Dissertations / Theses on the topic 'RNA signature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'RNA signature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mullani, Nowsheen. "An RNA Signature Links Oxidative Stress To Cellular Senescence." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS560.pdf.
Full textOxidative Stress is one of the routes leading to cellular senescence. While the damages that reactive oxygen species inflict on proteins and DNA are well described, our insight on how transcription may participate in the onset of senescence is still limited. At a transcriptional level, oxidative stress results in accumulation of promoter RNAs (uaRNAs) and enhancer RNAs (eRNAs) as a consequence of defective release of the RNAPII from the chromatin a phenomenon known as RNAPII crawling. We observed that RNAPII crawling was also detected downstream of a small series of genes known to be regulated by HP1Υ at the level of their termination. Exploring this phenomenon yielded an unexpected result in the sense that it revealed an inhibiting effect of hydrogen peroxide on the RNA exosome complex involved in degradation of polyadenylated RNAs. The crawling RNAPII results in the transcription of ALU sequences located in the neighborhood of promoters and enhancers and downstream of intron-less genes and of small series of intron-containing genes. As ALU sequences contain genome encoded A tracts, they should normally be degraded by the RNA exosome. Yet, as oxidative stress also inhibits this RNAse activity, mRNAs containing serendipitously transcribed ALU sequences get stabilized and are detected in the cytoplasm and even polysome fractions. This phenomenon may participate in the onset of the interferon response associated with oxidative stress
Harling, Leanne. "Investigating the micro-RNA and metabolic signature of human postoperative atrial fibrillation." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/29130.
Full textHossain, Mahmud. "Characterization of non-protein coding ribonucleic acids by their signature digestion products and mass spectrometry." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204947468.
Full textHauenschild, Ralf [Verfasser]. "RNA-Seq and CoverageAnalyzer reveal sequence dependent reverse transcription signature of N-1-methyladenosine / Ralf Hauenschild." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1129476375/34.
Full textYepmo, Mélissa. "Signature unique de l’ARN circulaire dans les muscles squelettiques humains de différentes sensibilités à l’insuline." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ109.
Full textCircular RNAs are a class of non-coding RNAs characterized by a covalently closed loop structure. Functionally, they can act on cell physiology by inhibiting microRNAs and regulating gene and protein expression. The emerging function of circRNAs is not fully understood, but initial studies have recently shown that they are involved in the regulation of insulin secretion. In this work we tried to identify circRNAs in skeletal muscle at the level of glycolytic and oxidative fibers in healthy and type 2 diabetic patients. Our results showed a unique circular RNA signature not only as a function of status (healthy or T2DM) but also as a function of muscle fibre type (triceps or soleus). For the first time, our study has been able to identify a new way of regulating gene and protein expression independently of what is already known in skeletal muscle. These results allowed us to identify new key molecules involved in the development of type 2 diabetes, with the potential to identify new therapeutic targets
Panasenkava, Veranika. "Utilisation de cellules souches pluripotentes induites combinée à une approche transcriptomique pour améliorer le diagnostic moléculaire des troubles du neurodéveloppement chez l’homme." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENB060.
Full textAbstract : Holoprosencephaly (HPE) is a rare disorder that affects the development of the midline of the forebrain during the earliest stages of embryogenesis, making molecular diagnosis challenging. It primarily results from genetic alterations that lead to a reduction in the activity of the Sonic Hedgehog (SHH) signaling pathway. However, a precise molecular diagnosis is only possible for 30% of patients, highlighting the importance of developing new diagnostic approaches. The main challenge is the inaccessibility of the primary tissue, specifically the anterior affected by HPE, namely the anterior neuroectoderm. To overcome this challenge, I established an in vitro model of anterior neuroectoderm using induced pluripotent stem cells. This model allowed me to generate transcriptomic data to assess the molecular impacts of SHH deficiency and define transcriptomic signatures that describe variations in SHH pathway activity, which may correlate with the severity of HPE phenotypes. This work also revealed new co-expressed and SHH-regulated genes, which could serve as new genetic markers for HPE. These advances pave the way for innovative diagnostic tools aimed at improving diagnostic accuracy for patients with HPE
Gendron, Judith. "Les longs ARN non codants, une nouvelle classe de régulateurs génomique tissu-spécifique : signature moléculaire spécifique des neurones dopaminergiques et sérotoninergiques." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066518.
Full textOnly 1.2% of the genome codes for proteins; 98.8% is thus non-coding, despite 93% of the human genome being actively transcribed, mostly in long non-coding RNA (lncRNA).These lncRNA constitute a new class of genomic regulator capable of acting at all levels of gene expression and their expression is highly tissue-specific,modulated during the time and under normal/pathological conditions.Thus, we propose that each specified cell expresses a specific repertoire of lncRNA correlated to open/active chromatin regions specifying its cellular identity.In this context, we isolated by FACS 2neural types involved in many pathologies: i) human dopaminergic neurons (nDA) differentiated from hiPS and ii) DA and serotoninergic (n5-HT) neurons. From these 2neural types, we identified 1,363 lncRNA in nDA (among which 989 new, whether 73%) constituting the repertoire of nDA, and 1,257 lncRNA (among which 719 new) constituting the repertoire of n5-HT. Moreover,their comparison has shown that only 194 lncRNA are common to both neural types:thus the majority of lncRNA is expressed either in nDA or in n5-HT, indicating a high degree of cell-specificity.In addition, 39% of open chromatin regions, potentially regulatory, were also not detected in the n5-HT.Thus, we have generated DA and 5-HT specific catalogues of non-coding elements of the genome, which constitute DA and 5-HT specific molecular signatures, that could participate in deepening our knowledge regarding nDA or n5-HT development and dysfunctions. With this in mind,these DA specific elements have been compared with the SNP described as Parkinson Disease risk variants and candidate lncRNA were selected to perform studies of function
Castleberry, Colette M. "Quantitative Identification of Non-coding RNAs by Isotope Labeling and LC-MS/MS." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1258474676.
Full textJebbawi, Fadi. "Etude des lymphocytes T régulateurs naturels CD8+CD25+: signature micro-ARN et effets des micro-ARNs sur l'expression de FOXP3, CTLA-4 et GARP." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209338.
Full textNous avons purifié les CD8+CD25+ nTregs et vérifié par cytométrie de flux leur expression en FOXP3 et CTLA-4. Puis nous avons pu montrer que ces cellules possèdent des propriétés suppressives dans un test d’inhibition de la prolifération de lymphocytes T activés allogéniquement. Les lymphocytes CD8+CD25+ nTregs expriment les gènes FOXP3, CTLA-4, GARP et CCL-4 et les cytokines IL-10 et TGF-β. Par contre, les gènes CD28, ICOS, FOXO1 et Helios sont sous-exprimés dans les nTregs CD8+CD25+ par rapport aux lymphocytes T CD8+CD25-.
Nous avons établi une signature micro-ARN qui comprend 10 micro-ARNs différentiellement exprimés :7 micro-ARNs sous-exprimés "miR-9, -24, -31, -155, -210, -335 et -449 " et 3 micro-ARNs surexprimés " miR-214, -205 et -509". De plus, nous avons pu explorer la relevance biologique de cette signature micro-ARN en montrant dans un premier temps que les miRs "-31, -24, -210, -335" ciblent spécifiquement la région 3'UTR de FOXP3, de même les miR-9 et miR-155 ciblent la région 3'UTR de CTLA-4, et les miR-24, et -335 ciblent la région 3'UTR de GARP. Ceci a été fait par des expériences de co-transfections suivies d'une mesure de l'activité rapportrice luciférase. De plus, nous avons pu démontrer par des expériences de transduction lentivirale ex vivo, de cellules T primaires, que des micro-ARNs de la signature régulent l’expression de FOXP3, CTLA-4 et GARP dans les Tregs naturels CD8+CD25+ humains.
Cette étude montre l'importance des micro-ARNs dans la régulation post-transcriptionnelle des gènes impliqués dans la fonction régulatrice des lymphocytes T régulateurs.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Sousa, Rodrigo Guarischi Mattos Amaral de. "O transcritoma da retinopatia induzida por oxigênio e uma assinatura gênica prognóstica baseada em angiogênese para predição de recidiva de cancer de mama." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/95/95131/tde-28092017-112917/.
Full textAngiogenesis is the process of formation of new blood vessels based on existing vessels. It is a vital process but many diseases also rely on this mechanism to get nourishment and progress. These so called angiogenesis-dependent diseases include cancers, retinopathies and macular degeneration. Some angiogenesis inhibitors were developed in the past decade, aiming to help the management of such diseases and improve patients quality of life. Most of these compounds work by inhibiting VEGFA/VEGFR2 binding, which is also a key element to the survival of quiescent endothelial cells; this may partly explain unanticipated adverse events observed in some clinical trials. We hypothesize that the improvement of anti-angiogenesis therapies hinges on a better and broader understanding of the process, especially when related to diseases\' progression. Using RNA-seq and a well accepted animal model of angiogenesis, the murine model of Oxygen Induced Retinopathy, we have explored the transcriptome landscape and identified 153 genes differentially expressed in angiogenesis. An extensive validation of several genes carried out by qRT-PCR and in-situ hybridization confirmed Esm1 overexpression in endothelial cells of tissues with active angiogenesis, providing confidence on the results obtained. Enrichment analysis of this gene list endorsed a narrow link of angiogenesis and frequently mutated genes in tumours, consistent with the known connection between cancer and angiogenesis, and provided suggestions of already approved drugs that may be repurposed to control angiogenesis under pathological circumstances. Finally, based on this comprehensive landscape of angiogenesis, we were able to create a prognostic molecular biomarker for prediction of breast cancer relapse, with promising clinical applications. In summary, this work successfully unveiled angiogenesis-related genes, providing novel therapeutic alternatives, including potential drugs for repositioning. The set of differentially expressed genes is also a valuable resource for further investigations.
Aligerová, Zuzana. "Molekulární signatura jako optimální multi-objektivní funkce s aplikací v predikci v onkogenomice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-220727.
Full textYang, Tianyu. "Two novel mechanisms of MHC class I down-regulation in human cancer accelerated degradation of TAP-1 mRNA and disruption of TAP-1 protein function /." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1078192113.
Full textTitle from first page of PDF file. Document formatted into pages; contains x, 117 p.; also includes graphics (some col.) Includes bibliographical references (p. 99-117). Available online via OhioLINK's ETD Center
Mahi, Naim. "Connectivity Analysis of Single-cell RNA-seq Derived Transcriptional Signatures." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613748441148963.
Full textHrazdilová, Ivana. "Analýza dat ze sekvenování příští generace ke studiu aktivity transposonů v nádorových buňkách." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220061.
Full textMustafi, Debarshi. "Genetic Signatures of the Retina in Health and Disease." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1372776307.
Full textHernandez-Ferrer, Carles 1987. "Bioinformatic tools for exposome data analysis : application to human molecular signatures of ultraviolet light effects." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/572046.
Full textMost common diseases are caused by a combination of genetic, environmental and lifestyle factors. These diseases are referred to as complex diseases. Examples of this type of diseases are obesity, asthma, hypertension or diabetes. Several empirical evidence suggest that exposures are necessary determinants of complex disease operating in a causal background of genetic diversity. Moreover, environmental factors have long been implicated as major contributors to the global disease burden. This leads to the formulation of the exposome, that contains any exposure to which an individual is subjected from conception to death. The study of the underlying mechanics that links the exposome with human health is an emerging research field with a strong potential to provide new insights into disease etiology. The first part of this thesis is focused on ultraviolet radiation (UVR) exposure. UVR exposure occurs from both natural and artificial sources. UVR includes three subtypes of radiation according to its wavelength (UVA 315-400 nm, UVB 315-295 nm, and UVC 295-200 nm). While the main natural source of UVR is the Sun, UVC radiation does not reach Earth's surface because of its absorption by the stratospheric ozone layer. Then, exposures to UVR typically consist of a mixture of UVA (95%) and UVB (5%). Effects of UVR on human can be both beneficial and detrimental, depending on the amount and form of UVR. Detrimental and acute effects of UVR include erythema, pigment darkening, delayed tanning and thickening of the epidermis. Repeated UVR-induced injury to the skin, may ultimately predispose one to the chronic effects photoaging, immunosuppression, and photocarcinogenesis. The beneficial effect of UVR is the cutaneous synthesis of vitamin D. Vitamin D is necessary to maintain physiologic calcium and phosphorous for normal bone mineralization and to prevent rickets, osteomalacia, and osteoporosis. But the exposome paradigm is to work with multiple exposures at a time and with one or more health outcomes rather focus in a single exposures analysis. This approach tends to be a more accurate snapshot of the reality that we live in complex environments. Then, the second part is focused on the tools to explore how to characterize and analyze the exposome and how to test its effects in multiple intermediate biological layers to provide insights into the underlying molecular mechanisms linking environmental exposures to health outcomes.
Torossian, Nouritza. "Study of long non-coding RNAs and reference-free detected RNAs as potential biomarkers and actors of Triple Negative Breast Cancers' chemoresistance." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS057.
