Journal articles on the topic 'RIPK3-MLKL-necroptotic pathway'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 46 journal articles for your research on the topic 'RIPK3-MLKL-necroptotic pathway.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ji, Y., L. A. Ward, and C. J. Hawkins. "Reconstitution of Human Necrosome Interactions in Saccharomyces cerevisiae." Biomolecules 11, no. 2 (2021): 153. http://dx.doi.org/10.3390/biom11020153.
Full textYang, Fang-Hao, Xiao-Lei Dong, Guo-Xiang Liu, et al. "The protective effect of C-phycocyanin in male mouse reproductive system." Food & Function 13, no. 5 (2022): 2631–46. http://dx.doi.org/10.1039/d1fo03741b.
Full textPetrie, Emma J., Richard W. Birkinshaw, Akiko Koide, et al. "Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies." Proceedings of the National Academy of Sciences 117, no. 15 (2020): 8468–75. http://dx.doi.org/10.1073/pnas.1919960117.
Full textMurphy, James M., and James E. Vince. "Post-translational control of RIPK3 and MLKL mediated necroptotic cell death." F1000Research 4 (November 19, 2015): 1297. http://dx.doi.org/10.12688/f1000research.7046.1.
Full textTian, Qing, Bo Qin, Yufan Gu, et al. "ROS-Mediated Necroptosis Is Involved in Iron Overload-Induced Osteoblastic Cell Death." Oxidative Medicine and Cellular Longevity 2020 (October 16, 2020): 1–22. http://dx.doi.org/10.1155/2020/1295382.
Full textSamson, André L., Sarah E. Garnish, Joanne M. Hildebrand, and James M. Murphy. "Location, location, location: A compartmentalized view of TNF-induced necroptotic signaling." Science Signaling 14, no. 668 (2021): eabc6178. http://dx.doi.org/10.1126/scisignal.abc6178.
Full textSpeir, Mary, Joanne A. O'Donnell, Alyce A. Chen, Akshay A. D'Cruz, and Ben A. Croker. "Ptpn6 Inhibits IL-1 Release from Neutrophils By Regulation of Caspase-8- and Ripk3/Mlkl-Dependent Forms of Cell Death." Blood 132, Supplement 1 (2018): 274. http://dx.doi.org/10.1182/blood-2018-99-120197.
Full textHuang, Ming, Shuai Zhu, Huihui Huang, et al. "Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis." Journal of the American Society of Nephrology 30, no. 11 (2019): 2073–90. http://dx.doi.org/10.1681/asn.2018111162.
Full textPicon, Carmen, Anusha Jayaraman, Rachel James, et al. "Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter." Acta Neuropathologica 141, no. 4 (2021): 585–604. http://dx.doi.org/10.1007/s00401-021-02274-7.
Full textChen, Jing, Renate Kos, Johan Garssen, and Frank Redegeld. "Molecular Insights into the Mechanism of Necroptosis: The Necrosome as a Potential Therapeutic Target." Cells 8, no. 12 (2019): 1486. http://dx.doi.org/10.3390/cells8121486.
Full textThomas, Chloe N., Adam M. Thompson, Zubair Ahmed, and Richard J. Blanch. "Retinal Ganglion Cells Die by Necroptotic Mechanisms in a Site-Specific Manner in a Rat Blunt Ocular Injury Model." Cells 8, no. 12 (2019): 1517. http://dx.doi.org/10.3390/cells8121517.
Full textGarnish, Sarah E., and Joanne M. Hildebrand. "Rare catastrophes and evolutionary legacies: human germline gene variants in MLKL and the necroptosis signalling pathway." Biochemical Society Transactions 50, no. 1 (2022): 529–39. http://dx.doi.org/10.1042/bst20210517.
Full textCacciola, Nunzio Antonio, Angela Salzano, Nunzia D’Onofrio, et al. "Buffalo Milk Whey Activates Necroptosis and Apoptosis in a Xenograft Model of Colorectal Cancer." International Journal of Molecular Sciences 23, no. 15 (2022): 8464. http://dx.doi.org/10.3390/ijms23158464.
Full textWard, George A., Simone Jueliger, Martin Sims, et al. "Combining the IAP Antagonist Tolinapant with a DNA Hypomethylating Agent Enhances Immunogenic Cell Death in Preclinical Models of T-Cell Lymphoma." Blood 138, Supplement 1 (2021): 3986. http://dx.doi.org/10.1182/blood-2021-152176.
