Academic literature on the topic 'RL parameters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RL parameters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RL parameters"
Ger, Yoav, Eliya Nachmani, Lior Wolf, and Nitzan Shahar. "Harnessing the flexibility of neural networks to predict dynamic theoretical parameters underlying human choice behavior." PLOS Computational Biology 20, no. 1 (2024): e1011678. http://dx.doi.org/10.1371/journal.pcbi.1011678.
Full textErdei, Éva, Pál Pepó, János Csapó, Szilárd Tóth, and Béla Szabó. "Sweet sorghum (Sorghum dochna L.) restorer lines effects on nutritional parameters of stalk juice." Acta Agraria Debreceniensis, no. 36 (November 2, 2009): 51–56. http://dx.doi.org/10.34101/actaagrar/36/2792.
Full textXu, Peng, Guoping Qian, Chao Zhang, et al. "Influence of the Surface Texture Parameters of Asphalt Pavement on Light Reflection Characteristics." Applied Sciences 13, no. 23 (2023): 12824. http://dx.doi.org/10.3390/app132312824.
Full textAli, Anwer, Mofeed Rashid, Bilal Alhasnawi, Vladimír Bureš, and Peter Mikulecký. "Reinforcement-Learning-Based Level Controller for Separator Drum Unit in Refinery System." Mathematics 11, no. 7 (2023): 1746. http://dx.doi.org/10.3390/math11071746.
Full textWang, Lei, Atsushi Sekimoto, Yuto Takehara, Yasunori Okano, Toru Ujihara, and Sadik Dost. "Optimal Control of SiC Crystal Growth in the RF-TSSG System Using Reinforcement Learning." Crystals 10, no. 9 (2020): 791. http://dx.doi.org/10.3390/cryst10090791.
Full textMoriyama, Takumi, Ryosuke Koishi, Kouhei Kimura, Satoru Kishida, and Kentaro Kinoshita. "Extraction of Filament Properties in Resistive Random Access Memory (ReRAM) Consisting of Binary-Transition-Metal-Oxides." Advances in Science and Technology 95 (October 2014): 84–90. http://dx.doi.org/10.4028/www.scientific.net/ast.95.84.
Full textS. Manjunatha. "A Novel ML-Driven Approach to Enhance CRN Performance under Varying Network Parameters." Journal of Electrical Systems 20, no. 11s (2024): 1590–602. https://doi.org/10.52783/jes.7547.
Full textLiu, Yang, and Lujun Zhou. "Modeling RL Electrical Circuit by Multifactor Uncertain Differential Equation." Symmetry 13, no. 11 (2021): 2103. http://dx.doi.org/10.3390/sym13112103.
Full textZhang, Zhitong, Xu Chang, Hongxu Ma, Honglei An, and Lin Lang. "Model Predictive Control of Quadruped Robot Based on Reinforcement Learning." Applied Sciences 13, no. 1 (2022): 154. http://dx.doi.org/10.3390/app13010154.
Full textRezaei-Shoshtari, Sahand, Charlotte Morissette, Francois R. Hogan, Gregory Dudek, and David Meger. "Hypernetworks for Zero-Shot Transfer in Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9579–87. http://dx.doi.org/10.1609/aaai.v37i8.26146.
Full textDissertations / Theses on the topic "RL parameters"
Ledbetter, Moira Ruth. "Development of an analytical method to derive hydrophobicity parameters for use as descriptors for the prediction of the environmental and human health risk of chemicals." Thesis, Liverpool John Moores University, 2012. http://researchonline.ljmu.ac.uk/6107/.
Full textMain-Knorn, Magdalena. "Monitoring of forest cover change and modeling biophysical forest parameters in the Western Carpathians." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16562.
Full textTomešová, Tereza. "Autonomní jednokanálový deinterleaving." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445470.
Full textChapariha, Mehrdad. "Modeling alternating current rotating electrical machines using constant-parameter RL-branch interfacing circuits." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45565.
Full textBook chapters on the topic "RL parameters"
Metelli, Alberto Maria. "Configurable Environments in Reinforcement Learning: An Overview." In Special Topics in Information Technology. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_9.
Full textZhang, Changjian, Parv Kapoor, Rômulo Meira-Góes, et al. "Tolerance of Reinforcement Learning Controllers Against Deviations in Cyber Physical Systems." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71177-0_17.
Full textSaeed, Muhammad, Hassaan Muhammad, Narmeen Sabah, et al. "Reinforcement Learning to Improve Finite Element Simulations for Shaft and Hub Connections." In ARENA2036. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88831-1_26.
Full textLenka, Lalu Prasad, and Mélanie Bouroche. "Safe Lane-Changing in CAVs Using External Safety Supervisors: A Review." In Communications in Computer and Information Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_41.
Full textParanjape, Akshay, Nils Plettenberg, Markus Ohlenforst, and Robert H. Schmitt. "Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models." In Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde230059.
Full textMowbray, Max, Ehecatl Antonio Del Rio Chanona, and Dongda Zhang. "Constructing Time-varying and History-dependent Kinetic Models Via Reinforcement Learning." In Machine Learning and Hybrid Modelling for Reaction Engineering. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670178-00247.
Full textMessaoud, Seifeddine, Soulef Bouaafia, Abbas Bradai, Mohamed Ali Hajjaji, Abdellatif Mtibaa, and Mohamed Atri. "Network Slicing for Industrial IoT and Industrial Wireless Sensor Network: Deep Federated Learning Approach and Its Implementation Challenges." In Emerging Trends in Wireless Sensor Networks [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102472.
Full textWang, Di. "Reinforcement Learning for Combinatorial Optimization." In Encyclopedia of Data Science and Machine Learning. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9220-5.ch170.
Full textJin, Shan. "A Lowpass-Bandpass Diplexer Using Common Lumped-Element Dual-Resonance Resonator." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220531.
Full textQiao, Zhongjian, Jiafei Lyu, and Xiu Li. "Mind the Model, Not the Agent: The Primacy Bias in Model-Based RL." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240694.
Full textConference papers on the topic "RL parameters"
Olayiwola, Teslim, Kyle Territo, and Jose Romagnoli. "Physics-informed Data-driven control of Electrochemical Separation Processes." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.163984.
Full textLossa, G., O. Deblecker, and Z. De Grève. "Use of an Inference Technique for Sensitivity Analysis of RL Parameters of Wound Inductors." In 2025 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2025. https://doi.org/10.23919/aces66556.2025.11052485.
Full textTerrito, Kyle, Peter Vallet, and Jose Romagnoli. "Towards Self-Tuning PID Controllers: A Data-Driven, Reinforcement Learning Approach for Industrial Automation." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.132857.
Full textJohn, Werner, Emre Ecik, Philip Varghese Modayil, et al. "AI-based Hybrid Approach (RL/GA) used for Calculating the Characteristic Parameters of a Single Surface Microstrip Transmission Line." In 2025 Asia-Pacific International Symposium and Exhibition on Electromagnetic Compatibility (APEMC). IEEE, 2025. https://doi.org/10.1109/apemc62958.2025.11051725.
Full textSlager, N., and M. B. Franke. "Reinforcement learning for distillation process synthesis using transformer blocks." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.115663.
Full textHuang, Xiaoge, Ziang Zhang, Shufan Wang, and Jian Li. "Transient Stability Enhancement via a Scalable RL Method with VSG Parameter Tuning." In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2024. https://doi.org/10.1109/iecon55916.2024.10905298.
Full textKotecha, Niki, Max Bloor, Calvin Tsay, and Antonio del Rio Chanona. "MORL4PC: Multi-Objective Reinforcement Learning for Process Control." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.161830.
Full textKadlecova, Eva, Radek Kubasek, and Edita Kolarova. "RL Circuits Modeling With Noisy Parameters." In 2006 International Conference on Applied Electronics. IEEE, 2006. http://dx.doi.org/10.1109/ae.2006.4382969.
Full textDworschak, Fabian, Christopher Sauer, Benjamin Schleich, and Sandro Wartzack. "Reinforcement Learning As an Alternative for Parameter Prediction In Design for Sheet Bulk Metal Forming." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89073.
Full textHuang, Xu, Trieu Phat Luu, Ted Furlong, and John Bomidi. "Deep Reinforcement Learning for Automatic Drilling Optimization Using an Integrated Reward Function." In IADC/SPE International Drilling Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/217733-ms.
Full text