Full textTriple-negative breast cancers (TNBC) represent a heterogeneous subtype of breast cancers including 12% to 24% of all cases, having the poorest prognoses and often affecting young women. Treatment at localized stage is mainly based on chemotherapy, with no targeted therapy (except germline BRCA mutated patients). Nearly all patients receive the same Neo-Adjuvant Chemotherapy (NAC) with anthracyclines and taxanes, that badly impacts survival in the absence of pathological complete response (pCR). Therapeutic intensification, notably with addition of immunotherapy, is the current trend to increase pCR rate and improve survival. Standard gene expression signatures have failed to provide effective tools to predict TNBC chemoresistance, probably due to their incomplete nature, as they are mostly based on expression of protein coding genes and/or referenced transcripts and up to date there is no clinically useful transcriptomic signature predicting TNBC chemoresistance to NAC. Such a predictive signature would allow patient selection for therapeutic intensification. Therefore, it is important to explore the remaining 90% of the genome consisting of non-coding and non-referenced regions. One class of non-coding RNAs that is of great interest are long non-coding (lnc) RNAs, that are at least 200 nucleotides long, some of them being specifically expressed in cancer. Moreover, some lncRNAs have been shown to be implicated in different mechanisms of chemoresistance. LncRNAs are not fully well annotated in the human genome and new unreferenced transcripts, coding or not, and new isoforms of known genes are discovered daily.Therefore, the first goal of my PhD was to assess reference-free transcriptome as a potential reservoir of predictive biomarkers of TNBC chemoresistance. A cohort of 78 TNBCs before NAC was analyzed, comparing chemosensitive (chS) and chemoresistant (chR) cases based on international Residual Cancer Burden (RCB) score. A standard differential gene expression analysis (DE-seq) on annotated genes, and on new lncRNAs detected with a de novo RNA-profiler, and a reference-free analysis of differential fragments of transcripts without annotation bias were compared. Reference-free approach showed best separation of chS and chR patients in the training cohort. Further, based on comparison with an independent validation cohort, an optimized approach was proposed, where specific genomic regions with differential expression were selected. This technique gave a reproducible signature of chemoresistance between the two cohorts. In all, these results show the potential of a reference-free approach to generate a transcriptomic signature as predictive biomarker of early TNBC chemoresistance. Further investigation is needed to validate the signature using larger validation cohorts.The second objective of my PhD was to assess lncRNAs as potential actors/therapeutic targets in chR TNBCs. For that we selected lncRNAs upregulated in chR pre-NAC TNBCs (compared with chS pre-NAC TNBCs) and in chR post-NAC TNBCs (compared with chR pre-NAC TNBCs). Considering lncRNAs level and specificity of expression, genomic position, and pre-existing data of their potential function, three lncRNAs (AL450326.1, LINC02609 and MIR503HG) were retained for functional analysis. By knocking down levels of these lncRNAs in TNBC cell line model, an impact on Docetaxel cytotoxicity was assessed. All three lncRNAs knock downs showed an improved Docetaxel induced cytotoxicity. Knock down of AL450326.1 and LINC02609 resulted in a decreased spontaneous clonogenicity and increased Docetaxel induced cell death, giving a first indication of their mode of action. In all, we identified three lncRNAs playing a role in NAC chemoresistance. Further functional studies will allow to decipher the mechanisms by which the identified lncRNAs affect chemoresistance with the ultimate goal to identify new therapeutic approaches to circumvent NAC chemoresistance of TNBCs
Deprez, Marie. "Étude de l’hétérogénéité cellulaire et des dynamiques de régénération de l’épithélium respiratoire sain par analyses des signatures transcriptionnelles sur cellules uniques." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR6022.
Full textImprovements made in nucleic acid sequencing and cell handling technologies now offer the opportunity to analyze simultaneously the content of numerous single cells (RNA, DNA, ...) by global and unbiased approaches. This single-cell ‘omics’ revolution provides a new framework to revisit the “Cell Theory”, elaborated over several centuries, and essentially based on morphological and functional features. The many cell modalities now accessible at single- cell level, such as their transcriptome, spatial localization, developmental trajectories, enrich considerably this definition, and set a renewed context to precisely reassess the definition of ‘cell types’, ‘cell states’ as well as their different interactions and fates.My thesis work initially set up ad hoc approaches and statistical framework to analyze appropriately these single-cell data, which deeply differ from standard bulk RNA-seq. High variance, presence of a huge percentage of null values, large volume of data are among the specific characteristics of these datasets. My work was centered on the main experimental model of my host laboratory, e.g. the human airway epithelium. Human airways are lined by a pseudostratified epithelium mainly composed of basal, secretory, goblet and multiciliated cells. Airways also constitute a true cellular ecosystem, in which the epithelial layer interacts closely with immune and mesenchymal cells. This coordination between cells ensures proper defense of the respiratory system and its correct regeneration in case of external aggression and injuries. A better understanding of the operating sequences in normal and physiopathological situations is relevant in pathologies such as chronic obstructive pulmonary disease, asthma or cystic fibrosis.First, I characterized at a single cell level the precise and cell-specific sequence of events leading to functional regeneration of the epithelium, using a 3D model of human cells. I then built