Academic literature on the topic 'Riverine flow conditions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riverine flow conditions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Riverine flow conditions"

1

Tang, Jian, Xinan Yin, ChunXue Yu, and Zhifeng Yang. "Suitable Environmental Flow Release Criteria for Both Human and Riverine Ecosystems: Accounting for the Uncertainty of Flows." Mathematical Problems in Engineering 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/704989.

Full text
Abstract:
Environmental flow (e-flow) release criteria are key parameters in water resources management and riverine ecosystem protection. The previous methods for e-flow criterion determination are based on the historical flow time series without the consideration of flow uncertainty. Due to low possibility of reoccurrence of the historical flows and the uncertainty of future flows, the flow uncertainty needs to be integrated in the process of determining e-flow release criteria. In this research, a new method is proposed to determine the optimal e-flow release criteria under flow uncertainty accounting for both the human and riverine ecosystem needs. In the new method, the scenario tree method is applied to generate the scenarios of flows, which can cover most of possible flow conditions and can effectively reflect the uncertainty of flows; the Range of Variability Approach (RVA), a most commonly used method to assess the flow regime alteration, is refined by incorporating the uncertainty of flows. The Tang River in Northern China is taken as a case study to test the effectiveness of the new method. The results show that the previous method obviously overestimates the optimal e-flow release criteria and the new method can get more suitable criteria that are suitable for both human and riverine ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Rakesh, Prabhakar Sharma, Anurag Verma, Prakash Kumar Jha, Prabhakar Singh, Pankaj Kumar Gupta, Ravish Chandra, and P. V. Vara Prasad. "Effect of Physical Characteristics and Hydrodynamic Conditions on Transport and Deposition of Microplastics in Riverine Ecosystem." Water 13, no. 19 (September 30, 2021): 2710. http://dx.doi.org/10.3390/w13192710.

Full text
Abstract:
Microplastic disposal into riverine ecosystems is an emergent ecological hazard that mainly originated from land-based sources. This paper presents a comprehensive review on physical processes involved in microplastics transport in riverine ecosystems. Microplastic transport is governed by physical characteristics (e.g., plastic particle density, shape, and size) and hydrodynamics (e.g., laminar and turbulent flow conditions). High-density microplastics are likely to prevail near riverbeds, whereas low-density particles float over river surfaces. Microplastic transport occurs either due to gravity-driven (vertical transport) or settling (horizontal transport) in river ecosystems. Microplastics are subjected to various natural phenomena such as suspension, deposition, detachment, resuspension, and translocation during transport processes. Limited information is available on settling and rising velocities for various polymeric plastic particles. Therefore, this paper highlights how appropriately empirical transport models explain vertical and horizontal distribution of microplastic in riverine ecosystems. Microplastics interact, and thus feedback loops within the environment govern their fate, particularly as these ecosystems are under increasing biodiversity loss and climate change threat. This review provides outlines for fate and transport of microplastics in riverine ecosystems, which will help scientists, policymakers, and stakeholders in better monitoring and mitigating microplastics pollution.
APA, Harvard, Vancouver, ISO, and other styles
3

Humphries, Paul, Alison King, Nicole McCasker, R. Keller Kopf, Rick Stoffels, Brenton Zampatti, and Amina Price. "Riverscape recruitment: a conceptual synthesis of drivers of fish recruitment in rivers." Canadian Journal of Fisheries and Aquatic Sciences 77, no. 2 (February 2020): 213–25. http://dx.doi.org/10.1139/cjfas-2018-0138.

Full text
Abstract:
Most fish recruitment models consider only one or a few drivers in isolation, rarely include species’ traits, and have limited relevance to riverine environments. Despite their diversity, riverine fishes share sufficient characteristics that prediction of recruitment should be possible. Here we synthesize the essential components of fish recruitment hypotheses and the key features of rivers to develop a model that predicts relative recruitment strength, for all fishes, in rivers under all flow conditions. The model proposes that interactions between flow and physical complexity will create locations in rivers, at mesoscales, where energy and nutrients are enriched. The resultant production of small prey will be concentrated and prey and fish larvae located (through dispersal or retention) so that the larvae can feed, grow, and recruit. Our synthesis explains how flow and physical complexity affect fish recruitment and provides a conceptual basis to better conserve and manage riverine fishes globally.
APA, Harvard, Vancouver, ISO, and other styles
4

RICHARDSON, ADAM, and PAUL HUMPHRIES. "Reproductive traits of riverine shrimps may explain the impact of altered flow conditions." Freshwater Biology 55, no. 10 (June 9, 2010): 2011–22. http://dx.doi.org/10.1111/j.1365-2427.2010.02457.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horne, Avril C., Rory Nathan, N. LeRoy Poff, Nick R. Bond, J. Angus Webb, Jun Wang, and Andrew John. "Modeling Flow-Ecology Responses in the Anthropocene: Challenges for Sustainable Riverine Management." BioScience 69, no. 10 (September 4, 2019): 789–99. http://dx.doi.org/10.1093/biosci/biz087.

Full text
Abstract:
Abstract Climate change will increase water stress in many regions placing greater pressures on rivers to meet human and ecological water needs. Managing rivers experiencing water stress requires a fundamental understanding of how ecosystem processes and functions respond to natural and anthropogenic drivers of flow variability and change. The field of environmental flows meets this need by defining “flow-ecology” relationships—mathematical models linking ecological characteristics and dynamics to the underlying flow regime. However, because these relationships are most often based on historical hydrologic regimes, they implicitly assume climatic stationarity. A fundamental challenge in the Anthropocene is how to model flow-ecology relationships such that the effects of nonstationarity can be captured. In the present article, we introduce a novel approach that addresses these shortcomings and show its utility through a series of conceptual and empirical examples. The framework incorporates ecological dynamics and uncertain future hydrologic conditions, as well as nonstationarity itself, thereby providing a viable framework for modeling flow-ecology responses to inform water management in a rapidly changing climate.
APA, Harvard, Vancouver, ISO, and other styles
6

Ren, Kang, Shengzhi Huang, Qiang Huang, Hao Wang, and Guoyong Leng. "Environmental Flow Assessment Considering Inter- and Intra-Annual Streamflow Variability under the Context of Non-Stationarity." Water 10, no. 12 (November 26, 2018): 1737. http://dx.doi.org/10.3390/w10121737.

Full text
Abstract:
A key challenge to environmental flow assessment in many rivers is to evaluate how much of the discharge flow should be retained in the river in order to maintain the integrity and valued features of riverine ecosystems. With the increasing impact of climate change and human activities on riverine ecosystems, the natural flow regime paradigm in many rivers has become non-stationary conditions, which is a new challenge to the assessment of environmental flow. This study presents a useful framework to (1) detect change points in runoff time series using two statistical methods (Mann-Kendall test method and heuristic segmentation method), (2) adjust data of the changed period against the original flow series into a stationary condition using a procedure of reconstruction; and (3) incorporate inter- and intra-annual streamflow variability with adjusted streamflow to evaluate environmental flow. The Jialing to Han inter-basin water transfer project was selected as the case study. Results indicate that a change point of 1994 was identified, revealing that the stationarity of annual streamflow series is invalid. The variations of reconstructed streamflow series are roughly consistent with original streamflow series, especially in the maximum/minimum values and rise/fall rates, but the mean value of reconstructed streamflow series is increased. The reconstructed streamflow series would further serve to eliminate the non-stationary of original streamflow, and incorporating the inter- and intra-annual variability would upgrade the ecosystem fitness. Selecting different criteria for the conservation of riverine ecosystems can have significantly different consequences, and we should not focus on the protection of specific objectives that will inevitably affect other aspects. This study provides a useful framework for environmental flow assessment and can be applied to a wide range of instream flow management approaches to protect the riverine ecosystem.
APA, Harvard, Vancouver, ISO, and other styles
7

Rosa, Eric, Claude Hillaire-Marcel, Bassam Ghaleb, and Terry A. Dick. "Environmental and seasonal controls on riverine dissolved uranium in the Hudson, James, and Ungava bays region, Canada." Canadian Journal of Earth Sciences 49, no. 6 (June 2012): 758–71. http://dx.doi.org/10.1139/e2012-025.

Full text
Abstract:
This study documents the spatiotemporal variability of riverine uranium contents and fluxes in rivers discharging into the Hudson, James, and Ungava bays (HJUB). Samples retrieved during a monitoring program of the Koksoak, Great Whale, La Grande, and Nelson rivers were analyzed for dissolved uranium concentration [U] and activity ratio (234U/238U). Field surveys conducted during baseflow and snowmelt in six other rivers of the HJUB basin provided complementary data. It is estimated that altogether, the studied rivers export 3.4 × 105 mol/year of U towards the HJUB, with a discharge weighted average (234U/238U) of 1.27. Two main factors appear to control seasonal fluctuations in dissolved U exports from HJUB rivers: snowmelt and anthropogenic flow control. Under natural hydrological regimes, the dilution of U caused by snowmelt does not compensate for the associated increase in discharge, and riverine U fluxes are intensified during springtime. Contrastingly, the timing of riverine U exports is decoupled from hydroclimatic conditions in rivers affected by flow-control structures. Despite the seasonal variations in riverine U contents, the sampling profiles carried along two of the monitored rivers reveal that within the study region, sample locality is at least as important as sampling time for evaluating riverine U fluxes. In addition, a compilation of data from North American rivers reveals that spatial variations in riverine U contents seem to respond to a prominent lithological control, as rivers draining sedimentary rocks (with abundant carbonates) tend to present overall higher U contents and lower (234U/238U) variability than the rivers of the Canadian Shield.
APA, Harvard, Vancouver, ISO, and other styles
8

Townsend, S. A., M. Przybylska, and M. Miloshis. "Phytoplankton composition and constraints to biomass in the middle reaches of an Australian tropical river during base flow." Marine and Freshwater Research 63, no. 1 (2012): 48. http://dx.doi.org/10.1071/mf11111.

Full text
Abstract:
Under high flows, the biomass of riverine phytoplankton can be constrained by short transport times and advective losses. However, under slower flows and longer transport times, secondary factors and sometimes their interaction with flow may constrain phytoplankton biomass. To contribute to a wider understanding of the riverine conditions that constrain phytoplankton biomass, we tested the hypothesis that phytoplankton of the Daly River (tropical Australia) was constrained by transport time during dry-season base flow. The river is virtually undisturbed, with oligotrophic nutrient concentrations during the dry season. The most frequently occurring taxa were planktonic, rather than benthic, and dominated by the dinoflagellate Peridinium inconspicuum which has r-strategist traits that favour rapid growth in a nutrient-deficient environment. Our hypothesis was not supported because increased downstream loads of Chlorophyll a and the domination of P. inconspicuum inferred phytoplankton net growth. Instead, phytoplankton biomass was more likely to be nutrient-limited, although transport time may limit phytoplankton growth over some reaches and for specific taxa. The present study demonstrated that even in the fast-flowing middle reaches of a river (~0.4 m s–1), a population of phytoplankton can be sustained.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Junhua, Mingwu Zhang, Enhui Jiang, Li Pan, Aoxue Wang, Yafei Wang, and Shengqi Jian. "Influence of Floodplain Flooding on Channel Siltation Adjustment under the Effect of Vegetation on a Meandering Riverine Beach." Water 13, no. 10 (May 18, 2021): 1402. http://dx.doi.org/10.3390/w13101402.

Full text
Abstract:
Flooding in a sediment-laden floodplain is affected by riverine beach vegetation and the shape of a meandering compound channel. The laws of water and sediment exchange and the deposition distribution in beach troughs are very complex. These factors play a significant role in the formation and development of secondary suspended rivers, in the adjustment of the beach horizontal gradient, and even in the evolution of the flood control situation. In this study, we used a combination of experimental simulation and theoretical research to carry out a generalized model test of floodplain flooding evolution, analyzed the lateral distribution characteristics of sediment-laden flow and sediment factors in a meandering compound channel under the conditions of beach vegetation, and revealed the pros and cons of beach vegetation on the adjustment of the beach and channel siltation. The model test results of the flooding in the floodplain in the compound channel with meandering vegetation showed that the main stream was not only concentrated in the main channel but also appeared near the foot of the left and right bank levees and formed flood discharges along the embankment. As the riverine beach siltation was mainly concentrated at the riverine beach lip, the vegetation on the riverine beach had a significant effect on slowing down the flow velocity. Whether it was a row or full vegetation on both sides of the bank, this played an important role in the stability of the main channel. When there was no vegetation on the riverine beach, the main channel was easy to move. The arrangement of full vegetation on the riverine beach had a uniform effect on the velocity distribution of the riverine beach, which reduced the phenomenon of excessive velocity at the foot of the riverine beach and increased the velocity effect in the main channel. These results will provide a theoretical basis for the utilization of riverine beach areas and river management in the lower Yellow River and have a great significance for enriching the basic theory of water and sediment movement and promoting the integration of hydraulics, river dynamics, and ecology.
APA, Harvard, Vancouver, ISO, and other styles
10

Bruce, L. C., P. L. M. Cook, I. Teakle, and M. R. Hipsey. "Hydrodynamic controls on oxygen dynamics in a riverine salt wedge estuary, the Yarra River estuary, Australia." Hydrology and Earth System Sciences 18, no. 4 (April 10, 2014): 1397–411. http://dx.doi.org/10.5194/hess-18-1397-2014.

