Academic literature on the topic 'RNA: DNA hybrides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RNA: DNA hybrides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RNA: DNA hybrides"
Yang, Xuan, Binyuan Zhai, Shunxin Wang, Xiangfei Kong, Yingjin Tan, Lin Liu, Xiao Yang, Taicong Tan, Shuxian Zhang, and Liangran Zhang. "RNA-DNA hybrids regulate meiotic recombination." Cell Reports 37, no. 10 (December 2021): 110097. http://dx.doi.org/10.1016/j.celrep.2021.110097.
Full textKamath-Loeb, Ashwini S., Amnon Hizi, John Tabone, Marjorie S. Solomon, and Lawrence A. Loeb. "Inefficient Repair of RNA . DNA Hybrids." European Journal of Biochemistry 250, no. 2 (December 1997): 492–501. http://dx.doi.org/10.1111/j.1432-1033.1997.0492a.x.
Full textWaldron, Denise. "RNA–DNA hybrids: double-edged swords." Nature Reviews Genetics 18, no. 1 (November 21, 2016): 3. http://dx.doi.org/10.1038/nrg.2016.153.
Full textHall, Kathleen B. "NMR spectroscopy of DNA/RNA hybrids." Current Opinion in Structural Biology 3, no. 3 (June 1993): 336–39. http://dx.doi.org/10.1016/s0959-440x(05)80103-4.
Full textKim, Joung Sug, Junghyun Park, Jang Hyeon Choi, Seungjae Kang, and Nokyoung Park. "RNA–DNA hybrid nano-materials for highly efficient and long lasting RNA interference effect." RSC Advances 13, no. 5 (2023): 3139–46. http://dx.doi.org/10.1039/d2ra06249f.
Full textDi, Lin, Yusi Fu, Yue Sun, Jie Li, Lu Liu, Jiacheng Yao, Guanbo Wang, et al. "RNA sequencing by direct tagmentation of RNA/DNA hybrids." Proceedings of the National Academy of Sciences 117, no. 6 (January 27, 2020): 2886–93. http://dx.doi.org/10.1073/pnas.1919800117.
Full textPaull, Tanya T. "RNA–DNA hybrids and the convergence with DNA repair." Critical Reviews in Biochemistry and Molecular Biology 54, no. 4 (July 4, 2019): 371–84. http://dx.doi.org/10.1080/10409238.2019.1670131.
Full textHuang, Yuegao, Congju Chen, and Irina M. Russu. "Structural Energetics of Two RNA-DNA Hybrids." Biophysical Journal 96, no. 3 (February 2009): 578a. http://dx.doi.org/10.1016/j.bpj.2008.12.3022.
Full textVydzhak, Olga, Brian Luke, and Natalie Schindler. "Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond." Journal of Molecular Biology 432, no. 15 (July 2020): 4287–304. http://dx.doi.org/10.1016/j.jmb.2020.05.011.
Full textAguilera, Andrés, and Belén Gómez-González. "DNA–RNA hybrids: the risks of DNA breakage during transcription." Nature Structural & Molecular Biology 24, no. 5 (May 2017): 439–43. http://dx.doi.org/10.1038/nsmb.3395.
Full textDissertations / Theses on the topic "RNA: DNA hybrides"
Cohen, Sarah. "Le rôle de senataxine dans la résolution des hybrides ARN : ADN aux cassures double brins de l'ADN." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30125.
Full textActively transcribed genes can be the source of genome instability through numerous mechanisms. Those genes are characterized by the formation of secondary structures such as RNA-DNA hybrids. They are formed when nascent RNA exiting RNA polymerase II hybridizes single stranded DNA. Numerous studies have shown that RNA-DNA hybrids accumulation can lead to DNA damages. Among those damages, DNA double strand breaks (DSB) are the most deleterious for cells since they can generate mutations and chromosomal rearrangements. Two major repair mechanisms exist in the cell: Non-Homologous End-Joining (NHEJ) and Homologous recombination (HR). My lab showed recently that DSB occurring in transcribed genes are preferentially repaired by HR. Moreover, multiple studies have shown a cross talk between transcription and DSB repair. Those results led us to propose that actively transcribed genes could be repaired by a specific mechanism implicating proteins associated with transcription: "Transcription-coupled DSB repair". During my PhD, using the DIvA (DSB Induction via AsiSI) cell line allowing the induction of annotated DSB through the genome, I worked on 2 projects focusing on DSB repair in transcribed genes. First, we showed that DSB repair in transcribed loci requires a known RNA: DNA helicase: senataxin (SETX). After DSB induction in an active gene, SETX is recruited which allows RNA-DNA hybrid resolution (mapped by DRIP-seq). We also showed that SETX activity allows RAD51 loading and limits DSB illegitimate rejoining and consequently promotes cell survival after DSB induction. This study shows that DSB in transcribed loci require specific RNA-DNA hybrids removal by SETX for accurate repair. Second, we showed an interplay between SETX and Bloom (BLM) a G4 DNA helicase in DSB repair induced in transcribed loci. We showed that BLM is also recruited at DSB in transcribed loci where it promotes resection and repair fidelity. Strikingly, we showed that BLM depletion rescued the survival defects observed in SETX depleted cells following DSB induction. Knock down of other G4-helicases (RTEL1, FANCJ) also promoted cell survival in SETX depleted cells upon damage. Those data suggest an interplay between G4 helicases and RNA: DNA resolution for DSB repair in active genes. Altogether, these studies promote a better understanding of the specificity of DSB repair in transcriptionally active genes, and notably identification of proteins involved in "Transcription-coupled DSB repair"
Liu, Yaqun. "Study of transcription-replication conflict and its role in genomic instability and cancer development." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS083.