Full textLyu, Ah-Ra, Tae-Hwan Kim, Sun-Ae Shin, et al. "Hearing Impairment in a Mouse Model of Diabetes Is Associated with Mitochondrial Dysfunction, Synaptopathy, and Activation of the Intrinsic Apoptosis Pathway." International Journal of Molecular Sciences 22, no. 16 (2021): 8807. http://dx.doi.org/10.3390/ijms22168807.
Full textHuang, Huihui, William W. Jin, Ming Huang, et al. "Gentamicin-Induced Acute Kidney Injury in an Animal Model Involves Programmed Necrosis of the Collecting Duct." Journal of the American Society of Nephrology 31, no. 9 (2020): 2097–115. http://dx.doi.org/10.1681/asn.2019020204.
Full textSantos, Leonardo Duarte, Krist Helen Antunes, Stéfanie Primon Muraro, et al. "TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection." European Respiratory Journal 57, no. 6 (2020): 2003764. http://dx.doi.org/10.1183/13993003.03764-2020.
Full textD'Cruz, Akshay A., Meghan Bliss-Moreau, Maria Ericcson, and Ben A. Croker. "Mlkl Pores Release Neutrophil Extracellular Traps in Necroptotic Neutrophils." Blood 126, no. 23 (2015): 2200. http://dx.doi.org/10.1182/blood.v126.23.2200.2200.
Full textBelizário, José, Luiz Vieira-Cordeiro, and Sylvia Enns. "Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice." Mediators of Inflammation 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/128076.
Full textDaley-Bauer, Lisa P., Linda Roback, Lynsey N. Crosby, et al. "Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways." Proceedings of the National Academy of Sciences 114, no. 13 (2017): E2786—E2795. http://dx.doi.org/10.1073/pnas.1616829114.
Full textLai, Ming-Zong, Yung-Hsuan Wu, Ting-Fang Chou, et al. "Regulation of necroptosis by targeting tumor suppressor death-associated protein kinase 1." Journal of Immunology 204, no. 1_Supplement (2020): 144.11. http://dx.doi.org/10.4049/jimmunol.204.supp.144.11.
Full textBedient, Lori, Swechha Mainali Pokharel, Kim Roxana Chiok Casimiro, and Santanu Bose. "Lytic cell death mechanisms in human respiratory syncytial virus-infected macrophages." Journal of Immunology 204, no. 1_Supplement (2020): 93.16. http://dx.doi.org/10.4049/jimmunol.204.supp.93.16.
Full textKim, Do-Yeon, Yea-Hyun Leem, Jin-Sun Park, et al. "RIPK1 Regulates Microglial Activation in Lipopolysaccharide-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models." Cells 12, no. 3 (2023): 417. http://dx.doi.org/10.3390/cells12030417.
Full textGarnish, Sarah E., Yanxiang Meng, Akiko Koide, et al. "Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22400-z.
Full textMeng, Yanxiang, Katherine A. Davies, Cheree Fitzgibbon, et al. "Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-27032-x.
Full textMoujalled, Diane, Pradnya Gangatirkar, Maria Kauppi, et al. "The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis." Cell Death & Disease 12, no. 1 (2021). http://dx.doi.org/10.1038/s41419-021-03418-z.
Full textPreston, Simon P., Cody C. Allison, Jan Schaefer, et al. "A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection." Cell Death & Disease 14, no. 2 (2023). http://dx.doi.org/10.1038/s41419-023-05635-0.
Full textChen, Jing, Shiyu Wang, Bart Blokhuis, Rob Ruijtenbeek, Johan Garssen, and Frank Redegeld. "Cell Death Triggers Induce MLKL Cleavage in Multiple Myeloma Cells, Which may Promote Cell Death." Frontiers in Oncology 12 (July 28, 2022). http://dx.doi.org/10.3389/fonc.2022.907036.
Full textTovey Crutchfield, Emma C., Sarah E. Garnish, Jessica Day, et al. "MLKL deficiency protects against low-grade, sterile inflammation in aged mice." Cell Death & Differentiation, February 8, 2023. http://dx.doi.org/10.1038/s41418-023-01121-4.
Full textLi, Dianrong, Jie Chen, Jia Guo та ін. "A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin2α-induced corpus luteum regression". eLife 10 (24 травня 2021). http://dx.doi.org/10.7554/elife.67409.
Full textZhang, Wenbin, Weiliang Fan, Jia Guo, and Xiaodong Wang. "Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na + /H + exchanger." Science Signaling 15, no. 734 (2022). http://dx.doi.org/10.1126/scisignal.abn5881.
Full textÁgueda-Pinto, Ana, Luís Q. Alves, Fabiana Neves, et al. "Convergent Loss of the Necroptosis Pathway in Disparate Mammalian Lineages Shapes Viruses Countermeasures." Frontiers in Immunology 12 (September 1, 2021). http://dx.doi.org/10.3389/fimmu.2021.747737.
Full textJacobsen, Annette V., Catia L. Pierotti, Kym N. Lowes, et al. "The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL." Cell Death & Disease 13, no. 4 (2022). http://dx.doi.org/10.1038/s41419-022-04740-w.
Full textWang, Xiaoliang, Damjan Avsec, Aleš Obreza, Shida Yousefi, Irena Mlinarič-Raščan, and Hans-Uwe Simon. "A Putative Serine Protease is Required to Initiate the RIPK3-MLKL—Mediated Necroptotic Death Pathway in Neutrophils." Frontiers in Pharmacology 11 (January 21, 2021). http://dx.doi.org/10.3389/fphar.2020.614928.
Full textYu, Ziyu, Nan Jiang, Wenru Su, and Yehong Zhuo. "Necroptosis: A Novel Pathway in Neuroinflammation." Frontiers in Pharmacology 12 (July 12, 2021). http://dx.doi.org/10.3389/fphar.2021.701564.
Full textKluck, George E. G., Alexander S. Qian, Emmanuel H. Sakarya, Henry Quach, Yak D. Deng, and Bernardo L. Trigatti. "Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent HDL (High-Density Lipoprotein) Suppression of Necroptosis in Macrophages." Arteriosclerosis, Thrombosis, and Vascular Biology, November 10, 2022. http://dx.doi.org/10.1161/atvbaha.122.318062.
Full textXiao, Peng, Changhua Wang, Jie Li, et al. "COP9 Signalosome Suppresses RIPK1-RIPK3–Mediated Cardiomyocyte Necroptosis in Mice." Circulation: Heart Failure 13, no. 8 (2020). http://dx.doi.org/10.1161/circheartfailure.120.006996.
Full textJayaraman, Anusha, Thein Than Htike, Rachel James, Carmen Picon, and Richard Reynolds. "TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus." Acta Neuropathologica Communications 9, no. 1 (2021). http://dx.doi.org/10.1186/s40478-021-01264-w.
Full textAltman, Aaron M., Michael J. Miller, Jamil Mahmud, Nicholas A. Smith, and Gary C. Chan. "Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes." Journal of Virology 94, no. 22 (2020). http://dx.doi.org/10.1128/jvi.01022-20.
Full textKarunakaran, Denuja, My-Anh Nguyen, Michele Geoffrion та ін. "RIPK1 Expression Associates with Inflammation in Early Atherosclerosis in Humans and Can be Therapeutically Silenced to Reduce NF-κB Activation and Atherogenesis in Mice". Circulation, 23 листопада 2020. http://dx.doi.org/10.1161/circulationaha.118.038379.
Full textFan, Guo-Chang, Dongze Qin, Xiaohong Wang, Liwang Yang, Wei Huang, and Yigang Wang. "Abstract 325: miR-223 Negatively Regulate Ischemia/Reperfusion-induced Cardiac Necroptosis." Circulation Research 117, suppl_1 (2015). http://dx.doi.org/10.1161/res.117.suppl_1.325.
Full textPatton, Timothy, Zhe Zhao, Xin Yi Lim, et al. "RIPK3 controls MAIT cell accumulation during development but not during infection." Cell Death & Disease 14, no. 2 (2023). http://dx.doi.org/10.1038/s41419-023-05619-0.
Full textRodriguez, Diego A., Giovanni Quarato, Swantje Liedmann, et al. "Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis." Proceedings of the National Academy of Sciences 119, no. 41 (2022). http://dx.doi.org/10.1073/pnas.2207240119.
Full textJonczyk, Agnieszka Walentyna, Katarzyna Karolina Piotrowska-Tomala та Dariusz Jan Skarzynski. "Effects of prostaglandin F2α (PGF2α) on cell-death pathways in the bovine corpus luteum (CL)". BMC Veterinary Research 15, № 1 (2019). http://dx.doi.org/10.1186/s12917-019-2167-3.
Full textPuertas-Neyra, Kevin, Nadia Galindo-Cabello, Leticia A. Hernández-Rodríguez, et al. "Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration." Frontiers in Neuroanatomy 16 (February 11, 2022). http://dx.doi.org/10.3389/fnana.2022.812487.
Full textMolnár, Tamás, Anett Mázló, Vera Tslaf, Attila Gábor Szöllősi, Gabriella Emri, and Gábor Koncz. "Current translational potential and underlying molecular mechanisms of necroptosis." Cell Death & Disease 10, no. 11 (2019). http://dx.doi.org/10.1038/s41419-019-2094-z.
Full text