Academic literature on the topic 'RNA localization and translation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RNA localization and translation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "RNA localization and translation"

1

Gáspár, Imre, and Anne Ephrussi. "RNA localization feeds translation." Science 357, no. 6357 (September 21, 2017): 1235–36. http://dx.doi.org/10.1126/science.aao5796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gavis, E. R., L. Lunsford, S. E. Bergsten, and R. Lehmann. "A conserved 90 nucleotide element mediates translational repression of nanos RNA." Development 122, no. 9 (September 1, 1996): 2791–800. http://dx.doi.org/10.1242/dev.122.9.2791.

Full text
Abstract:
Correct formation of the Drosophila body plan requires restriction of nanos activity to the posterior of the embryo. Spatial regulation of nanos is achieved by a combination of RNA localization and localization-dependent translation such that only posteriorly localized nanos RNA is translated. Cis-acting sequences that mediate both RNA localization and translational regulation lie within the nanos 3′ untranslated region. We have identified a discrete translational control element within the nanos 3′ untranslated region that acts independently of the localization signal to mediate translational repression of unlocalized nanos RNA. Both the translational regulatory function of the nanos 3′UTR and the sequence of the translational control element are conserved between D. melanogaster and D. virilis. Furthermore, we show that the RNA helicase Vasa, which is required for nanos RNA localization, also plays a critical role in promoting nanos translation. Our results specifically exclude models for translational regulation of nanos that rely on changes in polyadenylation.
APA, Harvard, Vancouver, ISO, and other styles
3

Lasko, Paul. "Cup-ling oskar RNA localization and translational control." Journal of Cell Biology 163, no. 6 (December 22, 2003): 1189–91. http://dx.doi.org/10.1083/jcb.200311123.

Full text
Abstract:
RNA localization and spatially restricted translational control can serve to deploy specific proteins to particular places within a cell. oskar (osk) RNA is a key initiatior of posterior patterning and germ cell specification in Drosophila, and its localization and translation are under elaborate control. In this issue, Wilhelm et al. (2003) show that the protein Cup both promotes osk localization and participates in repressing translation of unlocalized osk.
APA, Harvard, Vancouver, ISO, and other styles
4

Rongo, C., E. R. Gavis, and R. Lehmann. "Localization of oskar RNA regulates oskar translation and requires Oskar protein." Development 121, no. 9 (September 1, 1995): 2737–46. http://dx.doi.org/10.1242/dev.121.9.2737.

Full text
Abstract:
The site of oskar RNA and protein localization within the oocyte determines where in the embryo primordial germ cells form and where the abdomen develops. Initiation of oskar RNA localization requires the activity of several genes. We show that ovaries mutant for any of these genes lack Oskar protein. Using various transgenic constructs we have determined that sequences required for oskar RNA localization and translational repression map to the oskar 3′UTR, while sequences involved in the correct temporal activation of translation reside outside the oskar 3′UTR. Upon localization of oskar RNA and protein at the posterior pole, Oskar protein is required to maintain localization of oskar RNA throughout oogenesis. Stable anchoring of a transgenic reporter RNA at the posterior pole is disrupted by oskar nonsense mutations. We propose that initially localization of oskar RNA permits translation into Oskar protein and that subsequently Oskar protein regulates its own RNA localization through a positive feedback mechanism.
APA, Harvard, Vancouver, ISO, and other styles
5

Rosana, Albert Remus R., Denise S. Whitford, Richard P. Fahlman, and George W. Owttrim. "Cyanobacterial RNA Helicase CrhR Localizes to the Thylakoid Membrane Region and Cosediments with Degradosome and Polysome Complexes in Synechocystis sp. Strain PCC 6803." Journal of Bacteriology 198, no. 15 (May 23, 2016): 2089–99. http://dx.doi.org/10.1128/jb.00267-16.

Full text
Abstract:
ABSTRACTThe cyanobacteriumSynechocystissp. strain PCC 6803 encodes a single DEAD box RNA helicase, CrhR, whose expression is tightly autoregulated in response to cold stress. Subcellular localization and proteomic analysis results indicate that CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with polysome and RNA degradosome components. Evidence is presented that either functional RNA helicase activity or a C-terminal localization signal was required for polysome but not thylakoid membrane localization. Polysome fractionation and runoff translation analysis results indicate that CrhR associates with actively translating polysomes. The data implicate a role for CrhR in translation or RNA degradation in the thylakoid region related to thylakoid biogenesis or stability, a role that is enhanced at low temperature. Furthermore, CrhR cosedimentation with polysome and RNA degradosome complexes links alteration of RNA secondary structure with a potential translation-RNA degradation complex inSynechocystis.IMPORTANCEThe interaction between mRNA translation and degradation is a major determinant controlling gene expression. Regulation of RNA function by alteration of secondary structure by RNA helicases performs crucial roles, not only in both of these processes but also in all aspects of RNA metabolism. Here, we provide evidence that the cyanobacterial RNA helicase CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with actively translating polysomes and RNA degradosome components. These findings link RNA helicase alteration of RNA secondary structure with translation and RNA degradation in prokaryotic systems and contribute to the data supporting the idea of the existence of a macromolecular machine catalyzing these reactions in prokaryotic systems, an association hitherto recognized only in archaea and eukarya.
APA, Harvard, Vancouver, ISO, and other styles
6

MARZI, S. "Ribosomal localization of translation initiation factor IF2." RNA 9, no. 8 (August 1, 2003): 958–69. http://dx.doi.org/10.1261/rna.2116303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergsten, S. E., and E. R. Gavis. "Role for mRNA localization in translational activation but not spatial restriction of nanos RNA." Development 126, no. 4 (February 15, 1999): 659–69. http://dx.doi.org/10.1242/dev.126.4.659.

Full text
Abstract:
Patterning of the anterior-posterior body axis during Drosophila development depends on the restriction of Nanos protein to the posterior of the early embryo. Synthesis of Nanos occurs only when maternally provided nanos RNA is localized to the posterior pole by a large, cis-acting signal in the nanos 3′ untranslated region (3′UTR); translation of unlocalized nanos RNA is repressed by a 90 nucleotide Translational Control Element (TCE), also in the 3′UTR. We now show quantitatively that the majority of nanos RNA in the embryo is not localized to the posterior pole but is distributed throughout the cytoplasm, indicating that translational repression is the primary mechanism for restricting production of Nanos protein to the posterior. Through an analysis of transgenes bearing multiple copies of nanos 3′UTR regulatory sequences, we provide evidence that localization of nanos RNA by components of the posteriorly localized germ plasm activates its translation by preventing interaction of nanos RNA with translational repressors. This mutually exclusive relationship between translational repression and RNA localization is mediated by a 180 nucleotide region of the nanos localization signal, containing the TCE. These studies suggest that the ability of RNA localization to direct wild-type body patterning also requires recognition of multiple, unique elements within the nanos localization signal by novel factors. Finally, we propose that differences in the efficiencies with which different RNAs are localized result from the use of temporally distinct localization pathways during oogenesis.
APA, Harvard, Vancouver, ISO, and other styles
8

Rajgor, Dipen, and Catherine M. Shanahan. "RNA granules and cytoskeletal links." Biochemical Society Transactions 42, no. 4 (August 1, 2014): 1206–10. http://dx.doi.org/10.1042/bst20140067.