Full textReplication and transcription machinery can cause transcription-replication conflicts (TRCs), which occur either frontally or co-directionally. The head-on collision is considered to be the most deleterious and can lead to genomic instability through R-loops that consist of a DNA-RNA hybrid and a displaced DNA strand. By analyzing multi-omics data, we successfully revealed that transient replication forks pause at the 3' of genes enriched in R-loops with more head-on collisions affects genomic stability in a Topoisomerase1-dependent manner (Nat. Commons . 2020) then I developed the first bioinformatics tool to analyze replication data (OKseqHMM, available on GitHub, Liu et al. BioRxiv. 2022). Finally, it has recently been shown that in breast cancer cells, R-loops strongly colocalize with an increase in DNA breaks, in a replication-dependent manner. We aim to study TRC in cancer cells and samples from cancer patients to determine how replicative stress induces genomic instability in cancer development, which may contribute to the establishment of new therapeutic strategies against cancer
D'ALESSANDRO, GIUSEPPINA. "THE ROLE OF RNA AND DNA:RNA HYBRIDS AT DNA DOUBLE-STRAND BREAKS." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/562552.
Full textXiong, Yong. "X-Ray crystallographic studies on DNA, RNA hybrids and duplexes containing single bulges /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488194825668504.
Full textNovoa, Carolina. "RecQ-like helicase SGS1 counteracts DNA : RNA hybrid induced genome instability." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60964.
Full textScience, Faculty of
Graduate
Yang, Diya. "Genome-wide Analysis of F1 Hybrids to Determine the Initiation of Epigenetic Silencing in Maize." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1610098527086245.
Full textLy, Danith. "Mechanism of electron transfer in double-stranded DNA and PNA-DNA hybrids, and the development of a fluorescence probe for DNA and RNA detection." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30485.
Full textRigby, Rachel Elizabeth. "Ribonuclease H2, RNA:DNA hybrids and innate immunity." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/6509.
Full textIslam, Mohammad Kaisarul. "Novel ligands targeting the DNA/RNA hybrid and telomeric quadruplex as potential anticancer agents." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/novel-ligands-targeting-the-dnarna-hybrid-and-telomeric-quadruplex-as-potential-anticancer-agents(ce8f3d0e-317d-4c2e-b64a-e13e283f7b95).html.
Full textBeckedorff, Felipe César Ferrarezi. "Recrutamento do complexo repressivo polycomb 2 pelo RNA não codificador longo antissenso ANRASSF1 modula a expressão do gene RASSF1A e a proliferação celular." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-23042013-083641/.
Full textTumor-suppressor RASSF1A gene down-regulation has been implicated in increasing cell proliferation in several tumors. Its expression is regulated by epigenetic events involving polycomb repressive complex 2 (PRC2), however the molecular mechanisms modulating recruitment of this epigenetic modifier to the locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand of RASSF1 gene in several cell lines and tissues, and binds to PRC2. ANRASSF1 is transcribed by RNA Polymerase II, 5\'-capped, polyadenylated, displays nuclear localization, and has on average a four-fold shorter half-life compared to other lncRNAs that bind PRC2. ANRASSF1 ectopic overexpression decreases RASSF1A abundance and increases the proliferation rate of HeLa cells, whereas its silencing causes opposite effects. These changes in NRASSF1 levels do not affect RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase both in PRC2 occupancy and in histone H3K27me3 repressive mark specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression is detected on PRC2 occupancy and on histone H3K27me3 at the promoter regions of RASSF1C and of four other neighbor genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrate that ANRASSF1 forms an RNA/DNA hybrid, and recruits SUZ12, a PRC2 component, to the RASSF1A promoter. Notably, depletion of ANRASSF1 disrupts SUZ12 occupancy on RASSF1A promoter as measured by RNAse-ChIP assay. Together, these results show a new mechanism of epigenetic repression of RASSF1A tumor suppressor gene involving an antisense unspliced lncRNA, in which ANRASSF1 selectively represses expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome may contribute to a location-specific epigenetic modulation of genes.
Book chapters on the topic "RNA: DNA hybrides"
Martins, Angelica N., Weina Ke, Vaishnavi Jawahar, Morriah Striplin, Caryn Striplin, Eric O. Freed, and Kirill A. Afonin. "Intracellular Reassociation of RNA–DNA Hybrids that Activates RNAi in HIV-Infected Cells." In RNA Nanostructures, 269–83. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7138-1_18.
Full textRolband, Lewis A., Weina Ke, and Kirill A. Afonin. "Aptamer Conjugated RNA/DNA Hybrid Nanostructures Designed for Efficient Regulation of Blood Coagulation." In RNA Nanostructures, 277–86. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3417-2_19.
Full textGarcía-Rubio, María, Sonia I. Barroso, and Andrés Aguilera. "Detection of DNA-RNA Hybrids In Vivo." In Methods in Molecular Biology, 347–61. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7306-4_24.
Full textWagner, Carolin B., and Brian Luke. "DNA–RNA Hybrids at Telomeres in Budding Yeast." In R-Loops, 145–57. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_10.
Full textWheelhouse, Richard T., and Jonathan B. Chaires. "Drug Binding to DNA⋅RNA Hybrid Structures." In Methods in Molecular Biology, 55–70. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-418-0_4.
Full textLane, D. J., and M. L. Collins. "Current Methods for Detection of DNA/Ribosomal RNA Hybrids." In Rapid Methods and Automation in Microbiology and Immunology, 54–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76603-9_8.
Full textAbakir, Abdulkadir, Fahad Alenezi, and Alexey Ruzov. "Detecting and Mapping N6-Methyladenosine on RNA/DNA Hybrids." In R-Loops, 329–44. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_22.
Full textMajeed, Saadat, Muhammad Umer Farooq, Sayed Tayyab Raza Naqvi, Batool Fatima, Muhammad Najam-ul-Haq, Sabahat Majeed, Fahad Ali, and Naeem Akhtar Khan. "MOF-based Electrochemical Sensors for DNA/RNA/ATP." In Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 237–47. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003188148-25.
Full textStarczak, Marta, Abdulkadir Abakir, Alexey Ruzov, and Daniel Gackowski. "Detection and Quantification of RNA Modifications on RNA–DNA Hybrids Using SID-UPLC-MS/MS." In R-Loops, 127–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_9.
Full textSilva, Sónia, Cristina Guillén-Mendoza, and Andrés Aguilera. "RNase H1 Hybrid-Binding Domain-Based Tools for Cellular Biology Studies of DNA–RNA Hybrids in Mammalian Cells." In R-Loops, 115–25. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_8.
Full textConference papers on the topic "RNA: DNA hybrides"
Rajput, B., D. Alaimo, A. M. Asselbergs, and E. Reich. "CONSTRUCTION AND EXPRESSION OF HYBRID PLASMINOGEN ACTIVATOR GENES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644412.
Full textMaciag, Anna E., Joseph E. Saavedra, Ryan J. Holland, Youseung Kim, Vandana Kumari, Christina E. Luthers, Waheed S. Sehareen, Xinhua Ji, Lucy M. Anderson, and Larry K. Keefer. "Abstract 3334: GSTP1-activated nitric oxide-releasing/PARP inhibitor hybrid prodrugs induce cancer cell death through ROS/RNS, DNA damage, ER stress, and apoptosis." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3334.
Full textReports on the topic "RNA: DNA hybrides"
Dugan, L. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/900164.
Full textBar-Joseph, Moshe, William O. Dawson, and Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Full textSink, Ken, Shamay Izhar, and Abraham Nachmias. Asymmetric Somatic Hybridization: Developing a Gene Transfer System for Solanaceous Vegetable Crops. United States Department of Agriculture, February 1996. http://dx.doi.org/10.32747/1996.7613010.bard.
Full textOstersetzer-Biran, Oren, and Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Full textLevin, Ilan, John W. Scott, Moshe Lapidot, and Moshe Reuveni. Fine mapping, functional analysis and pyramiding of genes controlling begomovirus resistance in tomato. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7594406.bard.
Full textGrumet, Rebecca, and Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7695842.bard.
Full textDawson, William O., and Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Full text