a single-cell atlas of the different cell types that are lining healthy human airways from the nose to the 12th generation of bronchi.By applying computational and statistical approaches, I have identified cell lineage hierarchies and was able to reconstruct a comprehensive cell trajectory roadmap in human airways. I not only confirmed previously described cell lineages, but I have also discovered a novel trajectory that links goblet cells to multiciliated cells, identifying novel cell populations and molecular interactors involved in the process of healthy human airway epithelium regeneration. The profiling of 12 healthy volunteers then generated a dataset of 77,969 cells, derived from 35 distinct locations. The resulting atlas is composed of more than 26 epithelial, immune and stromal cell types demonstrating the cellular heterogeneity present in the airways. Its analysis has revealed a strong proximo-distal gradient of expression in suprabasal, secretory, or multiciliated cells between the nose and lung airways. My work has also improved the characterization of rare cells, including “hillock” cells that have been previously described in mice.In conclusion, this work probably represents one of the first single-cell investigations in human airways. It brings original contributions to our understanding of differentiation’s dynamics and cellular heterogeneity in healthy human airways. The resulting resource will be extremely useful for any future single-cell investigators and also for establishing a very useful joint between clinical and biological works. As such, it will constitute a reference in any future project aiming to precisely analyze specific disease conditions
Aitken, Sarah Jane. "The pathological and genomic impact of CTCF depletion in mammalian model systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284403.
Full textNguyen, Thi Ngoc Ha. "Combining machine learning and reference-free transcriptome analysis for the identification of prostate cancer signatures Reference-free transcriptome exploration reveals novel RNAs for prostate cancer diagnosis A Comparative Analysis of Reference-Free and Conventional Transcriptome Signatures for Prostate Cancer Prognosis." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL069.
Full textWith its ability to capture the full diversity of transcripts produced by each cell, high-throughput RNA sequencing (RNA-seq) has revolutionized our view of gene expression. RNA-seq data are increasingly used in precision medicine to establish the molecular profiles of tumors, or to study gene networks governing the adaptation of a cell to its environment. However, RNA-seq analysis, which is conventionally based on comparison with reference gene sequences, is unable to identify a large fraction of abnormal RNA transcripts produced in disease tissues, through defects in the genome or in RNA processing. Our project aims to exploit a new concept for the analysis of transcriptomes based on short sequence labels, or k-mers, representing all of the sequence variations observed in a given transcriptome dataset. We applied this concept to the discovery of diagnostic or prognostic signatures from RNA-seq data of prostate cancer. To this end, we applied different dimension reduction and variable selection methods used in classical transcriptomic analysis. Due to the very large dimension of the k-mer matrices, these methods required specific adaptations in order to drastically reduce the number of variables to be analyzed. We established a computer pipeline capable of effectively reducing a k-mer matrix obtained from the sequencing of several hundred transcriptomes. Using this pipeline, we were able to produce new diagnostic and prognostic signatures for prostate cancer. These "reference-free" signatures do not require a priori knowledge of the human genome or transcriptome and are at least as effective as conventional gene signatures. In addition, these signatures contain novel RNA sequences corresponding to mRNA variants or new long non-coding RNAs. These novel RNAs involved in cancer risk may orient biologists towards new oncogenesis mechanisms
Lehmann, Nathalie. "Development of bioinformatics tools for single-cell transcriptomics applied to the search for signatures of symmetric versus asymmetric division mode in neural progenitors." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE070.
Full textIn recent years, single-cell RNA-seq (scRNA-seq) has fostered the characterization of cell heterogeneity at a remarkable high resolution. Despite their democratization, the analysis of scRNA-seq remains a challenge, particularly for organisms whose genomic annotations are partial. During my PhD, I observed that the chick genomic annotations are often incomplete, thus resulting in a loss of a large number of sequencing reads. I investigated how an enriched annotation affects the biological results and conclusions from these analyses. We developed a novel approach based on the re-annotation of the genome with scRNA-seq data and long reads bulk RNA-seq. This computational biology project capitalises on a tight collaboration with the experimental team of Xavier Morin (IBENS). The main biological focus is the search for signatures of symmetric versus asymmetric division mode in neural progenitors. In order to identify the key transcriptional switches that occur during the neurogenic transition, I have implemented bioanalysis approaches dedicated to the search for gene signatures from scRNA-seq data
Outlioua, Ahmed. "Exploration des cytokines pro-inflammatoires et de l’inflammasome NLRP3 dans les infections intracellulaires : cas de H. pylori et des virus à ARN Gastric IL-1β, IL-8, and IL-17A expression in Moroccan patients infected with Helicobacter pylori may be a predictive signature of severe pathological stages RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling The Role of Optineurin in Antiviral Type I Interferon Production Possible introduction of Leishmania tropica to urban areas determined by epidemiological and clinical profiles of patients with cutaneous leishmaniasis in Casablanca (Morocco)." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL029.
Full textHelicobacter pylori (H. pylori) is a bacteria that infects the stomach and induces inflammatory gastritis, which can be chronic and progress to gastric cancer. The severity of the infection and its clinical course are associated with various factors including the immune status of the host. The initial inflammatory response to H. pylori infection results in the secretion of a wide range of cytokines, including interleukin-1β (IL-1β), IL-8 and IL-17A. which appear to play a key role in the initiation and progression of gastric cancer. Among these cytokines, IL-1β is a key cytokine during H. pylori infection whose expression is associated with gastric inflammation and carcinogenesis. The production of this cytokine depends on the activation of the inflammasome, in particular the NLRP3 inflammasome. The latter, responsible of the activation of inflammatory processes, is essential for the maintenance of homeostasis against various pathogenic infections such as bacterial and viral infections.The general objective of this work is i) to study the expression and polymorphism of genes for cytokines such as IL-1β, IL-17 and IL-8 in Moroccan patients infected with H. pylori. ii) explore the activation of the NLRP3 inflammasome by H. pylori and determine the mechanisms involved in the activation of this complex by RNA viruses; known as defined activators of NLRP3.Our results underlined a high prevalence of H. pylori and demonstrated a cytokine signature: it can predict metaplasia during the progression of H. pylori infection involving a decrease in IL17A expression in the antrum and increased expression of IL-1β in the fundus. In particular, the genetic polymorphisms of IL-1β (IL-1β -31 and -511) do not appear to influence IL-1β expression significantly.In view of the difficulties encountered in isolating and culturing H. pylori, we used LPS from H. pylori to stimulate the inflammasome. Our results show that the transfection of cells in vitro with bacterial LPS induces the production of IL-1β which appears to be modulated by caspase 4, NOD1 and NOD2. Furthermore, while it is clearly established that RNA viruses induce activation of the NLRP3 inflammasome, the mechanisms by which these viruses induce IL-1β production are not well understood and remain to be confirmed. The results of this part of the work showed that the replication of cytopathogenic RNA viruses such as vesicular stomatitis virus (VSV) or encephalomyocarditis virus (EMCV) induces lytic cell death leading to an efflux of potassium which triggers activation of the NLRP3 inflammasome. Thus, viruses with a high replication capacity and which have a cytopathic effect are capable of inducing the activation of caspase-1 leading to the production of IL-1β. Conversely, viruses which induce type I IFN response are very poor inducers of the NLRP3 inflammasome.A better understanding of the activation of the inflammasome could help in the development of targeted therapeutic strategies for use in the fight against bacterial and viral infections.Key words: Helicobacter pylori, inflammation, NLRP3 inflammasome, IL-1β, RNA virus
Dias, Miguel Ângelo Simão. "Uncovering the regulatory T cell transcriptional signature in the human thymus." Master's thesis, 2018. http://hdl.handle.net/10316/86264.