Full text
Abstract:
In eukaryotic cells, non-translating mRNAs can accumulate into cytoplasmic mRNP (messenger ribonucleoprotein) granules such as P-bodies (processing bodies) and SGs (stress granules). P-bodies contain the mRNA decay and translational repression machineries and are ubiquitously expressed in mammalian cells and lower eukaryote species including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. In contrast, SGs are only detected during cellular stress when translation is inhibited and form from aggregates of stalled pre-initiation complexes. SGs and P-bodies are related to NGs (neuronal granules), which are essential in the localization and control of mRNAs in neurons. Importantly, RNA granules are linked to the cytoskeleton, which plays an important role in mediating many of their dynamic properties. In the present review, we discuss how P-bodies, SGs and NGs are linked to cytoskeletal networks and the importance of these linkages in maintaining localization of their RNA cargoes.
APA, Harvard, Vancouver, ISO, and other styles
9

Mansfield, Jennifer H., James E. Wilhelm, and Tulle Hazelrigg. "Ypsilon Schachtel, aDrosophilaY-box protein, acts antagonistically to Orb in theoskarmRNA localization and translation pathway." Development 129, no. 1 (January 1, 2002): 197–209. http://dx.doi.org/10.1242/dev.129.1.197.

Full text
Abstract:
Subcellular localization of mRNAs within the Drosophila oocyte is an essential step in body patterning. Yps, a Drosophila Y-box protein, is a component of an ovarian ribonucleoprotein complex that also contains Exu, a protein that plays an essential role in mRNA localization. Y-box proteins are known translational regulators, suggesting that this complex might regulate translation as well as mRNA localization. Here we examine the role of the yps gene in these events. We show that yps interacts genetically with orb, a positive regulator of oskar mRNA localization and translation. The nature of the genetic interaction indicates that yps acts antagonistically to orb. We demonstrate that Orb protein is physically associated with both the Yps and Exu proteins, and that this interaction is mediated by RNA. We propose a model wherein Yps and Orb bind competitively to oskar mRNA with opposite effects on translation and RNA localization.
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, Paul, and Nancy Kedersha. "RNA granules." Journal of Cell Biology 172, no. 6 (March 6, 2006): 803–8. http://dx.doi.org/10.1083/jcb.200512082.

Full text
Abstract:
Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationship between different classes of these granules and discuss how spatial organization regulates messenger RNA translation/decay.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "RNA localization and translation"

1

Ciolli, Mattioli Camilla. "Post-transcriptional mechanisms contributing to RNA and protein localization: study of local translation and alternative 3′UTRs in induced neurons." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20702.

Full text
Abstract:
Die asymmetrische Verteilung von mRNA und Proteinen innerhalb einer Zelle definiert die Polarität. Dies ermöglicht eine strikte Regulierung der Genexpression in Raum und Zeit. Ich habe in dieser Arbeit untersucht, wie das Soma und die Neuriten in induzierten Neuronen sich hinsichtlich ihres Transkriptoms und Translatoms unterscheiden. Eine räumliche ribosomale Profilanalyse ergab, dass die Hälfte des lokalen Proteoms durch die mRNA-Lokalisierung und der lokalen Translation definiert wird. Dies sind Prozesse, die durch die synergistische Aktivität von trans- und cis-agierenden Elementen durchgeführt werden. In dieser Arbeit konzentrierte ich mich auf MOV10 als trans-agierendes Element und die alternativen 3′UTRs als cis-agierende Elemente, um ihre Rolle in der Asymmetrie zu untersuchen. MOV10 ist eine RNA-Helikase, welche an vielen Aspekten des RNA-Metabolismus beteiligt ist. Mit den Methoden RIP und PAR-CLIP konnte ich zeigen, dass sowohl MOV10-Ziele als auch MOV10 selbst in den Neuriten lokalisiert sind. Aus ̈erdem ist MOV10 möglicherweise an der translationalen Repression mitinvolviert. In der Tat konnte ich unter den MOV10-Protein-Interaktoren mehrere Proteine identifizieren, welche an der translationalen Repression beteiligt sind, wie z.Bsp. AGO2, FMR1, und TRIM71. Für die Identifizierung der cis-agierenden Elemente führte ich das "Mapping" von alternativen 3′UTRs durch. Diese Analyse zeigte mehrere Gene, die differentiell lokalisierte 3′UTR-Isoformen exprimieren. Insbesondere habe ich mich auf Cdc42 konzentriert. Ich konnte beweisen, dass die beiden Isoformen von Cdc42 auf mRNA-Ebene unterschiedlich lokalisiert sind und dass die 3′UTR der entscheidende Faktor für die mRNA- und Proteinlokalisierung ist. Darüber hinaus habe ich mehrere RBPs identifiziert, die an der Cdc42-Lokalisierung beteiligt sind. Diese Analyse zeigt, dass für die differenzierte Lokalisierung von funktional unterschiedlichen alternativen Protein-Isoformen die Verwendung von alternativen 3′UTR Isoformen als neu-entdeckter Mechanismus eine entscheidende Rolle spielt.
Asymmetric distribution of mRNA and proteins inside a cell defines polarity, which allow tight regulation of gene expression in space and time. In this thesis I investigated how asymmetric distribution characterizes the somatic and neuritic compartments of in induced neurons, in terms of transcriptome and translatome. Spatial ribosome profiling analysis revealed that half of the local proteome is defined by mRNA localization and local translation. These, are processes accomplished by the synergistic activity of trans- and cis-acting elements. I focused on MOV10 as trans-acting element, and on alternative 3′UTRs as cis-elements, to investigate their role in asymmetry. MOV10 is an RNA helicase which participates to many aspects of RNA metabolism. With RIP and PAR-CLIP I showed that MOV10 targets are localized to the neurites, consistently with MOV10-neuritic localization, and that MOV10 might be involved in translational repression. Indeed, among MOV10 protein interactors, I identified several proteins involved in translational repression, i.e. AGO2, FMR1, and TRIM71. On the side of cis-elements, I performed mapping of alternative 3′UTRs. This analysis identified several genes expressing differentially localized 3′UTR isoforms. In particular, I focused on Cdc42. I showed that the two isoforms of Cdc42 are differentially localized at mRNA level, and that the 3′UTR is the driver of mRNA and protein localization. Moreover, I identified several RBPs that might be involved in Cdc42 localization. This analysis points to usage of alternative 3′UTR isoforms as a novel mechanism to provide for differential localization of functionally diverse alternative protein isoforms.
APA, Harvard, Vancouver, ISO, and other styles
2

Rongo, Christopher Gabriel. "The role of RNA localization and translational regulation in Drosophila germ cell determination." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vicario, Annalisa. "Analysis of the molecular mechanisms of BDNF mRNA localization and traslation in neurons." Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3664.

Full text
Abstract:
2008/2009
La regolazione dell’espressione genica rappresenta uno fenomeno fondamentale per garantire la sopravvivenza e la corretta funzione cellulare. In strutture complesse ed altamente specializzate come il sistema nervoso, la grande varietà morfologica e funzionale, la rapidità di interscambio di comunicazioni e di adattamento richiede un’altrettanto fine regolazione spazio-temporale dell’espressione genica. I livelli di regolazione sono molteplici e includono lo splicing alternativo, la regolazione del turnover degli mRNA, modifiche post-traduzionali ed il controllo traduzionale. La segregazione dei trascritti in diversi compartimenti subcellulari rappresenta un ulteriore meccanismo che permette di concentrare le proteine in specifici domini cellulari mediante traduzione localizzata. A partire dagli anni ’80 sono stati scoperti numerosi mRNA a livello dendritico, tra cui i trascritti codificanti Brain Derived Neurotrophic Factor (BDNF) ed il suo recettore TrkB (Tongiorgi et al., 1997). L’mRNA per BDNF si localizza nei dendriti in risposta all‘attività elettrica e al BDNF in vitro e in seguito a crisi epilettogeniche indotte in vivo (Tongiorgi et al., 1997, 2004; Righi et al., 2000). La segregazione degli mRNA nei neuriti presuppone la potenziale traduzione in loco a seguito di specifici stimoli. A tal supporto vi è la dimostrazione della presenza di fattori coinvolti nella sintesi proteica (poliribosmi, tRNA, eIFs, eEFs, marker del reticolo endoplasmatico e del golgi) alla base delle spine dendritiche (Steward and Levi,1982; Tiedge and Brosius, 1996). Le dinamiche del trasporto coinvolgono elementi in trans, le RNA binding proteins, , ed elementi in cis, riconosciuti dalle proteine di trasporto. Questi ultimi sono solitamente confinati nella regione 3’UTR (Bashirullah et al., 1998), in misura inferiore all’interno della regione codificante (CDS) (Mohr, 1999; Chiaruttini et al., 2009) e dei 5’UTR (Muslimov et al., 1997). Tra le più comuni RBPs annoveriamo CPEB, ZBP, hnRNP, Staufen, FMRP, Translin e le proteine ELAV. Ricordiamo come molte di queste proteine di trasporto degli mRNA siano in realtà repressori della traduzione, al fine di prevenirne l’espressione ectopica durante il trasporto. Le RBPs che si legano all’mRNA di BDNF non sono ancora note, tuttavia nel corso di questo studio, mediante ibridazioni in situ non radioattiva su colture ippocampali/sezioni di cervello di topo è stata scoperta un serie di elementi in cis che regolano la localizzazione del trascritto. Alla luce dei risultati ottenuti, emerge un complesso quadro di regolazione post-trascrizionale e traduzionale di BDNF. L’RNA endogeno si localizza nel compartimento dendritico distale in seguito ad attività elettrica ed applicazione di BDNF od NT-3. I segnali di trasporto sensibili sono molteplici e distribuiti in diverse regioni dell’mRNA: un segnale costitutivo a carico della CDS(riconosciuto da translin), due segnali inducibili a livello del 3’UTR short (KCL ed NT-3, riconosciuti da CPEB1 e 2, ELAV2 e 4) ed altrettanti a livello 3’UTR long (KCl e BDNF, target di ELAV e CPEB), in aggiunta ad un segnale di ritenzione all’interno della stessa regione (osservato anche in topi KO per FXR2 ed FMRP). La modulazione del trasporto del 3’UTR long è di gran lunga più finemente regolata rispetto alla variante short, e ricorda il comportamento del 3’UTR della CaMKII (Mori et al., 2000), anch’esso coinvolto nella plasticità e potenziamento sinaptici. Dal punto di vista traduzionale, la distinzione tra 3’UTR short e long è netta: per quanto riguarda il primo, il meccanismo è piuttosto lineare e viene attivato dalla cascata del glutammato/Aurora chinasi/CPEB, mentre per il secondo, scarsamente traducibile, sembra sia necessaria la compresenza di più stimoli per attivarne la corretta traduzione, suggerendo come il 3’UTR long possa rappresentare un “coincidence detector“ che viene attivato solo in particolari contesti, a traccia di una complessa attività sinaptica. Dagli studi condotti siamo stati in grado di costruire un modello che possa spiegare come un trascritto così complesso possa rispondere a diversi stimoli. La CDS contiene un segnale di trasporto costitutivo mediato da translin, che in condizioni basali viene soppresso da un elemento inibitorio all’interno del 3’UTR long. In seguito ad attivazione viene meno la repressione in modo da favorire il trasporto del trascritto mediato dai due segnali di targeting (CDS e 3’long). Per quanto riguarda i trascritti contenenti la variante short, invece, sembra non vi siano segnali di ritenzione, bensì elementi di trasporto che vengono attivati in seguito ad uno specifico stimolo extracellulare (KCL od NT3).
XXII Ciclo
1982
APA, Harvard, Vancouver, ISO, and other styles
4

Ohler, Uwe [Gutachter], Florian [Gutachter] Heyd, and Chakrabarti [Gutachter] Sutapa. "Post-transcriptional mechanisms contributing to RNA and protein localization: study of local translation and alternative 3′UTRs in induced neurons / Gutachter: Uwe Ohler, Florian Heyd, Chakrabarti Sutapa." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1199930695/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maderazo, Alan Baer. "A Study on the Cellular Localization of Factors Involved in Yeast Nonsense-Mediated mRNA Decay and their Mechanisms of Control on Nonsense mRNA Translation: a Dissertation." eScholarship@UMMS, 2000. https://escholarship.umassmed.edu/gsbs_diss/105.

Full text
Abstract:
Nonsense-mediated mRNA decay (NMD) is an important mRNA surveillance mechanism conserved in eukaryotes. This thesis explores several interesting aspects of the NMD pathway. One important aspect of NMD which is presently the subject of intense controversy is the subcellular localization of NMD. In one set of experiments, the decay kinetics of the ade2-1 and pgk1 nonsense mRNAs (substrates for NMD) were investigated in response to activating the NMD pathway to determine if cytoplasmic nonsense mRNAs are immune to NMD in the yeast system. The results of these studies demonstrated that activation of NMD caused rapid and immediate degradation of both the ade2-1 and the early nonsense pgk1 steady state mRNA populations. The half lives of the steady state mRNA populations for both ade2-1 and pgk1 (early nonsense) were shortened from >30 minutes to approximately 7 minutes. This was not observed for pgk1mRNAs that contained a late nonsense codon demonstrating that activation of NMD specifically targeted the proper substrates in these experiments. Therefore, in yeast, nonsense mRNAs residing in the cytoplasm are susceptible to NMD. While these findings are consistent with NMD occurring in the cytoplasm, they do not completely rule out the possibility of a nuclear-associated decay mechanism. To investigate the involvement of the nucleus in NMD, the putative nuclear targeting sequence identified in Nmd2p (one of the trans-acting factors essential for NMD) was characterized. Subcellular fractionation experiments demonstrated that the majority of Nmd2p localized to the cytoplasm with a small proportion detected in the nucleus. Specific mutations in the putative nuclear localization signal (NLS) of Nmd2p were found to have adverse effects on the protein's decay function. These effects on decay function, however, could not be attributed to a failure in nuclear localization. Therefore, the residues that comprise the putative NLS of Nmd2p are important for decay function but do not appear to be required for targeting the protein to the nucleus. These results are in accordance with the findings above which implicate the cytoplasm as an important cellular compartment for NMD. This thesis then investigates the regulatory roles of the trans-acting factors involved in NMD (Upf1p, Nmd2p, and Upf3p) using a novel quantitative assay for translational suppression, based on a nonsense allele of the CAN1 gene (can1-100). Deletion of UPF1, NMD2, or UPF3 stabilized the can1-100 transcript and promoted can1-100 nonsense suppression. Changes in mRNA levels were not the basis of suppression, however, since deletion of DCP1 or XRN1 or high-copy can1-100 expression in wild-type cells caused mRNA stabilization similar to that obtained in upf/nmd cells but did not result in comparable suppression. can1-100 suppression was highest in cells harboring a deletion of UPF1, and overexpression of UPF1 in cells with individual or multiple upf/nmd mutations lowered the level of nonsense suppression without affecting the abundance of the can1-100 mRNA. These findings indicate that Nmd2p and Upf3p regulate Upf1p activity and that Upf1p plays a critical role in promoting termination fidelity that is independent of its role in regulating mRNA decay.
APA, Harvard, Vancouver, ISO, and other styles
6

Eliscovich, Carolina. "Spindle-Localized CPE-Mediated Translation Controls Mediotic Chromosome Segregation." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7123.

