Academic literature on the topic 'River processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'River processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "River processes"
Vandenberghe, Jef, and Ming-ko Woo. "Modern and ancient periglacial river types." Progress in Physical Geography: Earth and Environment 26, no. 4 (December 2002): 479–506. http://dx.doi.org/10.1191/0309133302pp349ra.
Full textDelina, Aija, Alise Babre, Konrads Popovs, Juris Sennikovs, and Baiba Grinberga. "Effects of karst processes on surface water and groundwater hydrology at Skaistkalne Vicinity, Latvia." Hydrology Research 43, no. 4 (February 7, 2012): 445–59. http://dx.doi.org/10.2166/nh.2012.123.
Full textLefebvre, Mario, and Fatima Bensalma. "An Application of Filtered Renewal Processes in Hydrology." International Journal of Engineering Mathematics 2014 (May 5, 2014): 1–9. http://dx.doi.org/10.1155/2014/593243.
Full textYakhno, Oleg, Ihor Hnativ, and Roman Hnativ. "Influence of cavitation processes on river water purification of mountain streams." Mechanics and Advanced Technologies 6, no. 1 (May 31, 2022): 62–69. http://dx.doi.org/10.20535/2521-1943.2022.6.1.254613.
Full textOsterkamp, W. R. "Fluvial Processes in River Engineering." Eos, Transactions American Geophysical Union 70, no. 4 (1989): 51. http://dx.doi.org/10.1029/89eo00033.
Full textNafziger, Jennifer, Yuntong She, and Faye Hicks. "Dynamic river ice processes in a river delta network." Cold Regions Science and Technology 158 (February 2019): 275–87. http://dx.doi.org/10.1016/j.coldregions.2018.09.005.
Full textTimuhins, Andrejs, Valērijs Rodinovs, and Māris Kļaviņš. "Wavelet analysis of the Baltic region river runoff longh-term trends and fluctuations." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 64, no. 5-6 (January 1, 2010): 229–35. http://dx.doi.org/10.2478/v10046-011-0009-1.
Full textWohl, Ellen. "Geomorphic context in rivers." Progress in Physical Geography: Earth and Environment 42, no. 6 (May 22, 2018): 841–57. http://dx.doi.org/10.1177/0309133318776488.
Full textLi, Pushuang, Dan Li, Xiaoqing Sun, Zhaosheng Chu, Ting Xia, and Binghui Zheng. "Application of Ecological Restoration Technologies for the Improvement of Biodiversity and Ecosystem in the River." Water 14, no. 9 (April 27, 2022): 1402. http://dx.doi.org/10.3390/w14091402.
Full textZhou, Siping, J. A. McCorquodale, and J. Biberhofer. "Modelling of pollutant mixing in the St. Lawrence River." Canadian Journal of Civil Engineering 22, no. 5 (October 1, 1995): 1041–45. http://dx.doi.org/10.1139/l95-118.
Full textDissertations / Theses on the topic "River processes"
Tassi, Pablo. "Numerical modelling of river processes: flow and river bed deformation." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/57998.
Full textPernik, Maribeth. "Mixing processes in a river-floodplain system." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/19514.
Full textDong, Na. "Border ice processes on the Saint Lawrence River." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28450/28450.pdf.
Full textLa glace de rive est un des nombreux processus de formation des couverts de glace sur les rivières. Cependant peu d’articles dans la littérature traitent de ce sujet malgré que la formation de la glace de rive peut-être un précurseur de l’apparition d’embâcles qui peuvent entrainer des inondations. Ce mémoire de Maitrise porte sur l’étude de la glace de rive le long de la portion du fleuve Saint-Laurent allant de Montréal à Québec. Du fait qu’il y a de la navigation commerciale toute l’année, le fleuve reste ouvert (libre d’un couvert de glace entier) artificiellement pendant tout l’hiver. Ce trafic limite aussi l’extension de la glace de rive. Cette étude fournit des informations clés sur la formation et la désagrégation de la glace de rive. À partir des données historiques d’Environnement Canada (cartes des glaces de 2004 à 2009), la répartition superficielle de la glace de rive est analysée pour les périodes de formation, de stabilité et de rupture de la glace. Les informations historiques sur les couvertures de glace sont collectées afin de déterminer les paramètres qui influencent la formation et les limites spatiales de ce type de glace. Les taux de croissance et de décomposition de la glace de rive sont aussi abordés. Il est montré que l’évolution de la structure propre à la couverture de la glace de rive se fait en trois étapes. Une période de formation rapide (début hiver), suivie d’une période stable (milieu d’hiver) et enfin une période de rupture (pendant le moi de mars). Pendant la période stable, la glace de rive se rompt partiellement parfois lorsque la température de l’air monte au dessus de zéro °C et surtout lorsque le redoux est accompagné de pluie. Il a été trouvé aussi que les limites spatiales maximales des glaces de rive sont très semblables sur 5 hivers de la période d’étude. À partir de l’analyse des cartes des glaces, un certain nombre de relations empiriques sont proposées. Ces relations caractérisent la formation et la désagrégation des glaces de rive. Le long de la direction de l’écoulement la glace de rive est formée facilement en présence d’obstacles, et particulièrement lorsqu’elles sont à l’extrémité aval. Parmi ces obstacles on peut citer les méandres de rivière, les bancs, les estacades, les iles artificielles, les piliers de ponts. Ainsi, les obstacles influencent la vitesse d’écoulement qui est un paramètre important dans la formation de la glace et peut aussi effectuer un apport d’objets sur lesquels la glace peut s’attacher et initier son accroissement. En moyenne la glace de rive atteint 20% de sa couverture maximale lorsque son le nombre de degrés jours accumulés (DJA) atteint 124 °C-j. Ceci est suivi d’une période d’accroissement rapide qui prend fin lorsque la couverture de glace atteint 80% de son maximum qui correspond à un DJA de 247 °C-j. La couverture de glace de rive atteint son maximum lorsque le DJA atteint 551 °C-j; ce qui correspond normalement à la période de fin janvier. La période d’hiver est caractérisée par une couverture de glace stable (supérieure à 90% de son maximum) en amont de Trois-Rivières, sauf pendant les périodes de dégel mi hivernales. À l’aval de Trois-Rivières, il n’y a pas de période stable, vu que la désagrégation commence très tôt après que la glace ait cru à son étendu maximal. La rupture est un processus graduel qui normalement commence vers le 15 février en aval de Trois-Rivières et vers le premier mars en amont. La grande majorité de la glace disparait généralement avant le 31 mars. Par ailleurs, la vitesse d’écoulement de la rivière, ainsi que sa profondeur et son nombre de Froude le long des limites de la glace de rive sont évalués. Ceci dans la condition où la glace de rive a atteint sa répartition superficielle maximale. La vitesse est presque toujours inférieure à 1 m/s, le nombre de Froude maximal est normalement de 0,1 au dans le Lac St Pierre et de 0,2 sur le tronçon Montréal-Sorel. La profondeur de la rivière à la limite de la glace peut varier largement. À partir d’une modélisation numérique, il a été calculé que la glace de rive cause une augmentation de la vitesse de 0,1 m/s dans le chenal maritime du Lac St Pierre et du niveau d’eau de 14 cm dans le tronçon Montréal-Sorel.
Trieu, Hai Q. "Bank erosion processes along the lower Mekong River." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/340011/.
Full textHeadey, Jonathan Mark. "Modelling of river corridors : modelling urban particulate transport processes." Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289714.
Full textMarkham, Andrew James. "Flow and sediment processes in gravel-bed river bends." Thesis, Queen Mary, University of London, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308275.
Full textPhillips, Zachary Rockford. "Holocene Postglacial Fluvial Processes and Landforms in Low Relief Landscapes." Diss., North Dakota State University, 2020. https://hdl.handle.net/10365/32036.
Full textNorth Dakota Water Recourses Research Institute (ND WRRI) Fellowship Program
Allread, Tyler M. "Channel Narrowing of the Green River near Green River, Utah: History, Rates, and Processes of Narrowing." DigitalCommons@USU, 1997. https://digitalcommons.usu.edu/etd/6525.
Full textMoretto, J. "Linking River Channel Forms and Processes in Gravel Bed Rivers: Time, Space, Remote Sensing and Uncertainty." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423802.
Full textLa “moderna” morfologia fluviale, è il risultato di una serie di eventi caratterizzati da differenti dinamiche, naturali ed antropiche. Riconoscere i processi responsabili di una particolare morfologia, può divenire complesso se i dati disponibili presentano bassi livelli di risoluzione o eccessiva incertezza in funzione della scala temporale e spaziale analizzata. Questo lavoro si è focalizzato ad analizzare ed ottimizzare differenti tipi di dati e metodologie di rilievo in differenti tratti fluviali a fondo ghiaioso dell’Italia Nord-Orientale e della Scozia: Fiume Brenta, Piave e Tagliamento (Italia) e Fiume Feshie (Scozia). Tre differenti metodologie geomorfometriche sono state applicate a diverse scale spaziali e temporali. Un approccio planimetrico attraverso un’analisi multitemporale degl’ultimi 30 anni in un tratto del Fiume Brenta. Un approccio volumetrico attraverso una rivisitata applicazione di batimetria da colore, con costruzione di modelli digitali del terreno “ibridi” (HDTM) e comparazione di modelli di elevazione (DoD) per lo studio di un intenso evento di piena, avvenuto nei fiumi italiani considerati. Rilievi in laboratorio e nel Fiume Feshie ad alta risoluzione, tramite laser scanner terrestre (TLS), sono stati eseguiti per studiarne l’incertezza ed individuare metodologie di classificazione spaziale delle nuvole di punti. I risultati, mostrano che dal 1981 al 1990 nel Fiume Brenta persiste ancora un processo di restringimento dell’alveo attivo. L’impatto umano è ancora presente. L’alveo attivo presenta la sua minima estensione. Dal 1990 al 2011, sembra che un parziale recupero della larghezza dell’alveo attivo sia in atto. Minor pressione da estrazione di ghiaia e da impatto umano, caratterizzano questo periodo. La metodologia proposta per produrre DTM ad alta risoluzione in presenza di aree bagnate ha dimostrato un’incertezza comparabile con il LiDAR nelle aree secche. La calibrazione dei modelli batimetrici, richiede un rilievo dGPS nelle aree bagnate in “contemporaneo” con l’acquisizione delle foto aeree. Grazie allo script sviluppato (PrEDA), sono possibili più dettagliate e automatiche analisi dell’erosione e della deposizione. Densità, angolo di incidenza ed intensità laser sembrano essere i fattori che maggiormente influenzano l’incertezza nella realizzazione di modelli di elevazione da TLS. Il filtro sviluppato per nuvole TLS è in grado di fornire semi-automatici filtraggi della vegetazione. Gli approcci geomorfometrici presentati, forniscono adeguate descrizioni topografiche dei sistemi fluviali; utili ad esplorare aggiustamenti dei canali dovuti a cause naturali o antropiche in differenti scale spaziali e temporali. Lo studio proposto, può rappresentare un valido supporto alla topografia in ambito fluviale, alla progettazione di interventi di ingegneria fluviale, ad una adeguata gestione fluviale, considerando aspetti ecologici e di riqualificazione fluviale.
Ansari, Saber. "Automated Monitoring of River Ice Processes from Shore-based Imagery." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35180.
Full textBooks on the topic "River processes"
E, Darby Stephen, and Simon Andrew, eds. Incised river channels: Processes, forms, engineering, and management. Chichester: J. Wiley, 1999.
Find full textFluvial processes in river engineering. Malabar, Fla: Krieger Pub. Co., 1992.
Find full text1942-, Tinkler K. J., and Wohl Ellen E. 1962-, eds. Rivers over rock: Fluvial processes in Bedrock channels. Washington, DC: American Geophysical Union, 1998.
Find full textRiver processes: An introduction to fluvial dynamics. London: Arnold, 2003.
Find full textH, Chang Howard. Fluvial processes in river engineering. New York: Wiley, 1988.
Find full textChang, Howard H. Fluvial processes in river engineering. Malabar, Fla: Krieger Publishing Co., 1992.
Find full textToth, Peterpaul G. Vermilion River: Meandering and alluvial processes. Sudbury, Ont: Laurentian University, Department of Earth Sciences, 1991.
Find full textGraf, William L. Fluvial processes in dryland rivers. Berlin: Springer-Verlag, 1988.
Find full textLindenschmidt, Karl-Erich. River Ice Processes and Ice Flood Forecasting. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28679-8.
Full textBrilly, Mitja, ed. Hydrological Processes of the Danube River Basin. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3423-6.
Full textBook chapters on the topic "River processes"
Wang, Zhao-Yin, Joseph H. W. Lee, and Charles S. Melching. "Estuary Processes and Managment." In River Dynamics and Integrated River Management, 467–554. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-25652-3_9.
Full textShen, Hung Tao. "River Ice Processes." In Advances in Water Resources Management, 483–530. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22924-9_9.
Full textMontgomery, David R., and John M. Buffington. "Channel Processes, Classification, and Response." In River Ecology and Management, 13–42. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1652-0_2.
Full textMcClimans, T. A. "Estuarine Fronts and River Plumes." In Physical Processes in Estuaries, 55–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73691-9_4.
Full textEdmonds, Douglas A., and Rebecca L. Caldwell. "River Delta Processes and Shapes." In Wetlands and Habitats, 55–65. Second edition. | Boca Raton: CRC Press, [2020] | Revised: CRC Press, 2020. http://dx.doi.org/10.1201/9780429445507-9.
Full textNestler, John M., Claudio Baigún, and Ian Maddock. "Achieving the aquatic ecosystem perspective: integrating interdisciplinary approaches to describe instream ecohydraulic processes." In River Science, 84–102. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118643525.ch5.
Full textStarosolszky, Odon. "Runoff and River Flow Measurements." In Land Surface Processes in Hydrology, 453–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60567-3_23.
Full textBrilly, Mitja. "Danube River Basin Coding." In Hydrological Processes of the Danube River Basin, 125–41. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3423-6_4.
Full textDai, Zhijun. "Changjiang River Basin Overview." In Changjiang Riverine and Estuarine Hydro-morphodynamic Processes, 1–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3771-1_1.
Full textWarmink, Jord J., and Martijn J. Booij. "Uncertainty Analysis in River Modelling." In Rivers – Physical, Fluvial and Environmental Processes, 255–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17719-9_11.
Full textConference papers on the topic "River processes"
Duarte, A. A. L. S., and J. M. P. Vieira. "Mitigation of estuarine eutrophication processes by controlling freshwater inflows." In RIVER BASIN MANAGEMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/rm090311.
Full text"River flow and transport processes." In The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-9.
Full textBarros, M. L. C., P. C. C. Rosman, and J. C. F. Telles. "Water quality modelling in tidal wetlands considering flooding and drying processes." In RIVER BASIN MANAGEMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/rbm130351.
Full textAstaraki, A., and F. Fallah. "Connecting river to sea by a 2-D mathematical model." In Coastal Processes 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/cp110191.
Full textBernard, Jerry M., and Ronald W. Tuttle. "Stream Corridor Restoration: Principles, Processes, and Practices." In Wetlands Engineering and River Restoration Conference 1998. Reston, VA: American Society of Civil Engineers, 1998. http://dx.doi.org/10.1061/40382(1998)55.
Full textStankevičienė, Rasa, and Oksana Survilė. "Land Drainage Development Processes and Changes in the Context of Runoff Change in Northern Lithuania." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.807.
Full textHolste, N. "Restoring natural river processes through channel realignment." In The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-324.
Full textVisescu, Erika. "RIVER BED PROCESSES MODELLING. STUDY CASE � MODELLING ON CRASNA RIVER SECTOR." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/31/s12.069.
Full textNico, Peter, Dipankar Dwivedi, Patricia Fox, Michelle Newcomer, John Christensen, Bhavna Arora, Carolyn Anderson, et al. "River Corridor Processes Across Scales in the East River of Colorado." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12282.
Full textNiu, Xiaojing, Satoshi Ueyama, Shinji Sato, Yoshimitsu Tajima, and Haijiang Liu. "67. SEDIMENT MOVEMENT UNDER COMBINED WAVES, TIDE AND RIVER DISCHARGE IN A RIVER MOUTH." In Coastal Dynamics 2009 - Impacts of Human Activities on Dynamic Coastal Processes. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814282475_0069.
Full textReports on the topic "River processes"
Day, T. J. River Processes [Chapter 9: a Survey of Geomorphic Processes in Canada]. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/131644.
Full textAshmore, P., and M. Church. The impact of climate change on rivers and river processes in Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/211891.
Full textConway, K. W., B. D. Bornhold, and J. V. Barrie. Surficial geology and sedimentary processes, Skeena River delta, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/207870.
Full textOrebaugh, E. Adaptation of U(IV) reductant to Savannah River Plant Purex processes. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5620962.
Full textHuntley, D., and A. Duk-Rodkin. Landslide processes in the south-central Mackenzie River valley region, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2006. http://dx.doi.org/10.4095/222392.
Full textKostaschuk, R. A., and J. L. Luternauer. Sedimentary processes and their environmental significance: lower main channel, Fraser River estuary. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2004. http://dx.doi.org/10.4095/215799.
Full textBiedenharn, David S., and Maureen K. Corcoran. A Literature Review of Processes for Gravel Deposit Identification in the Lower Mississippi River. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada526307.
Full textCalloway, T. B. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/799459.
Full textBohrer, Gil, Kelly Wrighton, Jorge Villa, Garret Smith, Josue Rodriguez-Ramos, and James Stegen. Accounting for hydrological and microbial processes on greenhouse gas budgets from river systems. Final report. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1515174.
Full textHayse, J. W., S. F. Daly, A. Tuthill, R. A. Valdez, B. Cowdell, and G. Burton. Effect of daily fluctuations from Flaming Gorge Dam in ice processes in the Green River. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/757502.
Full text