Full textOs linfócitos T reguladores (Tregs) desempenham um papel crucial na manutenção da homeostasia imunológica, impedindo ou limitando respostas imunes. As Tregs são particularmente eficazes a suprimir as células T convencionais (Tconvs), e desta forma limitam a imunopatologia associada à imunidade contra patogéneos e células cancerígenas, bem como os processos alérgicos, autoimunes e inflamatórios. Uma população significativa de Tregs é gerada durante o desenvolvimento das células T no timo conhecidas como Tregs naturais (ou derivadas do timo), sendo definidas pela presença da proteína FOXP3. Este fator de transcrição desempenha um papel crucial na diferenciação destas células, não só através da repressão de genes normalmente expressos em Tconvs, mas também promovendo a ativação de genes específicos de Tregs, incluindo IL2RA (CD25) e CTLA4. No entanto, vários estudos demostraram que a diferenciação e comprometimento destas células pode ser independente de FOXP3, indicando a existência de outros fatores, atualmente desconhecidos, os quais são suficientes para promover o desenvolvimento das Tregs. Neste estudo, investiguei a diferenciação e o comprometimento das células Treg no timo humano, a fim de identificar novos fatores potencialmente envolvidos nesta decisão. Para isso, isolámos Tregs e Tconvs tímicas maduras CD4 positivas com base na expressão dos marcadores CD27, CD25 e CD127, a partir de tecido tímico humano removido durante cirurgias cardíacas pediátricas corretivas de três indivíduos, e geramos os seus respetivos perfis de expressão génica através da sequenciação do RNA (RNA-seq).A nossa análise da comparação da transcrição identificou 1047 genes significativamente e diferencialmente expressos entre tTregs e tTconvs, dos quais 648 com sobre expressão em tTregs. Destes 648 genes, observei a expressão proeminente de alguns genes associados a este tipo celular, incluindo FOXP3, IL2Rα (CD25), CTLA4, TNFRSF4 (OX40), TNFRSF18 (GITR), IKZF2 (HELIOS) e IKZF4 (EOS). Para alem disso, identifiquei um conjunto de 196 genes unicamente expressos em tTreg em comparação com tTconv, alguns dos quais codificam proteínas com conhecida relevância na biologia destas células, incluindo TNFRSF8 (CD30), LRRC32 (GARP) e CCR8, bem como genes cuja função em tTregs é desconhecida, nomeadamente DNAH8 e TNFRSF11A. Enquanto a expressão de DNAH8 pode ser indicativa da formação de sinapses imunológicas, a expressão de TNFRSF11A pode sugerir um mecanismo adicional de supressão através dos quais as tTregs previnem a ativação das tTconvs.Dos genes encontrados sobre expressos nas tTregs em comparação com as tTconvs, 46 codificam fatores de transcrição. Estes incluem alguns já conhecidos como estando diretamente envolvidos na diferenciação destas células, como FOXP3, IKZF2, IKZF4, FOXO1 e NR4A3, bem como fatores de transcrição envolvidos na ativação e diferenciação de Tconvs, como o TBX21, IRF4, STAT4, BATF e RORA. Além disso, identifiquei também membros da via de sinalização NF-kB (REL, RELB e NFKB2), indicando o seu estado ativo durante a diferenciação destas células. Por fim, encontrei um grupo de fatores de transcrição sobre expressos em Tregs e sem funções previamente descritas nestas células, nomeadamente IRF5, ZBTB38, KLF6 e CREB3L2, o que sugere a presença de novas vias de regulação da transcrição envolvidas nos processos de diferenciação e função das células T reguladorasEm conclusão, esta tese apresenta o primeiro perfil de transcrição de Tregs e Tconvs de timo humano, cujas análises serão fundamentais para a compreensão do seu desenvolvimento. Até à data, estes dados permitiram a identificação de novos genes com funções desconhecidas nestes grupos celulares, o que poderá representar fatores adicionais envolvidos na definição das células T no timo. No futuro, estes dados permitirão explorar novas linhas de investigação com o objetivo de esclarecer o desenvolvimento da linhagem Treg no timo humano, bem como ajudar na definição da assinatura de expressão destas células.
Regulatory T cells (Tregs) are key players in maintaining immune homeostasis, by preventing or limiting immune responses. They are particularly efficient in suppressing conventional T cells (Tconvs), and in this way control the immunopathology associated with immunity against pathogens and cancer as well as preventing allergy, autoimmune diseases, and chronic inflammation. An important Treg subset is generated during T cell development in the thymus, known as thymic-derived Treg. It is best defined by the expression of the forkhead box protein FOXP3, a transcription factor that plays a crucial role in Treg cell differentiation by repressing the expression of genes otherwise upregulated in Tconv cells, as well as by promoting to the activation of Treg specific genes, including IL2Rα (CD25) and CTLA4. However, recent studies have shown that Treg commitment may occur independently of FOXP3, indicating that other factors, presently unknown, are sufficient for the generation of Tregs. Here I have investigated the differentiation and commitment of Treg cells in the human thymus, in order to identify novel factors potentially involved in this decision. To do this, we FACS sorted mature CD4 single-positive thymic Tregs (tTregs) and their conventional counterparts (tTconvs) based on the expression of CD27, CD25, and CD127 markers, from three human thymuses collected during pediatric corrective cardiac surgery, and generated their respective genome-wide expression profiles by RNA-seq. We ensure that these thymuses have an immunophenotype representative of all stages of T cell development and consistent with the one described in the literature.Our comparative transcriptomic analysis identified 1047 genes significantly differentially expressed between tTreg and tTconv subsets, with 648 of these up-regulated in tTregs. Amongst these, I observed the prominent expression of Treg-associated genes, including FOXP3, the IL2Rα (CD25), CTLA4, TNFRSF4 (OX40), TNFRSF18 (GITR), IKZF2 (HELIOS) and IKZF4 (EOS). From these, I identified a set of 196 genes that are uniquely expressed in tTreg compared to tTconv, encoding proteins with relevance to Treg biology, such as TNFRSF8, LRRC32, and CCR8, as well as others with no previously reported activity in tTreg cells, as DNAH8 and TNFRSF11A. Whilst DNAH8 expression may be indicative of the formation of immunological synapses, the expression of TNFRSF11A may indicate an additional suppression mechanism by which Tregs prevents Tconv cell activation. From the genes found to be up-regulated in tTreg cells compared to tTconvs, 46 were transcription factors. These include some known to be directly involved in Treg development, such as FOXP3, IKZF2, IKZF4, FOXO1, and NR4A3, as well as transcription factors involved in Tconv cell activation and differentiation, such as TBX21, IRF4, STAT4, BATF and RORA. In addition, several members of the NF-kB pathway (REL, RELB, NFKB2) are also up-regulated in tTregs, indicating the activated state of this pathway during tTreg differentiation. Importantly, a set of transcription factors with no previous reported role in human regulatory T cells, IRF5, ZBTB38, KLF6, and CREB3L2, are overexpressed in tTregs, suggesting additional layers of transcriptional regulation of Treg cell differentiation and function. Altogether, this thesis presents the first transcriptomic profile of the human thymic Treg and Tconv subsets, which analyses are absolutely necessary to the understanding of their development. So far, they allowed the identification of novel genes with unreported functions in these subsets, which might represent additional factors involved in the definition of thymic T cells; in the near future, these data will open several new lines of research aiming to clarify the pathways of Treg lineage commitment in the human thymus and will help in the definition of the expression signature of human tTreg subset.
Outro - This work is supported by grants PAC-PRECISE-LISBOA-01-0145-FEDER-016394 and LISBOA-01-0145-FEDER-007391 cofunded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa PORTUGAL 2020 and Fundação para a Ciência e a Tecnologia (FCT); and by funds from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.: 675395.
Labadorf, Adam. "Characterizing the Huntington's disease, Parkinson's disease, and pan-neurodegenerative gene expression signature with RNA sequencing." Thesis, 2016. https://hdl.handle.net/2144/17865.
Full textRobitaille, Julie. "Étude de la signature dynamique de transcrits primaires impliquée dans la maturation des microARN." Thèse, 2016. http://hdl.handle.net/1866/18669.
Full textMicroRNAs (miRNAs) are small non-coding RNAs, which can inhibit target messenger RNAs translation. In order to obtain a miRNA, two enzymes, Drosha and Dicer cut the gene of miRNA. The RNA interacts with the proteins by its general hairpin structure. However, the details of the structure are still missing. The objective of this project is to establish if there is a relation between the efficiency of maturation and the RNA’s structural dynamics. In order to do this, the maturation efficiency of miRNA variants is measured by Northern Blot. The structural dynamics is measured by a program assessing the information of the sequence. The correlation between the dynamics and the maturation efficiency of the miRNA is 0.74 with a p-value of 0.02206. This correlation is superior to those based on free energy, which does not reach 0.6. The tested mutants of miR128-1 and miR188 have inhibited maturation; also, those of miR125a, miR188 and miR330 have modified the cleavage site of Drosha. A better knowledge of the dynamic structure involved in maturation would help define the impact of miRNA mutation or to predict sequences that are able to generate miRNAs.
Dallaire, Paul. "Une signature du polymorphisme structural d’acides ribonucléiques non-codants permettant de comparer leurs niveaux d’activités biochimiques." Thèse, 2014. http://hdl.handle.net/1866/12336.
Full textRecent experimental evidence indicates that RNA structure changes, sometimes very rapidly and that these changes are both required for biochemical activity and captured by the secondary structure prediction software MC-Fold. RNA structure is thus dynamic. We compared RNA sequences from the point of view of their structural dynamics so as to investigate how similar their biochemical activities were by computing a signature from the output of the structure prediction software MC-Fold. This required us to accelerate considerably the software MC-Fold. The algorithmic approach to this acceleration is described in chapter 1. In chapter 2, point mutations that disrupt the biochemical activity of microRNA are explained in terms of changes in RNA dynamics. Finally, in chapter 3 we identify dynamic structure windows in long RNA with potentially significant roles in autism spectrum disorders and separately in Xenopus ssp. (species of frogs) egg polarisation.
Schwans, Jason Patrick. "Using nucleotide analogues to define chemical signatures within folded RNA molecules /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3108110.
Full textTrofimov, Assya. "Étude des signatures géniques dans un contexte d’expériences de RNA- Seq." Thèse, 2017. http://hdl.handle.net/1866/20417.
Full text