Full text
Abstract:
La progresión meiótica y el desarrollo embrionario temprano están programados, en parte, por la activación tradcuccional de mRNAs maternos como lo son los que codifican para las proteinas de ciclina B1 o mos. Estos mRNAs no son traducidos al mismo tiempo ni en el mismo lugar. Por lo contrario, su traducción está especificamente regulada por elementos de poliadenilación citoplasmática (CPEs) presentes en sus 3'UTRs. Los elementos CPEs reclutan a la proteina de unión a CPE (CPE-binding protein CPEB (Colegrove-Otero et al., 2005; de Moor et al., 2005; Mendez and Richter, 2001; Richter, 2007)). Esta proteina de unión al RNA no sólo determina cuándo y en qué medida un mRNA será activado traduccionalmente por poliadenilación citoplasmática (Mendez et al., 2000a; Mendez et al., 2000b; Mendez et al., 2002) sino que también participa, junto con el represor de la traducción Maskin, en el transporte y la localización de sus mRNAs diana hacia los sitios de localización subcelular donde su traducción ocurrirá (Huang et al., 2003; Huang and Richter, 2004). Durante el desarrollo embrionario de Xenopus, CPEB se encuentra localizada en el polo animal de los oocitos y más tarde, sobre el huso mitótico y centrosomas en el embrión (Groisman et al., 2000). Se ha demostrado que embriones de Xenopus inyectados con agentes que interrumpen la traducción dependiente de poliadenilación citoplasmática, detienen la división celular y presentan estructuras mitóticas anormales (Groisman et al., 2000).
En este trabajo que derivó en mi tesis doctoral, hemos demostrado que la activación traduccional localizada en el huso mitótico de mRNAs regulados por CPEB que codifican para proteinas con una conocida función en aspectos estructurales del ciclo celular como la formación del huso mitótico y la segregación cromosómica, es esencial para completar la primera división meiótica y para la correcta segregación cromosómica en oocitos de Xenopus.
APA, Harvard, Vancouver, ISO, and other styles
7

Reynolds, Joanna Elizabeth. "Initiation of hepatitis C virus RNA translation." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hunt, Sarah Louise. "Cellular proteins required for rhinovirus RNA translation." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lempke, Carola. "Internal initiation of translation of cardiovirus RNA." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donlevy, Alison. "Regulation of RNA translation by phenethyl isothiocyanate." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/362491/.

Full text
Abstract:
Phenethyl isothiocyanate (PEITC) is a dietary phytochemical that has received considerable interest for its potential chemopreventive/therapeutic anti -cancer activity. PEITC inhibits cancer cell proliferation and/or survival in vitro, suppresses angiogenesis and decreases tumour growth in vivo with little toxicity. However, the mechanisms by which PEITC exerts its anti-cancer effects are not known. The goal of this project was to investigate the hypothesis that anti-cancer effects ofPEITC may involve inhibition of mRNA translation. Effects of PEITC on global mRNA translation were first studied in human MCF7 breast cancer cells using both polysome proflling and 35S-metabolic labelling experiments. PEITC caused a dose- and time-dependent inhibition of mRNA translation, which was partially reversed following removal of PEITC. Inhibition of mRNA translation was associated with decreased expression of HIFla and VEGF, two proteins that are key for pro-angiogenic responses of malignant cells, in both normoxic and hypoxic conditions, at least in part via effects on translation of HlF1A and VEGF mRNAs. Although PEITC has previously been shown to inhibit signalling via the mTORC I pathway, further analysis demonstrated that PEITC also caused a rapid increase in phosphorylation of eIF2a at SerSI which can result in inhibition of initiation of mRNA translation. Increased eIF2a phosphorylation was important for PEITCmediated inhibition of mRNA translation since mouse embryo fIbroblasts expressing nonphosphorylatable eIF2a were relatively resistant to PEITC-induced inhibition of mRNA translation compared to control cells. In addition, PEITC caused the accumulation of stress granules, which have previously been associated with translationally stalled InRNAs. To extend these results to a more clinically relevant setting, further studies were performed using cells isolated fi'om the blood of patients with chronic lymphocytic leukaemia (CLL), the most common leukaemia in the Western world. Signalling via the B-cell receptor (BCR) is known to play a major role in the development and progression of CLL, and studies first investigated how BCR stimulation altered mRNA translation in primary CLL cells. Stimulation of surface IgM (sIgM) resulted in signiflcant, but variable, increases in mRNA translation. Overall, increases in InRNA translation were higher in samples that were considered as sIgM responsive (based on previous analysis of anti-IgM-induced intracellular Ca2+ mobilisation) compared to non-responsive samples, and in samples stimulated with anti-IgM compared to anti-IgD. Anti-IgM also increased expression of MYC and MCLl, two key targets for CLL proliferation and survival, via increased transcription and mRNA translation. ,PEITC inhibited both basal and anti-IgM-induced RNA translation, whereas ibrutinib and tamatinib, inhibitors of the BCR-associated signalling kinase BTK and SYK, predominantly inhibited antiIgM- induced mRNA translation. PEITC, ibrutinib and tamatinib also decreased translation of MYC and MCLl RNAs in anti-IgM treated cells. Similar to MCF7 cells, PEITC caused a rapid increase in eIF2a phosphorylation in CLL cells. Overall, these results are consistent with the hypothesis that inhibition of mRNA translation by PEITC may contribute to its anti-cancer effects. In particular, the work has revealed the eIF2a pathway as a novel target for PEITC and uncovered new links between translation and BCR signalling in human leukaemia. Inhibition of mRNA translation, in response to PEITC or novel kinase inhibitors may play an important role in the therapeutic effects of these agents.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "RNA localization and translation"

1

Maylath, Bruce, and Kirk St.Amant, eds. Translation and Localization. London ; New York, NY : Routledge, 2019. |: Routledge, 2019. http://dx.doi.org/10.4324/9780429453670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richter, Dietmar, ed. Cell Polarity and Subcellular RNA Localization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-40025-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dunne, Keiran J., and Elena S. Dunne, eds. Translation and Localization Project Management. Amsterdam: John Benjamins Publishing Company, 2011. http://dx.doi.org/10.1075/ata.xvi.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pym, Anthony. The moving text: Localization, translation, and distribution. Amsterdam: Benjamins, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The moving text: Localization, translation, and distribution. Amsterdam: John Benjamins Pub. Co., 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Translation and localization project management: The art of the possible. Amsterdam: John Benjamins Pub. Co., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dunne, Keiran J. Translation and localization project management: The art of the possible. Amsterdam: John Benjamins Pub. Co., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Firm), Lingo Systems. The guide to translation and localization: Communicating with the global marketplace. 7th ed. Portland, OR: Lingo Systems, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Firm), Lingo Systems, ed. The guide to translation and localization: Communicating with the global marketplace. 6th ed. [Portland, OR]: Lingo Systems, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jobling, S. A. In vitro and in vivo translation of tobacco ringspot virus RNA. Birmingham: University of Birmingham, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "RNA localization and translation"

1

Lin, Julie Qiaojin, and Jean-Michel Cioni. "Live Imaging of RNA Transport and Translation in Xenopus Retinal Axons." In Methods in Molecular Biology, 49–69. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1990-2_3.