Full text
Abstract:
Abstract. Oxygen depletion in coastal and estuarine waters has been increasing rapidly around the globe over the past several decades, leading to decline in water quality and ecological health. In this study we apply a numerical model to understand how salt wedge dynamics, changes in river flow and temperature together control oxygen depletion in a micro-tidal riverine estuary, the Yarra River estuary, Australia. Coupled physical–biogeochemical models have been previously applied to study how hydrodynamics impact upon seasonal hypoxia; however, their application to relatively shallow, narrow riverine estuaries with highly transient patterns of river inputs and sporadic periods of oxygen depletion has remained challenging, largely due to difficulty in accurately simulating salt wedge dynamics in morphologically complex areas. In this study we overcome this issue through application of a flexible mesh 3-D hydrodynamic–biogeochemical model in order to predict the extent of salt wedge intrusion and consequent patterns of oxygen depletion. The extent of the salt wedge responded quickly to the sporadic riverine flows, with the strength of stratification and vertical density gradients heavily influenced by morphological features corresponding to shallow points in regions of tight curvature ("horseshoe" bends). The spatiotemporal patterns of stratification led to the emergence of two "hot spots" of anoxia, the first downstream of a shallow region of tight curvature and the second downstream of a sill. Whilst these areas corresponded to regions of intense stratification, it was found that antecedent conditions related to the placement of the salt wedge played a major role in the recovery of anoxic regions following episodic high flow events. Furthermore, whilst a threshold salt wedge intrusion was a requirement for oxygen depletion, analysis of the results allowed us to quantify the effect of temperature in determining the overall severity and extent of hypoxia and anoxia. Climate warming scenarios highlighted that oxygen depletion is likely to be exacerbated through changes in flow regimes and warming temperatures; however, the increasing risk of hypoxia and anoxia can be mitigated through management of minimum flow allocations and targeted reductions in organic matter loading. A simple statistical model (R2 > 0.65) is suggested to relate riverine flow and temperature to the extent of estuary-wide anoxia.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Riverine flow conditions"

1

(9725532), Acquire Admin. "Phytoplankton ecology in the Fitzroy River at Rockhampton, Central Queensland, Australia." Thesis, 1999. https://figshare.com/articles/thesis/Phytoplankton_ecology_in_the_Fitzroy_River_at_Rockhampton_Central_Queensland_Australia/21397656.

Full text
Abstract:

The seasonal periodicity of hydrology, physical and chemical water quality parameters and phytoplanktonic assemblages was studied at two sites in a large tropical Australian riverine impoundment. This study, the first in the lower Fitzroy River at Rockhampton, occurred between August 1990 and November 1993. It covered extremes in riverine flow conditions including major flooding and drought.

The annual flow regime was characterized by major flows in the "wet" season (summer and autumn) and greatly reduced or no flow in the "dry" season of winter, spring and sometimes early summer. Consequently, the thermal regime at both of the study sites was divided into two phases. The first was a phase of water column heating in the late winter to early summer. Features of this heating phase were long term stratification with progressive epilimnetic deepening, high pH, regular occurrence of epilimnetic oxygen supersaturation and decreased or undetectable levels of oxidized nitrogen in the surface layer. Hypolimnetic anoxia was recorded late in this phase. The second, between substantial wet season inflows and late winter was characterized by nutrient rich inflows and water column cooling and mixing.

Distinct interannual differences occurred in the volume, source and timing of inflows and subsequent water chemistry. In 1991, conductivity, water clarity, filterable reactive phosphorus (FRP) and pH increased markedly following major flooding from northern tributaries, while oxidized nitrogen decreased. This was in marked contrast to the drier years of 1992 and 1993 where turbidity and oxidized nitrogen were higher during the initial post-flood period and conductivity and FRP were lower. Extremes of mostly abiogenic turbidity (range 1.6 to 159 NTU) were a feature of the light climate. Ratios of euphotic depth/mixing depth below 0.3 occurred in early 1992 and 1993.

Steep gradients in the physical and chemical environment were paralleled by variations in the phytoplankton. Algal biomass (as chlorophyll a) at Site 1, midstream opposite the water intake for the city of Rockhampton, ranged from 1.5 to 56.6 ug L-1. The vertical water column distribution of chlorophyll was variable with assemblages normally dominated by phytoflagellates and various species of cyanoprokaryotes. There was also higher relative abundance of chlorophyll a (reflecting increasing dominance of cyanoprokaryotes) in the latter half of the year and at the lower end of light availability. The specific vertical water column positioning with respect to light and temperature is shown for assemblages dominated by the genera Anabaena, Aphanizomenon and Cylindrospermopsis.

The most striking aspect of the phytoplankton was the long term dominance of cyanoprokaryotes and the species richness (particularly that of cyanoprokaryotes) when compared with the dearth of information to date on other tropical rivers. Seasonal successions were varied. Regularly occurring assemblages were cyanoprokaryotes (Oscillatoriales), euglenophytes or non-flagellated chlorophytes during flows followed by flagellated chlorophytes and then cyanoprokaryotes (Nostocales) during the dry season. Genera present indicated highly eutrophic conditions. Hierarchical agglomerative clustering of phytoplankton data and comparison with a principal components analysis of corresponding environmental data were used to demonstrate the linkage between steep environmental gradients and variation in the phytoplankton assemblage. The specific environmental conditions associated with the success of various species were also analysed and presented. Using the above information, a two-part model was proposed which predicts the most likely genera of phytoplankton with respect to multidimensional environmental gradients. This model covers a wide gamut of conditions varying from highly variable lotic to lentic environments.

As Cylindrospermopsis raciborskii was considered a most important species in relation to the quality of the water supply for Rockhampton, the physical, chemical and biotic conditions prior to and during a bloom of this species are described. A number of possible grazers of C. raciborskii were identified with a view to future biomanipulation. One of these, the large ciliate, Paramecium cf. caudatum was found to be an effective grazer of toxic straight C. raciborskii in the laboratory.

This study is unique in that it analyses the impact of episodic events (eg. major flooding) on the subsequent phytoplankton in the lower Fitzroy River. The model relating phytoplankton to multidimensional environmental gradients provides great information for use in management, particularly in relation to the prediction of toxic algal blooms.

APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Chen-Huan, and 吳承寰. "Application of habitat suitability curve and genetic programming to assess the habitat preference of riverine fish: The classification of flow condition." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/61354048669335600221.

Full text
Abstract:
碩士
國立臺灣大學
生物環境系統工程學研究所
100
River ecological engineering is the engineering method to renovate river approaching to nature in recent years. Establishing good simulation model before executing not only provides a direction for river ecological engineering, but improves the benefits of river management. During simulating river habitat, Habitat Suitability Analysis is one of the most important processes. Habitat suitability index (HSI) builds the relationship between target species and environmental factors of habitat and physical habitat model simulate the river section and calculate weighted usable area (WUA). Combining both of them become a crucial analysis tool to river ecosystem. The previous study in river habitat simulation mostly aims at the fish preference of environmental factors of habitat to build individual model. However, in order to consider different fish ecological demand in various flow conditions, for example, riffle with high oxygen is full of food sources, pool is suitable to be a shelter, it needs diverse standard simulation model for describing fish activities to approach reality. The study area is Datuan Stream located in Tamsui District, New Taipei City and the target species is monk goby (Sicyopterus japonicus). Fish presence probabilities for each velocity and water depth establish HSI. There are three methods: First, establish suitability index (SI) by each factor separately, and then multiple all SIs together to obtain a composite HSI, which called “traditional model”. Second, Search for optimal function in factors by genetic programming (GP), and obtain HSI, which called “modified model”. Third, divide into four flow conditions by velocity 0.32 (m/s) and water depth 0.29(m), and obtain united HSI, which called “classified model”. Finally, simulate river flow and calculate the spatial distribution of WUA, and then compare the result of three models. The result reveals that the correlation between frequency of monk goby presence and frequency of flow condition is up to 0.96. Therefore, Category II HSI which is the most common method can not reflect favorite environment of fish in reality. In addition, when it comes to the calibration and validation of model, the root mean square error (RMSE) of modified model is better than traditional model by 0.0718, 0.1001, and 0.1215, 0.1289. While taking the relationship between variables into consideration by GP, it has a better predictive effect. On the other hand, the RMSE of classified model is worse than modified model by 0.1127, 0.1316. All in all, the confidence and accuracy of modified model is greater than other two models. In the end, the result of calculating WUA shows that classified model could avoid underestimation or homogeneity, which may occur in other two models. While researching in different activities of fish (ex: spawning, preying), we expect classified model to be practical and valuable in the future.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Riverine flow conditions"

1

Kashefipour, S., B. Lin, and R. Falconer. "Impact of riverine and CSO inputs on coastal water quality under different environmental conditions." In River Flow 2004, 1211–16. CRC Press, 2004. http://dx.doi.org/10.1201/b16998-157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Managing Centrarchid Fisheries in Rivers and Streams." In Managing Centrarchid Fisheries in Rivers and Streams, edited by Travis R. Ingram, Steven M. Sammons, Adam J. Kaeser, Rachel A. Katz, and Sean C. Sterrett. American Fisheries Society, 2019. http://dx.doi.org/10.47886/9781934874523.ch11.

Full text
Abstract:
<em>Abstract.</em>—Shoal Bass <em> Micropterus cataractae </em>are fluvial specialists endemic to the Apalachicola-Chattahoochee-Flint River Basin that are considered to be in decline throughout their native range. Effective conservation requires a comprehensive understanding of the migratory behavior and multi-scale habitat associations of Shoal Bass with riverine shoals, the critical mesohabitat upon which the species depends. We assessed movement patterns and habitat use of Shoal Bass using radio telemetry in the lower 24 km of Ichawaynochaway Creek, a 6th-order tributary of the Flint River and one of the few relatively undisturbed streams inhabited by this species. In general, Shoal Bass exhibited relatively low movement rates with increased movement in the spring, and no tagged Shoal Bass migrated from the creek into the Flint River during the study period. Most study fish preferred moderate depths (<2 m) and swift velocities during the year, and higher velocities in the winter, potentially reflecting seasonal changes in flow. These conditions were routinely satisfied through occupation of a 9-km reach with a network of large shoal complexes. Shoal Bass exhibited a distinct preference for close proximity to large shoals, and an affinity for greater depth variability associated with edge and boundary conditions within discrete shoal complexes. Despite previous studies that have documented high movement of this species in other systems, these findings suggest that the Ichawaynochaway Creek Shoal Bass population may be relatively sedentary and associate to specific areas that provide suitable habitat. This may have implications for assessing the integrity, distribution, and abundance of suitable Shoal Bass habitat in small karst limestone streams, designing projects for restoration or enhancement of existing habitat, and gauging the species vulnerability to threats such as habitat loss, introgression, and hybridization.
APA, Harvard, Vancouver, ISO, and other styles
3

"Balancing Fisheries Management and Water Uses for Impounded River Systems." In Balancing Fisheries Management and Water Uses for Impounded River Systems, edited by Christopher J. Goudreau, Richard W. Christie, and D. Hugh Barwick. American Fisheries Society, 2008. http://dx.doi.org/10.47886/9781934874066.ch5.

Full text
Abstract:
<em>Abstract</em>.—The Catawba-Wateree river basin is a highly regulated system in North Carolina and South Carolina that includes 11 main-stem reservoirs and four regulated riverine reaches. The reservoirs support typical southeastern U.S. warmwater fisheries, while the riverine reaches support a variety of species, including trout and several diadromous fishs. The reservoirs and regulated river reaches provide multiple uses, including hydroelectric generation, drinking water, cooling water for electric power plants, recreation, and residential development. As part of the relicensing process for the hydroelectric developments, many stakeholders were convened to study and negotiate a comprehensive relicensing agreement. A computer model was used to assess the combined effects of various operating regimes, water-use amounts, and hydrologic conditions on reservoir levels, river flows, and hydroelectric generation. The model used projections of the effects of increased population growth, water use, and reservoir sedimentation for a period 50 years into the future. Model outputs were postprocessed to further understand the impacts to aquatic habitat, recreation, aesthetics, hydropower generation, and water supply. Although future demand for water resources exceeded the available supply under some conditions, an acceptable balance was reached after extensive negotiation. The objectives of this paper are to describe how the relicensing process was used to arrive at a balanced management plan for water and other resources in a large basin, describe some of the tools used to assist the decision-making process, and to list some important lessons that can assist others in designing a framework for other water allocation efforts.
APA, Harvard, Vancouver, ISO, and other styles
4

"Freshwater, Fish and the Future: Proceedings of the Global Cross-Sectoral Conference." In Freshwater, Fish and the Future: Proceedings of the Global Cross-Sectoral Conference, edited by John D. Koehn. American Fisheries Society, 2016. http://dx.doi.org/10.47886/9789251092637.ch10.

Full text
Abstract:
<em>Abstract</em> .—The collection and use of data to manage the freshwater fisheries of Australia’s Murray–Darling basin (MDB) has a poor history of success. While there was limited assessment data for early subsistence and commercial fisheries, even after more robust data became available during the 1950s its quality varied across jurisdictions and was often poorly collated, assessments were not completed, and the data were underutilized by management. The fishery for Murray Cod <em>Maccullochella peelii </em> is given as an example, where the fishery declined to the point of closure and then the decline continued to the extent that Murray Cod was listed as a threatened species and all harvest now only occurs through the recreational fishery. Lessons from such poor population assessments have not been fully learned, however, as there remains a paucity of harvest data for this recreational fishery. Without a proper assessment, a true economic valuation of this fishery has not been made. As the MDB is Australia’s food bowl, there are competing demands for water use by agriculture, and without a proper assessment of the worth of the fishery, it is difficult for Murray Cod to be truly considered in either economic or sociopolitical discussions. The poor state of MDB rivers and their fish populations (including Murray Cod) has, however, resulted in political pressure for the development of the sustainable rivers audit, a common assessment method for riverine environmental condition monitoring. This audit undertakes standardized sampling for fish and a range of other variables at a number of fixed and randomly selected sites on a 3-year rotating basis. While the sustainable rivers audit has provided a range of data indicating that the condition of rivers is generally very poor, these data have yet to be fully utilized to determine the potential state of the fisheries (such as Murray Cod) or to set targets for rehabilitation, such as for environmental flows. While, to date, data analyses have been somewhat restricted by fiscal constraints, more comprehensive use of data, together with full fishery valuations, should be seen as the way forward for improved management.
APA, Harvard, Vancouver, ISO, and other styles
5

"Freshwater, Fish and the Future: Proceedings of the Global Cross-Sectoral Conference." In Freshwater, Fish and the Future: Proceedings of the Global Cross-Sectoral Conference, edited by John D. Koehn. American Fisheries Society, 2016. http://dx.doi.org/10.47886/9789251092637.ch10.

Full text
Abstract:
<em>Abstract</em> .—The collection and use of data to manage the freshwater fisheries of Australia’s Murray–Darling basin (MDB) has a poor history of success. While there was limited assessment data for early subsistence and commercial fisheries, even after more robust data became available during the 1950s its quality varied across jurisdictions and was often poorly collated, assessments were not completed, and the data were underutilized by management. The fishery for Murray Cod <em>Maccullochella peelii </em> is given as an example, where the fishery declined to the point of closure and then the decline continued to the extent that Murray Cod was listed as a threatened species and all harvest now only occurs through the recreational fishery. Lessons from such poor population assessments have not been fully learned, however, as there remains a paucity of harvest data for this recreational fishery. Without a proper assessment, a true economic valuation of this fishery has not been made. As the MDB is Australia’s food bowl, there are competing demands for water use by agriculture, and without a proper assessment of the worth of the fishery, it is difficult for Murray Cod to be truly considered in either economic or sociopolitical discussions. The poor state of MDB rivers and their fish populations (including Murray Cod) has, however, resulted in political pressure for the development of the sustainable rivers audit, a common assessment method for riverine environmental condition monitoring. This audit undertakes standardized sampling for fish and a range of other variables at a number of fixed and randomly selected sites on a 3-year rotating basis. While the sustainable rivers audit has provided a range of data indicating that the condition of rivers is generally very poor, these data have yet to be fully utilized to determine the potential state of the fisheries (such as Murray Cod) or to set targets for rehabilitation, such as for environmental flows. While, to date, data analyses have been somewhat restricted by fiscal constraints, more comprehensive use of data, together with full fishery valuations, should be seen as the way forward for improved management.
APA, Harvard, Vancouver, ISO, and other styles
6

"Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques." In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques, edited by Alexander S. Flecker, Peter B. McIntyre, Jonathan W. Moore, Jill T. Anderson, Brad W. Taylor, and Robert O. Hall. American Fisheries Society, 2010. http://dx.doi.org/10.47886/9781934874141.ch28.

Full text
Abstract:
<em>Abstract</em>.—Migratory fishes are common in freshwaters throughout the world and can fundamentally alter recipient ecosystems. We describe different types of fish migrations and consider their importance from the perspective of ecosystem subsidies—that is, landscape-scale flows of energy, materials, and organisms that are important in driving local food web and ecosystem dynamics. We distinguish between two general categories of subsidies, which we term here material subsidies and process subsidies. Material subsidies are the transfer of energy, nutrients, and other resources resulting in direct changes in resource pools within ecosystems. We posit that material subsidies occur under only a subset of life history strategies and ecological settings, and the potential for migratory fish to represent major material subsidies is greatest when (1) the biomass of migrants is high relative to recipient ecosystem size, (2) the availability of nutrients and energy is low in the recipient ecosystem (i.e., oligotrophic), and (3) there are effective mechanisms for both liberating nutrients and energy from migratory fishes and retaining those materials within the food web of the recipient ecosystem. Thus, anadromous semelparous Pacific salmon <em>Oncorhynchus </em>spp. with en masse programmed senescence in oligotrophic Pacific Northwest streams can be large material subsidies. In contrast, process subsidies arise from feeding or other activities of migratory species that directly affect process rates within recipient ecosystems. For example, the physical and chemical effects of grazing and sediment-feeding fishes such as prochilodontids, as well as seed dispersal by large-bodied frugivorous characins, represent potentially key process subsidies by migratory fishes in some of the great rivers of South America. We speculate that process subsidies are more widespread than material subsidies from migratory stream fishes because they are independent of the type of migration patterns, life history, and distance traveled. Nevertheless, the magnitude of process subsidies is likely to be greatest under a specific subset of ecological conditions, which can differ from those where material subsidies might be most important. In addition to migrant biomass, the potential for migratory fish to represent strong process subsidies is regulated by migrant interaction strength and the degree to which a migratory species is functionally unique in a particular ecological setting. Unlike material subsidies, which require high migrant biomass as conveyor belts of materials, migratory fishes can be crucial process subsidies, even when migrant biomass is low, if they are functionally unique and strong interactors. We provide specific examples of these different types of subsidies and outline key directions of research for furthering our understanding of the functional significance of migratory stream fishes. Our aim is to highlight the diversity of subsidies provided by migratory fishes in order to foster a more comprehensive perspective on fishes as essential components of riverine ecosystems.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Riverine flow conditions"

1

Braun, M. J., R. C. Hendricks, and V. Canacci. "Flow Visualization in a Simulated Brush Seal." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-217.

Full text
Abstract:
A method to visualize and characterize the complex flow fields in simulated brush seals is presented. The brush seal configuration was tested in a water and then in an oil tunnel. The visualization procedure revealed typical regions that are rivering, jetting, vortical or lateral flows and exist upstream, downstream or within the seal. Such flows are engendered by variations in fiber void that are spatial and temporal and affect changes in seal leakage and stability. While the effects of interface motion for linear or cylindrical configurations have not been considered herein, it is believed that the observed flow fields characterize flow phenomenology in both circular and linear brush seals. The axial pressure profiles upstream, across and downstream of the brush in the oil tunnel have been measured under a variety of inlet pressure conditions and the ensuing pressure maps are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Cargnelutti, Marcos F., Stefan P. C. Belfroid, Wouter Schiferli, and Marlies van Osch. "Multiphase Fluid Structure Interaction in Bends and T-Joints." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25696.

Full text
Abstract:
Air-water experiments were carried out in a horizontal 1″ pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. In general, the slug velocity and frequency presented a reasonable agreement with classical models. However, for high mixture velocity the measured frequency deviated from literature models. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. These results from a one inch pipe were compared to data obtained previously from similar experiments on a 6mm setup, to evaluate the scaling effects. The results for the one inch rig experiments agreed with the model proposed by Riverin, with the same scaling factor. A modification of this scaling factor is needed for the model to predict the forces measured on the 6mm rig. The validity of the theories developed based on the 6mm experiments were tested for validity at larger scales. In case of slug flow, the measured results can be described assuming a simple slug unit model. In annular and stratified flow a different model is required, since no slug unit is present. Instead, excitation force can be estimated using mixture properties. This mixture approach also describes the forces for the slug regime relatively well. Only the single phase flow is not described properly with this mixture model, as would be expected.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography