10.1051/matecconf/201927702001.
Full textTridarma, Panggih, and Sukmawati Nur Endah. "Pengenalan Ucapan Bahasa Indonesia Menggunakan MFCC dan Recurrent Neural Network." JURNAL MASYARAKAT INFORMATIKA 11, no. 2 (November 17, 2020): 36–44. http://dx.doi.org/10.14710/jmasif.11.2.34874.
Full textMa, Qianli, Zhenxi Lin, Enhuan Chen, and Garrison Cottrell. "Temporal Pyramid Recurrent Neural Network." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5061–68. http://dx.doi.org/10.1609/aaai.v34i04.5947.
Full textMosavat, Majid, and Guido Montorsi. "Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology Using Recurrent Neural Network." Electronics 11, no. 19 (September 29, 2022): 3130. http://dx.doi.org/10.3390/electronics11193130.
Full textDu, Xiuli, Xiaohui Ding, and Fan Tao. "Network Security Situation Prediction Based on Optimized Clock-Cycle Recurrent Neural Network for Sensor-Enabled Networks." Sensors 23, no. 13 (July 1, 2023): 6087. http://dx.doi.org/10.3390/s23136087.
Full textChoi, Seongjin, Hwasoo Yeo, and Jiwon Kim. "Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 45 (September 7, 2018): 173–84. http://dx.doi.org/10.1177/0361198118794735.
Full textNowak, Mateusz P., and Piotr Pecka. "Routing Algorithms Simulation for Self-Aware SDN." Electronics 11, no. 1 (December 29, 2021): 104. http://dx.doi.org/10.3390/electronics11010104.
Full textMuhuri, Pramita Sree, Prosenjit Chatterjee, Xiaohong Yuan, Kaushik Roy, and Albert Esterline. "Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks." Information 11, no. 5 (May 1, 2020): 243. http://dx.doi.org/10.3390/info11050243.
Full textParamasivan, Senthil Kumar. "Deep Learning Based Recurrent Neural Networks to Enhance the Performance of Wind Energy Forecasting: A Review." Revue d'Intelligence Artificielle 35, no. 1 (February 28, 2021): 1–10. http://dx.doi.org/10.18280/ria.350101.
Full textYan, Jiapeng, Huifang Kong, and Zhihong Man. "Recurrent Neural Network-Based Nonlinear Optimization for Braking Control of Electric Vehicles." Energies 15, no. 24 (December 14, 2022): 9486. http://dx.doi.org/10.3390/en15249486.
Full textDissertations / Theses on the topic "RNN NETWORK"
Bäärnhielm, Arvid. "Multiple time-series forecasting on mobile network data using an RNN-RBM model." Thesis, Uppsala universitet, Datalogi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-315782.
Full textVikström, Filip. "A recurrent neural network approach to quantification of risks surrounding the Swedish property market." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126192.
Full textBillingsley, Richard John. "Deep Learning for Semantic and Syntactic Structures." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12825.
Full textLiu, Chang. "Data Analysis of Minimally-Structured Heterogeneous Logs : An experimental study of log template extraction and anomaly detection based on Recurrent Neural Network and Naive Bayes." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191334.
Full textLi, Edwin. "LSTM Neural Network Models for Market Movement Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231627.
Full textAtt förstå och kunna förutsäga hur index varierar med tiden och andra parametrar är ett viktigt problem inom kapitalmarknader. Tidsserieanalys med autoregressiva metoder har funnits sedan årtionden tillbaka, och har oftast gett goda resultat. Dessa metoder saknar dock möjligheten att förklara trender och cykliska variationer i tidsserien, något som kan karaktäriseras av tidsvarierande samband, men även samband mellan parametrar som indexet beror utav. Syftet med denna studie är att undersöka om recurrent neural networks (RNN) med long short-term memory-celler (LSTM) kan användas för att fånga dessa samband, för att slutligen användas som en modell för att komplettera indexhandel. Experimenten är gjorda mot en modifierad S&P-500 datamängd, och två distinkta modeller har tagits fram. Den ena är en multivariat regressionsmodell för att förutspå exakta värden, och den andra modellen är en multivariat klassifierare som förutspår riktningen på nästa dags indexrörelse. Experimenten visar för den konfiguration som presenteras i rapporten att LSTM RNN inte passar för att förutspå exakta värden för indexet, men ger tillfredsställande resultat när modellen ska förutsäga indexets framtida riktning.
Ďuriš, Denis. "Detekce ohně a kouře z obrazového signálu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412968.
Full textRacette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Full textCarman, Benjamin Andrew. "Translating LaTeX to Coq: A Recurrent Neural Network Approach to Formalizing Natural Language Proofs." Ohio University Honors Tutorial College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors161919616626269.
Full textLjungehed, Jesper. "Predicting Customer Churn Using Recurrent Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210670.
Full textIllojalitet prediktering används för att identifiera kunder som är påväg att bli mindre lojala och är ett hjälpsamt verktyg för att ett företag ska kunna driva en konkurrenskraftig verksamhet. I detaljhandel behöves en dynamisk definition av illojalitet för att korrekt kunna identifera illojala kunder. Kundens livstidsvärde är ett mått på monetärt värde av en kundrelation. En avstannad förändring av detta värde indikerar en minskning av kundens lojalitet. Denna rapport föreslår en ny metod för att utföra illojalitet prediktering. Den föreslagna metoden består av ett återkommande neuralt nätverk som används för att identifiera illojalitet hos kunder genom att prediktera kunders livstidsvärde. Resultaten visar att den föreslagna modellen presterar bättre jämfört med slumpmässig metod. Rapporten undersöker också användningen av en k-medelvärdesalgoritm som ett substitut för en regelextraktionsalgoritm. K-medelsalgoritm bidrog till en mer omfattande analys av illojalitet predikteringen.
Смішний, Денис Миколайович. "Система прогнозування економічних показників." Master's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/30950.
Full textMaster's Thesis: 88 pp., 20 figs., 27 tables, 1 appendix, 33 sources. The urgency of the problem. Globalization and population growth are con-tributing to the development of the global economy and, consequently, to the emergence of new types of economic activity and new players in the labor market. When implementing your own business it is important to properly evaluate the risks of the market, analyzing and trying to predict the movement of quotations in the near future for minimal financial losses. Relationship with working with scientific programs, plans, topics. Cur-rently, it has no specific links to scientific programs or plans. The purpose and objectives of the study. The purpose of this work is re-search possibility of forecasting the economic parameters of enterprises on the ex-ample of stock prices of companies on the stock exchange. The purpose is to de-velop a system based on a neural network, capable of analyzing specified economic indicators and, based on the data obtained, to predict their dynamics. Object of study. The process of forecasting economic performance using neural network elements. Subject of study. Methods of analysis and processing of economic data for a certain period. Novelty. Obtaining a software product capable of predicting economic fluc-tuations. Investigation of the possibility of creating a universal model based on a neural network, which would not require specialization and would be able to work effectively with any set of input data without further training.
Books on the topic "RNN NETWORK"
Collins, Lesley J. RNA infrastructure and networks. New York, N.Y: Springer Science+Business Media, 2011.
Find full textNational Education Association of the United States. Professional and Organizational Development. and National Education Association of the United States. Research Division., eds. Research computer network: Operators handbook. Washington, D.C: The Association, 1989.
Find full textCollins, Lesley J., ed. RNA Infrastructure and Networks. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0332-6.
Full textMaselnikova, Alice. The AIM Network: Artists' Initiatives Meetings. Stockholm: AIM Network/Supermarket, 2017.
Find full textYawen, Xiao, ed. Chao you xiao lian shu ji ke shu: Bu hua qian jiu neng ju ji liu lan ren chao de jing ren fang fa. Taibei Shi: Tian xia za zhi gu fen you xian gong si, 2012.
Find full textPeng, Mugen, Zhongyuan Zhao, and Yaohua Sun. Fog Radio Access Networks (F-RAN). Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50735-0.
Full textZhongguo ren mai. Beijing Shi: Shi jie zhi shi chu ban she, 2010.
Find full textWang: Zhangguo shi ren mai = The network : relationship in China. Wuhan: Wuhan da xue chu ban she, 2006.
Find full textShanghai zheng da yan jiu suo, ed. Xin Shanghai ren. Beijing: Dong fang chu ban she, 2002.
Find full textRen gong shen jing wang luo ji chu. Ha'erbin: Ha'erbin gong cheng da xue chu ban she, 2008.
Find full textBook chapters on the topic "RNN NETWORK"
Das, Susmita, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy, and Imon Banerjee. "Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research." In Machine Learning for Brain Disorders, 117–38. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-0716-3195-9_4.
Full textYellin, Daniel M., and Gail Weiss. "Synthesizing Context-free Grammars from Recurrent Neural Networks." In Tools and Algorithms for the Construction and Analysis of Systems, 351–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_19.
Full textKobayashi, Naoki, and Minchao Wu. "Neural Network-Guided Synthesis of Recursive List Functions." In Tools and Algorithms for the Construction and Analysis of Systems, 227–45. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_12.
Full textKanumuri, Saketh, Vinay Teja Kantipudi, A. Viji Amutha Mary, and Mercy Paul Selvan. "Detection of Ransomware Based on Recurrent Neural Network (RNN)." In Lecture Notes in Electrical Engineering, 569–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7511-2_57.
Full textJayashree, D., O. Pandithurai, S. Shreevathsav, and P. Shyamala. "Generation of Handwriting Applying RNN with Mixture Density Network." In Advances in Automation, Signal Processing, Instrumentation, and Control, 2593–601. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_241.
Full textAl Mamun, S. M. Abdullah, and Mehmet Beyaz. "LSTM Recurrent Neural Network (RNN) for Anomaly Detection in Cellular Mobile Networks." In Machine Learning for Networking, 222–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19945-6_15.
Full textJi, Jinbao, Zongxiang Hu, Weiqi Zhang, and Sen Yang. "Development of Deep Learning Algorithms, Frameworks and Hardwares." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 696–710. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_71.
Full textJin, Jialong, Wei Zhou, and Baichen Jiang. "Maritime Target Trajectory Prediction Model Based on the RNN Network." In Lecture Notes in Electrical Engineering, 334–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0187-6_39.
Full textLiu, Enhan, Yan Chu, Lan Luan, Guang Li, and Zhengkui Wang. "Mixing-RNN: A Recommendation Algorithm Based on Recurrent Neural Network." In Knowledge Science, Engineering and Management, 109–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29551-6_10.
Full textWang, Qi. "RNN Neural Network for Recovery Characteristic System of Resistant Polymer." In 2021 International Conference on Applications and Techniques in Cyber Intelligence, 725–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79200-8_108.
Full textConference papers on the topic "RNN NETWORK"
Ghodsi, Mohammadreza, Xiaofeng Liu, James Apfel, Rodrigo Cabrera, and Eugene Weinstein. "Rnn-Transducer with Stateless Prediction Network." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054419.
Full textTseng, Yung-Chiao, Chao-Chun Chen, Chiang Lee, and Yuan-Ko Huang. "Incremental In-Network RNN Search in Wireless Sensor Networks." In 2007 International Conference on Parallel Processing Workshops (ICPPW 2007). IEEE, 2007. http://dx.doi.org/10.1109/icppw.2007.47.
Full textPark, Shin Hyuk, Hyun Jae Park, and Young-June Choi. "RNN-based Prediction for Network Intrusion Detection." In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2020. http://dx.doi.org/10.1109/icaiic48513.2020.9065249.
Full textVenturini, M. "Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68030.
Full textXia, Rui, Mengran Zhang, and Zixiang Ding. "RTHN: A RNN-Transformer Hierarchical Network for Emotion Cause Extraction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/734.
Full textLi, Xuelong, Bin Zhao, and Xiaoqiang Lu. "MAM-RNN: Multi-level Attention Model Based RNN for Video Captioning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/307.
Full textLyu, Muyang, Ruixuan Liu, and Junyi Wang. "Solving Raven's Progressive Matrices Using RNN Reasoning Network." In 2022 7th International Conference on Computational Intelligence and Applications (ICCIA). IEEE, 2022. http://dx.doi.org/10.1109/iccia55271.2022.9828445.
Full textLi, Dailun, Zeying Tian, and Yining Duan. "Self-attention on RNN-based text classification." In International Conference on Computer Network Security and Software Engineering (CNSSE 2022), edited by Wenshun Sheng and Yongquan Yan. SPIE, 2022. http://dx.doi.org/10.1117/12.2641031.
Full textNam, Sukhyun, Jiyoon Lim, Jae-Hyoung Yoo, and James Won-Ki Hong. "Network Anomaly Detection Based on In-band Network Telemetry with RNN." In 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). IEEE, 2020. http://dx.doi.org/10.1109/icce-asia49877.2020.9276768.
Full textLuo, Donghao, Bingbing Ni, Yichao Yan, and Xiaokang Yang. "Image Matching via Loopy RNN." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/335.
Full textReports on the topic "RNN NETWORK"
Brooks, Richard. Reactive Sensor Networks (RSN). Fort Belvoir, VA: Defense Technical Information Center, October 2003. http://dx.doi.org/10.21236/ada419219.
Full textAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Full textYeates, Jessica. The Foundations of Network Dynamics in an RNA Recombinase System. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2915.
Full textRobert, J., and Michael Forte. Field evaluation of GNSS/GPS based RTK, RTN, and RTX correction systems. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41864.
Full textCiobanu, Catalin Irinel. A Neural networks search for single top quark production in CDF Run I data. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/1420934.
Full textHotsur, Oksana. SOCIAL NETWORKS AND BLOGS AS TOOLS PR-CAMPAIGN IMPLEMENTATIONS. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11110.
Full textFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Full textELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Environmental Assessment Ground Wave Emergency Network for Northwestern Indiana Relay Node Site NO. RN 8C902IN. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada267849.
Full textELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Ground Wave Emergency Network Final Operational Capability: Environmental Assessment for Central Utah Relay Node, Site Number RN 8C920UT. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada267628.
Full textELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Ground Wave Emergency Network Final Operational Capability: Environmental Assessment for Northwestern Nebraska Relay Node, Site Number RN 8C930NE. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada267629.
Full text