Full text
Abstract:
AbstractIn neurons, specific mRNAs are transported into axons, where their local translation supports essential cellular functions. Over the years, our knowledge of the molecular mechanisms underlying axonal mRNA translation has rapidly expanded. However, tools to study mRNA localization and translation in real time with high spatial precision were not available until recently. Here, we present a live imaging approach to examine axonal mRNA trafficking and translation simultaneously in Xenopus retinal ganglion cells (RGCs), using in vitro synthesized fluorescently labeled mRNAs coupled with a genetically encoded protein tagging system to visualize synthesizing peptides at single-molecule resolution. We further describe the process of image analysis in detail, thus providing a methodology that can be used to investigate new research questions in the field.
APA, Harvard, Vancouver, ISO, and other styles
2

Veyrune, J. L., J. Hesketh, and J. M. Blanchard. "3´ Untranslated Regions of c-myc and c-fos mRNAs: Multifunctional Elements Regulating mRNA Translation, Degradation and Subcellular Localization." In Cytoplasmic fate of messenger RNA, 35–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60471-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pięta, Hanna, Rita Bueno Maia, and Ester Torres-Simón. "Localization." In Indirect Translation Explained, 78–108. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003035220-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bowker, Lynne. "Localization." In De-mystifying Translation, 111–26. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003217718-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moorthy, Balaji T., and Ralf-Peter Jansen. "mRNA Localization." In Fungal RNA Biology, 135–57. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05687-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiménez-Crespo, Miguel A. "Localization." In Routledge Encyclopedia of Translation Studies, 299–305. 3rd ed. Third edition. | London ; New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781315678627-64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

VanDyk, John K. "Localization and Translation." In Pro Drupal Development, 407–38. Berkeley, CA: Apress, 2008. http://dx.doi.org/10.1007/978-1-4302-0990-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tomlinson, Todd, and John K. VanDyk. "Localization and Translation." In Pro Drupal 7 Development, 417–49. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2839-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schäler, Reinhard. "Localization and translation." In Handbook of Translation Studies, 209–14. Amsterdam: John Benjamins Publishing Company, 2010. http://dx.doi.org/10.1075/hts.1.loc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Svoboda, Tomáš. "Computing and Translation." In Translation and Localization, 181–218. London ; New York, NY : Routledge, 2019. |: Routledge, 2019. http://dx.doi.org/10.4324/9780429453670-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "RNA localization and translation"

1

Yao, Yazhi. "An Ontology-Based Translation Memory Model in Localization Translation." In 2010 International Symposium on Information Science and Engineering (ISISE). IEEE, 2010. http://dx.doi.org/10.1109/isise.2010.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BLENCOWE, BENJAMIN, STEVEN BRENNER, TIMOTHY HUGHES, and QUAID MORRIS. "POST-TRANSCRIPTIONAL GENE REGULATION: RNA-PROTEIN INTERACTIONS, RNA PROCESSING, MRNA STABILITY AND LOCALIZATION." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812836939_0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orjalo, Arturo V., and Hans E. Johansson. "Abstract A2-44: Stellaris® RNA fluorescence in situ hybridization (RNA FISH) for the detection of long non coding RNA biomarkers." In Abstracts: AACR Special Conference: Translation of the Cancer Genome; February 7-9, 2015; San Francisco, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.transcagen-a2-44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lopes, Nuno G., and Carlos J. Costa. "ERP localization: exploratory study in translation." In the 26th annual ACM international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1456536.1456555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Girault, Benjamin, Paulo Goncalves, Shrikanth S. Narayanan, and Antonio Ortega. "Localization bounds for the graph translation." In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016. http://dx.doi.org/10.1109/globalsip.2016.7905858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belgacem, Ismail, Edith Grac, Delphine Ropers, and Jean-Luc Gouze. "Stability analysis of a reduced transcription-translation model of RNA polymerase." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Sheng, Wei Gao, Yiming Wan, and Yihong Wu. "Scene-Unified Image Translation For Visual Localization." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9190885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perillo, Evan P., Leyma De Haro, Mary E. Phipps, Jennifer S. Martinez, Hsin-Chih Yeh, Andrew K. Dunn, Douglas P. Shepherd, and James H. Werner. "Enhanced 3D localization of individual RNA transcripts via astigmatic imaging." In SPIE BiOS, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2014. http://dx.doi.org/10.1117/12.2038197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charalampidou, Parthena. "The use of corpora in an interdisciplinary approach to localization." In TRanslation and Interpreting Technology ONline. INCOMA Ltd. Shoumen, BULGARIA, 2021. http://dx.doi.org/10.26615/978-954-452-071-7_025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Qian. "On Localization Strategies of E-C Trademark Translation." In 2018 2nd International Conference on Education, Economics and Management Research (ICEEMR 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/iceemr-18.2018.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "RNA localization and translation"

1

Lapidot, Moshe, and Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604274.bard.

Full text
Abstract:
Tomato yellow leaf curl virus (TYLCV) is a major pathogen of tomato that causes extensive crop loss worldwide, including the US and Israel. Genetic resistance in the host plant is considered highly effective in the defense against viral infection in the field. Thus, the best way to reduce yield losses due to TYLCV is by breeding tomatoes resistant or tolerant to the virus. To date, only six major TYLCV-resistance loci, termed Ty-1 to Ty-6, have been characterized and mapped to the tomato genome. Among tomato TYLCV-resistant lines containing these loci, we have identified a major recessive quantitative trait locus (QTL) that was mapped to chromosome 4 and designated ty-5. Recently, we identified the gene responsible for the TYLCV resistance at the ty-5 locus as the tomato homolog of the gene encoding messenger RNA surveillance factor Pelota (Pelo). A single amino acid change in the protein is responsible for the resistant phenotype. Pelo is known to participate in the ribosome-recycling phase of protein biosynthesis. Our hypothesis was that the resistant allele of Pelo is a “loss-of-function” mutant, and inhibits or slows-down ribosome recycling. This will negatively affect viral (as well as host-plant) protein synthesis, which may result in slower infection progression. Hence we have proposed the following research objectives: Aim 1: The effect of Pelota on translation of TYLCV proteins: The goal of this objective is to test the effect Pelota may or may not have upon translation of TYLCV proteins following infection of a resistant host. Aim 2: Identify and characterize Pelota cellular localization and interaction with TYLCV proteins: The goal of this objective is to characterize the cellular localization of both Pelota alleles, the TYLCV-resistant and the susceptible allele, to see whether this localization changes following TYLCV infection, and to find out which TYLCV protein interacts with Pelota. Our results demonstrate that upon TYLCV-infection the resistant allele of pelota has a negative effect on viral replication and RNA transcription. It is also shown that pelota interacts with the viral C1 protein, which is the only viral protein essential for TYLCV replication. Following subcellular localization of C1 and Pelota it was found that both protein localize to the same subcellular compartments. This research is innovative and potentially transformative because the role of Peloin plant virus resistance is novel, and understanding its mechanism will lay the foundation for designing new antiviral protection strategies that target translation of viral proteins. BARD Report - Project 4953 Page 2
APA, Harvard, Vancouver, ISO, and other styles
2

Loebenstein, Gad, William O. Dawson, and Abed Gera. Further Characterization of IVR Isolation of its M-RNA, and its Relation to Localization and Necrotization. United States Department of Agriculture, August 1986. http://dx.doi.org/10.32747/1986.7566706.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Loebenstein, Gad, William Dawson, and Abed Gera. Association of the IVR Gene with Virus Localization and Resistance. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7604922.bard.

Full text
Abstract:
We have reported that localization of TMV in tobacco cultivars with the N gene, is associated with a 23 K protein (IVR) that inhibited replication of several plant viruses. This protein was also found in induced resistant tissue of Nicotiana glutinosa x Nicotiana debneyi. During the present grant we found that TMV production is enhanced in protoplasts and plants of local lesion responding tobacco cultivars exposed to 35oC, parallel to an almost complete suppression of the production of IVR. We also found that IVR is associated with resistance mechanisms in pepper cultivars. We succeeded to clone the IVR gene. In the first attempt we isolated a clone - "101" which had a specific insert of 372 bp (the full length gene for the IVR protein of 23 kD should be around 700 bp). However, attempts to isolate the full length gene did not give clear cut results, and we decided not to continue with this clone. The amino acid sequence of the N-terminus of IVR was determined and an antiserum was prepared against a synthetic peptide representing amino acids residues 1-20 of IVR. Using this antiserum as well as our polyclonal antiserum to IVR a new clone NC-330 was isolated using lamba-ZAP library. This NC-330 clone has an insert of about 1 kB with an open reading frame of 596 bp. This clone had 86.6% homology with the first 15 amino acids of the N-terminal part of IVR and 61.6% homology with the first 23 amino acids of IVR. In the QIA expression system and western blotting of the expressed protein, a clear band of about 21 kD was obtained with IVR antiserum. This clone was used for transformation of Samsun tobacco plants and we have presently plantlets which were rooted on medium containing kanamycin. Hybridization with this clone was also obtained with RNA from induced resistant tissue of Samsun NN but not with RNA from healthy control tissue of Samsun NN, or infected or healthy tissue of Samsun. This further strengthens the previous data that the NC 330 clone codes for IVR. In the U.S. it was shown that IVR is induced in plants containing the N' gene when infected with mutants of TMV that elicit the HR. This is a defined system in which the elicitor is known to be due to permutations of the coat protein which can vary in elicitor strength. The objective was to understand how IVR synthesis is induced after recognition of elicitor coat protein in the signal transduction pathway that leads to HR. We developed systems to manipulate induction of IVR by modifying the elicitor and are using these elicitor molecules to isolate the corresponding plant receptor molecules. A "far-western" procedure was developed that found a protein from N' plants that specifically bind to elicitor coat proteins. This protein is being purified and sequenced. This objective has not been completed and is still in progress. We have reported that localization of TMV in tobacco cultivars with the N gene, is associated with a 23 K protein (IVR) that inhibited replication of several plant viruses. This protein was also found in induced resistant tissue of Nicotiana glutinosa x Nicotiana debneyi.
APA, Harvard, Vancouver, ISO, and other styles
4

Citovsky, Vitaly, and Yedidya Gafni. Suppression of RNA Silencing by TYLCV During Viral Infection. United States Department of Agriculture, December 2009. http://dx.doi.org/10.32747/2009.7592126.bard.

Full text
Abstract:
The Israeli isolate of Tomato yellow leaf curl geminivirus (TYLCV-Is) is a major tomato pathogen, causing extensive (up to 100%) crop losses in Israel and in the south-eastern U.S. (e.g., Georgia, Florida). Surprisingly, however, little is known about the molecular mechanisms of TYLCV-Is interactions with tomato cells. In the current BARD project, we have identified a TYLCV-Is protein, V2, which acts as a suppressor of RNA silencing, and showed that V2 interacts with the tomato (L. esculentum) member of the SGS3 (LeSGS3) protein family known to be involved in RNA silencing. This proposal will use our data as a foundation to study one of the most intriguing, yet poorly understood, aspects of TYLCV-Is interactions with its host plants – possible involvement of the host innate immune system, i.e., RNA silencing, in plant defense against TYLCV-Is and the molecular pathway(s) by which TYLCV-Is may counter this defense. Our project sought two objectives: I. Study of the roles of RNA silencing and its suppression by V2 in TYLCV-Is infection of tomato plants. II. Study of the mechanism by which V2 suppresses RNA silencing. Our research towards these goals has produced the following main achievements: • Identification and characterization of TYLCV V2 protein as a suppressor of RNA silencing. (#1 in the list of publications). • Characterization of the V2 protein as a cytoplasmic protein interacting with the plant protein SlSGS3 and localized mainly in specific, not yet identified, bodies. (#2 in the list of publications). • Development of new tools to study subcellular localization of interacting proteins (#3 in the list of publications). • Characterization of TYLCV V2 as a F-BOX protein and its possible role in target protein(s) degradation. • Characterization of TYLCV V2 interaction with a tomato cystein protease that acts as an anti-viral agent. These research findings provided significant insights into (I) the suppression of RNA silencing executed by the TYLCV V2 protein and (II) characterization some parts of the mechanism(s) involved in this suppression. The obtained knowledge will help to develop specific strategies to attenuate TYLCV infection, for example, by blocking the activity of the viral suppressor of gene silencing thus enabling the host cell silencing machinery combat the virus.
APA, Harvard, Vancouver, ISO, and other styles
5

Ostersetzer-Biran, Oren, and Alice Barkan. Nuclear Encoded RNA Splicing Factors in Plant Mitochondria. United States Department of Agriculture, February 2009. http://dx.doi.org/10.32747/2009.7592111.bard.

Full text
Abstract:
Mitochondria are the site of respiration and numerous other metabolic processes required for plant growth and development. Increased demands for metabolic energy are observed during different stages in the plants life cycle, but are particularly ample during germination and reproductive organ development. These activities are dependent upon the tight regulation of the expression and accumulation of various organellar proteins. Plant mitochondria contain their own genomes (mtDNA), which encode for a small number of genes required in organellar genome expression and respiration. Yet, the vast majority of the organellar proteins are encoded by nuclear genes, thus necessitating complex mechanisms to coordinate the expression and accumulation of proteins encoded by the two remote genomes. Many organellar genes are interrupted by intervening sequences (introns), which are removed from the primary presequences via splicing. According to conserved features of their sequences these introns are all classified as “group-II”. Their splicing is necessary for organellar activity and is dependent upon nuclear-encoded RNA-binding cofactors. However, to-date, only a tiny fraction of the proteins expected to be involved in these activities have been identified. Accordingly, this project aimed to identify nuclear-encoded proteins required for mitochondrial RNA splicing in plants, and to analyze their specific roles in the splicing of group-II intron RNAs. In non-plant systems, group-II intron splicing is mediated by proteins encoded within the introns themselves, known as maturases, which act specifically in the splicing of the introns in which they are encoded. Only one mitochondrial intron in plants has retained its maturaseORF (matR), but its roles in organellar intron splicing are unknown. Clues to other proteins required for organellar intron splicing are scarce, but these are likely encoded in the nucleus as there are no other obvious candidates among the remaining ORFs within the mtDNA. Through genetic screens in maize, the Barkan lab identified numerous nuclear genes that are required for the splicing of many of the introns within the plastid genome. Several of these genes are related to one another (i.e. crs1, caf1, caf2, and cfm2) in that they share a previously uncharacterized domain of archaeal origin, the CRM domain. The Arabidopsis genome contains 16 CRM-related genes, which contain between one and four repeats of the domain. Several of these are predicted to the mitochondria and are thus postulated to act in the splicing of group-II introns in the organelle(s) to which they are localized. In addition, plant genomes also harbor several genes that are closely related to group-II intron-encoded maturases (nMats), which exist in the nucleus as 'self-standing' ORFs, out of the context of their cognate "host" group-II introns and are predicted to reside within the mitochondria. The similarity with known group-II intron splicing factors identified in other systems and their predicted localization to mitochondria in plants suggest that nuclear-encoded CRM and nMat related proteins may function in the splicing of mitochondrial-encoded introns. In this proposal we proposed to (i) establish the intracellular locations of several CRM and nMat proteins; (ii) to test whether mutations in their genes impairs the splicing of mitochondrial introns; and to (iii) determine whether these proteins are bound to the mitochondrial introns in vivo.
APA, Harvard, Vancouver, ISO, and other styles
6

Elroy-Stein, Orna, and Dmitry Belostotsky. Mechanism of Internal Initiation of Translation in Plants. United States Department of Agriculture, December 2010. http://dx.doi.org/10.32747/2010.7696518.bard.

Full text
Abstract:
Original objectives Elucidation of PABP's role in crTMV148 IRES function in-vitro using wheat germ extract and krebs-2 cells extract. Fully achieved. Elucidation of PABP's role in crTMV148 IRES function in-vivo in Arabidopsis. Characterization of the physical interactions of PABP and other potential ITAFs with crTMV148 IRES. Partly achieved. To conduct search for additional ITAFs using different approaches and evaluate the candidates. Partly achieved. Background of the topic The power of internal translation via the activity of internal ribosomal entry site (IRES) elements allow coordinated synthesis of multiple gene products from a single transcription unit, and thereby enables to bypass the need for sequential transformation with multiple independent transgenes. The key goal of this project was to identify and analyze the IRES-trans-acting factors (ITAFs) that mediate the activity of a crucifer-infecting tobamovirus (crTMV148) IRES. The remarkable conservation of the IRES activity across the phylogenetic spectrum (yeast, plants and animals) strongly suggests that key ITAFs that mediate its activity are themselves highly conserved. Thus, crTMV148 IRES offers opportunity for elucidation of the fundamental mechanisms underlying internal translation in higher plants in order to enable its rational manipulation for the purpose of agricultural biotechnology. Major conclusions and achievements. - CrTMV IRES requires PABP for maximal activity. This conclusion was achieved by PABP depletion and reconstitution of wheat germ- and Krebs2-derived in-vitro translation assays using Arabidopsis-derived PABP2, 3, 5, 8 and yeast Pab1p. - Mutations in the internal polypurine tract of the IRES decrease the high-affinity binding of all phylogenetically divergent PABPs derived from Arabidopsis and yeast in electro mobility gel shift assays. - Mutations in the internal polypurine tract decrease IRES activity in-vivo. - The 3'-poly(A) tail enhances crTMV148 IRES activity more efficiently in the absence of 5'-methylated cap. - In-vivo assembled RNPs containing proteins specifically associated with the IRES were purified from HEK293 cells using the RNA Affinity in Tandem (RAT) approach followed by their identification by mass spectroscopy. - This study yielded a list of potential protein candidates that may serve as ITAFs of crTMV148 IRES activity, among them are a/b tubulin, a/g actin, GAPDH, enolase 1, ribonuclease/angiogenin inhibitor 1, 26S proteasome subunit p45, rpSA, eEF1Bδ, and proteasome b5 subunit. Implications, both scientific and agriculture. The fact that the 3'-poly(A) tail enhances crTMV148 IRES activity more efficiently in the absence of 5'-methylated cap suggests a potential joint interaction between PABP, the IRES sequence and the 3'-poly(A). This has an important scientific implication related to IRES function in general.
APA, Harvard, Vancouver, ISO, and other styles
7

Chamovitz, Daniel A., and Albrecht G. Von Arnim. eIF3 Complexes and the eIF3e Subunit in Arabidopsis Development and Translation Initiation. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7696545.bard.

Full text
Abstract:
The original working hypothesis of our proposal was that The “e” subunit of eIF3 has multiple functions from both within the nucleus and in the cytoplasm. Within this model, we further hypothesized that the “e” subunit of eIF3 functions in translation as a repressor. We proposed to test these hypotheses along the following specific aims: 1) Determine the subcellular localization of the interaction between eIF3e and other eIF3 subunits, or the COP9 signalosome. 2) Elucidate the biological significance of the varied subcellular localizations of eIF3e through generating Arabidopsis eIF3e alleles with altered subcellular localization. 3.) Purify different eIF3e complexes by tandem affinity purification (TAP). 4) Study the role of eIF3e in translational repression using both in vitro and in planta assays. eIF3 is an evolutionarily ancient and essential component of the translational apparatus in both the plant and animal kingdoms. eIF3 is the largest, and in some ways the most mysterious, of the translation factors. It is a multi-subunit protein complex that has a structural/scaffolding role in translation initiation. However, despite years of study, only recently have differential roles for eIF3 in the developmental regulation of translation been experimentally grounded. Furthermore, the roles of individual eIF3 subunits are not clear, and indeed some, such as the “e” subunit may have roles independent of translation initiation. The original three goals of the proposal were technically hampered by a finding that became evident during the course of the research – Any attempt to make transgenic plants that expressed eIF3e wt or eIF3e variants resulted in seedling lethality or seed inviability. That is, it was impossible to regenerate any transgenic plants that expressed eIF3e. We did manage to generate plants that expressed an inducible form of eIF3e. This also eventually led to lethality, but was very useful in elucidating the 4th goal of the research (Yahalom et al., 2008), where we showed, for the first time in any organism, that eIF3e has a repressory role in translation. In attempt to solve the expression problems, we also tried expression from the native promoter, and as such analyzed this promoter in transgenic plants (Epel, 2008). As such, several additional avenues were pursued. 1) We investigated protein-protein interactions of eIF3e (Paz-Aviram et al., 2008). 2) The results from goal #4 led to a novel hypothesis that the interaction of eIF3e and the CSN meets at the control of protein degradation of nascent proteins. In other words, that the block in translation seen in csn and eIF3e-overexpressing plants (Yahalom et al., 2008) leads to proteasome stress. Indeed we showed that both over expression of eIF3e and the csn mutants lead to the unfolded protein response. 3) We further investigated the role of an additional eIF3 subunit, eIF3h, in transalational regulation in the apical meristem (Zhou et al., 2009). Epel, A. (2008). Characterization of eIF3e in the model plant Arabidopsis thaliana. In Plant Sciences (Tel Aviv, Tel Aviv University). Paz-Aviram, T., Yahalom, A., and Chamovitz, D.A. (2008). Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome. Plant Signaling and Behaviour 3, 409-411. Yahalom, A., Kim, T.H., Roy, B., Singer, R., von Arnim, A.G., and Chamovitz, D.A. (2008). Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J 53, 300-311. Zhou, F., Dunlap, J.R., and von Arnim, A.G. The translation initiation factor subunit eIF3h is .1 involved in Arabidopsis shoot apical meristem maintenance and auxin response. (submitted to Development).
APA, Harvard, Vancouver, ISO, and other styles
8

Stern, David, and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575289.bard.

Full text
Abstract:
The steady-state level of a given mRNA is determined by its rates of transcription and degradation. The stabilities of chloroplast mRNAs vary during plant development, in part regulating gene expression. Furthermore, the fitness of the organelle depends on its ability to destroy non-functional transcripts. In addition, there is a resurgent interest by the biotechnology community in chloroplast transformation due to the public concerns over pollen transmission of introduced traits or foreign proteins. Therefore, studies into basic gene expression mechanisms in the chloroplast will open the door to take advantage of these opportunities. This project was aimed at gaining mechanistic insights into mRNA processing and degradation in the chloroplast and to engineer transcripts of varying stability in Chlamydomonas reinhardtii cells. This research uncovered new and important information on chloroplast mRNA stability, processing, degradation and translation. In particular, the processing of the 3' untranslated regions of chloroplast mRNAs was shown to be important determinants in translation. The endonucleolytic site in the 3' untranslated region was characterized by site directed mutagensis. RNA polyadenylation has been characterized in the chloroplast of Chlamydomonas reinhardtii and chloroplast transformants carrying polyadenylated sequences were constructed and analyzed. Data obtained to date suggest that chloroplasts have gene regulatory mechanisms which are uniquely adapted to their post-endosymbiotic environment, including those that regulate RNA stability. An exciting point has been reached, because molecular genetic studies have defined critical RNA-protein interactions that participate in these processes. However, much remains to be learned about these multiple pathways, how they interact with each other, and how many nuclear genes are consecrated to overseeing them. Chlamydomonas is an ideal model system to extend our understanding of these areas, given its ease of manipulation and the existing knowledge base, some of which we have generated.
APA, Harvard, Vancouver, ISO, and other styles
9

Stern, David B., and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast: Control of mRNA Stability and Transcription Termination. United States Department of Agriculture, December 1993. http://dx.doi.org/10.32747/1993.7568750.bard.

Full text
Abstract:
Chloroplasts are the site of photosynthesis and of other essential biosynthetic activities in plant cells. Chloroplasts are semi-autonomous organelles, since they contain their own genomes and protein biosynthetic machinery, but depend on the coordinate expression of nuclear genes to assemble macromolecular complexes. The bioeingineering of plants requires manipulation of chloroplast gene expression, and thus a knowledge of the molecular mechanisms that modulate mRNA and protein production. In this proposal the heterotrophic green alga Chlamydomonas reinhardtii has been used as a model system to understand the control and interrelationships between transcription termination, mRNA 3' end processing and mRNA stability in chloroplasts. Chlamydomonas is a unique and ideal system in which to address these issues, because the chloroplast can be easily manipulated by genetic transformation techniques. This research uncovered new and important information on chloroplast mRNA 3' end formation and mRNA stability. In particular, the 3' untranslated regions of chloroplast mRNAs were shown not to be efficient transcription terminators. The endonucleolytic site in the 3' untranslated region was characterized by site directed mutagensis and the role of several 3' untranslated regions in modulating RNA stability and translation has been studied. This information will allow us to experimentally manipulate the expression of chloroplast genes in vivo by post-transcriptional mechanisms, and should be widely applicable to other higher plant systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Elizur, Abigail, Amir Sagi, Gideon Hulata, Clive Jones, and Wayne Knibb. Improving Crustacean Aquaculture Production Efficiencies through Development of Monosex Populations Using Endocrine and Molecular Manipulations. United States Department of Agriculture, June 2010. http://dx.doi.org/10.32747/2010.7613890.bard.

Full text
Abstract:
Background Most of Australian prawn aquaculture production is based on P. monodon. However, the Australian industry is under intense competition from lower priced overseas imports. The availability of all-female monosex populations, by virtue of their large size and associated premium prize, will offer competitive advantage to the industry which desperately needs to counteract competitors within this market. As for the redclaw production in Israel, although it is at its infancy, the growers realized that the production of males is extremely advantageous and that such management strategy will change the economic assumptions and performances of this aquaculture to attract many more growers. Original objectives (as in original proposal) Investigating the sex inheritance mechanism in the tiger prawn. Identification of genes expressed uniquely in the androgenic gland (AG) of prawns and crayfish. The above genes and/or their products will be used to localize the AG in the prawn and manipulate the AG activity in both species. Production of monosex populations through AG manipulation. In the prawn, production of all-female populations and in the crayfish, all-male populations. Achievements In the crayfish, the AG cDNA library was further screened and a third AG specific transcript, designated Cq-AG3, had been identified. Simultaneously the two AG specific genes, which were previously identified, were further characterized. Tissue specificity of one of those genes, termed Cq-AG2, was demonstrated by northern blot hybridization and RNA in-situ hybridization. Bioinformatics prediction, which suggested a 42 amino acid long signal anchor at the N-terminus of the deduced Cq-AG2, was confirmed by immunolocalization of a recombinant protein. Cq-IAG's functionality was demonstrated by dsRNA in-vivo injections to intersex crayfish. Cq-IAGsilencing induced dramatic sex-related alterations, including male feature feminization, reduced sperm production, extensive testicular apoptosis, induction of the vitellogeningene expression and accumulation of yolk proteins in the ovaries. In the prawn, the AG was identified and a cDNA library was created. The putative P. monodonAG hormone encoding gene (Pm-IAG) was identified, isolated and characterized for time of expression and histological localization. Implantation of the AG into prawn post larvae (PL) and juveniles resulted in phenotypic transformation which included the appearance of appendix masculina and enlarged petasma. The transformation however did not result in sex change or the creation of neo males thus the population genetics stage to be executed with Prof. Hulata did not materialized. Repeated AG implantation is currently being trialed. Major conclusions and Implications, both scientific and agricultural Cq-IAG's involvement in male sexual differentiation had been demonstrated and it is strongly suggested that this gene encodes an AG hormone in this crayfish. A thorough screening of the AG cDNA library shows Cq-IAG is the prominent transcript within the library. However, the identification of two additional transcripts hints that Cq-IAG is not the only gene mediating the AG effects. The successful gene silencing of Cq-IAG, if performed at earlier developmental stages, might accomplish full and functional sex reversal which will enable the production of all-male crayfish populations. Pm-IAG is likely to play a similar role in prawns. It is possible that repeated administration of the AG into prawn will lead to the desired full sex reversal, so that WZ neo males, crossed with WZ females can result in WW females, which will form the basis for monosex all-female population.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography