Academic literature on the topic 'RISC V processor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RISC V processor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "RISC V processor"

1

Pitcher, Graham. "RISC-V Powers IoT Apps Processor." New Electronics 51, no. 4 (2018): 7. http://dx.doi.org/10.12968/s0047-9624(23)60141-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gamino del Río, Iván, Agustín Martínez Hellín, Óscar R. Polo, et al. "A RISC-V Processor Design for Transparent Tracing." Electronics 9, no. 11 (2020): 1873. http://dx.doi.org/10.3390/electronics9111873.

Full text
Abstract:
Code instrumentation enables the observability of an embedded software system during its execution. A usage example of code instrumentation is the estimation of “worst-case execution time” using hybrid analysis. This analysis combines static code analysis with measurements of the execution time on the deployment platform. Static analysis of source code determines where to insert the tracing instructions, so that later, the execution time can be captured using a logic analyser. The main drawback of this technique is the overhead introduced by the execution of trace instructions. This paper proposes a modification of the architecture of a RISC pipelined processor that eliminates the execution time overhead introduced by the code instrumentation. In this way, it allows the tracing to be non-intrusive, since the sequence and execution times of the program under analysis are not modified by the introduction of traces. As a use case of the proposed solution, a processor, based on RISC-V architecture, was implemented using VHDL language. The processor, synthesized on a FPGA, was used to execute and evaluate a set of examples of instrumented code generated by a “worst-case execution time” estimation tool. The results validate that the proposed architecture executes the instrumented code without overhead.
APA, Harvard, Vancouver, ISO, and other styles
3

Hongsheng, Zhang, Zekun Jiang, and Yong Li. "Design of a dual-issue RISC-V processor." Journal of Physics: Conference Series 1693 (December 2020): 012192. http://dx.doi.org/10.1088/1742-6596/1693/1/012192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

An, Hyogeun, Sudong Kang, Guard Kanda, and Kwangki Ryoo. "RISC-V Hardware Synthesizable Processor Design Test and Verification Using User-Friendly Desktop Application." Webology 19, no. 1 (2022): 4597–620. http://dx.doi.org/10.14704/web/v19i1/web19305.

Full text
Abstract:
Although the RISC-V ISA has not been around for long, it is a processor architecture that has been highlighted by many businesses and individuals for its low-cost and rapid pace of development. They are open-source-synthesizable hardware processors with minimal functionality that is ideal for current IoT applications involving simple sensors and actuator controls. Due to some qualities of hardware, they can operate in areas where software programs and applications cannot be used whereas, these software programs that run on such hardware equally help in understanding how hardware operates. This paper, therefore, proposes and discusses the design, implementation, and internal verification and test platform for a Reduced Instruction Set Code-V’s (RISC-V) Instruction Set Architecture (ISA), using an interactive desktop program for a 32-bit single-cycle processor. This paper developed a system that functions as interactive assistance to RISC-V's ISA design and debugger using a more user-friendly desktop UI application. The uniqueness of this design is the flexibility of testing and debugging that is possible through either the software interface or through hardware peripherals such as Universal Asynchronous Receiver/Transmitter (UART) protocols in FPGA or even both. These peripherals allow users to view the contents of the register files and RAM being utilized by the implemented processor on the FPGA. The proposed desktop User Interface program monitors and controls the sequential processing and states of a 32-bit single-cycle RISC-V processor’s operation on an FPGA. Contents of the proposed processor’s registers and memory are displayed alongside other temporal or internal data. Internal components such as Program Counters (PC), Random Access Memory (RAM), are displayed all through the proposed User Interface (UI) program and also through various peripherals on the FPGA board. The software program is implemented using C# programing language through Microsoft Visual Studio 2019 Integrated Development Environment (IDE). The proposed hardware synthesizable processor core is implemented using Verilog Hardware Description Language (HDL) and synthesized with Xilinx Integrated Synthesis Environment (ISE) version 14.7. The proposed processor and its corresponding hardware test modules occupy 6476 Look-Up-Tables (LUT) and operate at a maximum frequency of 49MHz and its operation is verified on a Field Programmable Gate Array (FPGA). The proposed processor and its test platform can serve as a good educational tool as well as a help for processor design engineers both experienced and beginners.
APA, Harvard, Vancouver, ISO, and other styles
5

Núñez-Prieto, Ricardo, David Castells-Rufas, and Lluís Terés-Terés. "RisCO2: Implementation and Performance Evaluation of RISC-V Processors for Low-Power CO2 Concentration Sensing." Micromachines 14, no. 7 (2023): 1371. http://dx.doi.org/10.3390/mi14071371.

Full text
Abstract:
In the field of embedded systems, energy efficiency is a critical requirement, particularly for battery-powered devices. RISC-V processors have gained popularity due to their flexibility and open-source nature, making them an attractive choice for embedded applications. However, not all RISC-V processors are equally energy-efficient, and evaluating their performance in specific use cases is essential. This paper presents RisCO2, an RISC-V implementation optimized for energy efficiency. It evaluates its performance compared to other RISC-V processors in terms of resource utilization and energy consumption in a signal processing application for nondispersive infrared (NDIR) CO2 sensors.The processors were implemented in the PULPino SoC and synthesized using Vivado IDE. RisCO2 is based on the RV32E_Zfinx instruction set and was designed from scratch by the authors specifically for low-power signal demodulation in CO2 NDIR sensors. The other processors are Ri5cy, Micro-riscy, and Zero-riscy, developed by the PULP team, and CV32E40P (derived from Ri5cy) from the OpenHW Group, all of them widely used in the RISC-V community. Our experiments showed that RisCO2 had the lowest energy consumption among the five processors, with a 53.5% reduction in energy consumption compared to CV32E40P and a 94.8% reduction compared to Micro-riscy. Additionally, RisCO2 had the lowest FPGA resource utilization compared to the best-performing processors, CV32E40P and Ri5cy, with a 46.1% and a 59% reduction in LUTs, respectively. Our findings suggest that RisCO2 is a highly energy-efficient RISC-V processor for NDIR CO2 sensors that require signal demodulation to enhance the accuracy of the measurements. The results also highlight the importance of evaluating processors in specific use cases to identify the most energy-efficient option. This paper provides valuable insights for designers of energy-efficient embedded systems using RISC-V processors.
APA, Harvard, Vancouver, ISO, and other styles
6

Michel Deves de Souza, Eduardo, Nathalia Nathalia Adriana de Oliveira, Douglas Almeida dos Santos Almeida dos Santos, and Douglas Rossi de Melo. "RVSH - Um processador RISC-V para fins didáticos." Anais do Computer on the Beach 14 (May 3, 2023): 450–52. http://dx.doi.org/10.14210/cotb.v14.p450-452.

Full text
Abstract:
ABSTRACTEmbedded systems constitute the class of computers that presentthe most significant volume and are increasingly present ineveryday life. The main element of these systems is the processor,which can be found in discrete form, represented by a physicalcomponent, or cores, as used in programmable logic devices.Processors of the same architecture share the same instructionset but may differ in the organization’s implementation. RISC(Reduced Instruction Set Computer) is the class of architecturesthat favors a simple, reduced instruction set. RISC-V is an exampleof such architecture, which consists of an initiative by academiaand industry to be open and free, aiming for easy and optimizedimplementations. However, due to the recent disclosure of itsfeatures and specifications, RISC-V needs more reference materialfor digital and embedded system designs. This work proposesthe RVSH, a simple RISC-V processor for teaching and researchactivities. The implementation aims to allow the adoption of thisarchitecture in topics such as digital systems, computer architecture,microcontrollers, and embedded systems design.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Weixin, Dehua Wu, Wan’ang Xiao, Shan Gao, and Wanlin Gao. "A Novel Sleep Scheduling Strategy on RISC-V Processor." Journal of Physics: Conference Series 1631 (September 2020): 012028. http://dx.doi.org/10.1088/1742-6596/1631/1/012028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xue, Wang, Liu, Lv, Wang, and Zeng. "An RISC-V Processor with Area-Efficient Memristor-Based In-Memory Computing for Hash Algorithm in Blockchain Applications." Micromachines 10, no. 8 (2019): 541. http://dx.doi.org/10.3390/mi10080541.

Full text
Abstract:
Blockchain technology is increasingly being used in Internet of things (IoT) devices for information security and data integrity. However, it is challenging to implement complex hash algorithms with limited resources in IoT devices owing to large energy consumption and a long processing time. This paper proposes an RISC-V processor with memristor-based in-memory computing (IMC) for blockchain technology in IoT applications. The IMC-adapted instructions were designed for the Keccak hash algorithm by virtue of the extendibility of the RISC-V instruction set architecture (ISA). Then, an RISC-V processor with area-efficient memristor-based IMC was developed based on an open-source core for IoT applications, Hummingbird E200. The general compiling policy with the data allocation method is also disclosed for the IMC implementation of the Keccak hash algorithm. An evaluation shows that >70% improvements in both performance and energy saving were achieved with limited area overhead after introducing IMC in the RISC-V processor.
APA, Harvard, Vancouver, ISO, and other styles
9

Santos, Douglas A., André M. P. Mattos, Douglas R. Melo, and Luigi Dilillo. "Enhancing Fault Awareness and Reliability of a Fault-Tolerant RISC-V System-on-Chip." Electronics 12, no. 12 (2023): 2557. http://dx.doi.org/10.3390/electronics12122557.

Full text
Abstract:
Recent research has shown interest in adopting the RISC-V processors for high-reliability electronics, such as aerospace applications. The openness of this architecture enables the implementation and customization of the processor features to increase their reliability. Studies on hardened RISC-V processors facing harsh radiation environments apply fault tolerance techniques in the processor core and peripherals, exploiting system redundancies. In prior work, we present a hardened RISC-V System-on-Chip (SoC), which could detect and correct radiation-induced faults with limited fault awareness. Therefore, in this work, we propose solutions to extend the fault observability of the SoC implementation by providing error detection and monitoring. For this purpose, we introduce observation features in the redundant structures of the system, enabling the report of valuable information that supports enhanced radiation testing and support the application to perform actions to recover from critical failures. Thus, the main contribution of this work is a solution to improve fault awareness and the analysis of the fault models in the system. In order to validate this solution, we performed complementary experiments in two irradiation facilities, comprehending atmospheric neutrons and a mixed-field environment, in which the system proved to be valuable for analyzing the radiation effects on the processor core and its peripherals. In these experiments, we were able to obtain a range of error reports that allowed us to gain a deeper understanding of the faults mechanisms, as well as improve the characterization of the SoC.
APA, Harvard, Vancouver, ISO, and other styles
10

Gomes, Tiago, Pedro Sousa, Miguel Silva, Mongkol Ekpanyapong, and Sandro Pinto. "FAC-V: An FPGA-Based AES Coprocessor for RISC-V." Journal of Low Power Electronics and Applications 12, no. 4 (2022): 50. http://dx.doi.org/10.3390/jlpea12040050.

Full text
Abstract:
In the new Internet of Things (IoT) era, embedded Field-Programmable Gate Array (FPGA) technology is enabling the deployment of custom-tailored embedded IoT solutions for handling different application requirements and workloads. Combined with the open RISC-V Instruction Set Architecture (ISA), the FPGA technology provides endless opportunities to create reconfigurable IoT devices with different accelerators and coprocessors tightly and loosely coupled with the processor. When connecting IoT devices to the Internet, secure communications and data exchange are major concerns. However, adding security features requires extra capabilities from the already resource-constrained IoT devices. This article presents the FAC-V coprocessor, which is an FPGA-based solution for an RISC-V processor that can be deployed following two different coupling styles. FAC-V implements in hardware the Advanced Encryption Standard (AES), one of the most widely used cryptographic algorithms in IoT low-end devices, at the cost of few FPGA resources. The conducted experiments demonstrate that FAC-V can achieve performance improvements of several orders of magnitude when compared to the software-only AES implementation; e.g., encrypting a message of 16 bytes with AES-256 can reach a performance gain of around 8000× with an energy consumption of 0.1 μJ.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography