Academic literature on the topic 'Ring down spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ring down spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ring down spectroscopy"

1

Wheeler, Martyn D., Stuart M. Newman, Andrew J. Orr-Ewing, and Michael N. R. Ashfold. "Cavity ring-down spectroscopy." Journal of the Chemical Society, Faraday Transactions 94, no. 3 (1998): 337–51. http://dx.doi.org/10.1039/a707686j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Paldus, B. A., C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare. "Cavity-locked ring-down spectroscopy." Journal of Applied Physics 83, no. 8 (April 15, 1998): 3991–97. http://dx.doi.org/10.1063/1.367155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Romanini, D., A. A. Kachanov, N. Sadeghi, and F. Stoeckel. "CW cavity ring down spectroscopy." Chemical Physics Letters 264, no. 3-4 (January 1997): 316–22. http://dx.doi.org/10.1016/s0009-2614(96)01351-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meijer, Gerard, Maarten G. H. Boogaarts, Rienk T. Jongma, David H. Parker, and Alec M. Wodtke. "Coherent cavity ring down spectroscopy." Chemical Physics Letters 217, no. 1-2 (January 1994): 112–16. http://dx.doi.org/10.1016/0009-2614(93)e1361-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Courtois, Jérémie, Katarzyna Bielska, and Joseph T. Hodges. "Differential cavity ring-down spectroscopy." Journal of the Optical Society of America B 30, no. 6 (May 9, 2013): 1486. http://dx.doi.org/10.1364/josab.30.001486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, R. Stephen, Igor Kozin, Zhaoguo Tong, Richard D. Oleschuk, and Hans-Peter Loock. "Fiber-loop ring-down spectroscopy." Journal of Chemical Physics 117, no. 23 (December 15, 2002): 10444–47. http://dx.doi.org/10.1063/1.1527893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Engeln, Richard, Giel Berden, Esther van den Berg, and Gerard Meijer. "Polarization dependent cavity ring down spectroscopy." Journal of Chemical Physics 107, no. 12 (September 22, 1997): 4458–67. http://dx.doi.org/10.1063/1.474808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crosson, E. R., P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare. "Pulse-stacked cavity ring-down spectroscopy." Review of Scientific Instruments 70, no. 1 (January 1999): 4–10. http://dx.doi.org/10.1063/1.1149533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schulz, K. J., and W. R. Simpson. "Frequency-matched cavity ring-down spectroscopy." Chemical Physics Letters 297, no. 5-6 (December 1998): 523–29. http://dx.doi.org/10.1016/s0009-2614(98)01173-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ball, Stephen M., and Roderic L. Jones. "Broad-Band Cavity Ring-Down Spectroscopy." Chemical Reviews 103, no. 12 (December 2003): 5239–62. http://dx.doi.org/10.1021/cr020523k.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ring down spectroscopy"

1

Bitter, Mario. "Cavity ring down spectroscopy for atmospheric applications." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Castillo, Genevieve Montero. "Biosensor using evanescent wave cavity ring-down spectroscopy (EWCRDS)." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cengiz, Betul. "Fiber Loop Ring Down Spectroscopy For Trace Chemical Detection." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615626/index.pdf.

Full text
Abstract:
Fiber loop ring down (FLRD) spectroscopy is a sensitive spectroscopic technique that is based on absorption and it is convenient for trace chemical detection. Different FLRD systems are being improved in order to increase their sensitivity. In FLRD spectroscopy, detection of a sample is done by measuring of a leaking light at each trip within an optical cavity. Intensity of leaking light has an exponential decay where it is reduced by absorption of sample and scattering of light. In this project, two FLRD set-ups at 1535 nm and 808 nm were designed. In both set-ups, optical fiber and optical fiber couplers are used to form a cavity. At 1535 nm, a FLRD set-up is constructed by utilizing a pulsed laser and used for characterization of thin films, various pure liquids and fluorescein solutions. Two different sensor regions are designed with free space collimators and ferrules for the measurement of thin films and liquids, respectively. The future endeavor of the set-up is improvement for reliability and reproducibility of the system. For visible and NIR regions, a fiber coupled laser with four colors as 642 nm, 785 nm, 808 nm and 852 nm laser is used to design of a FLRD set-up. 808 nm laser is selected to build a prototype of the FLRD system. The construction of a closed loop FLRD set-up is completed and the system is characterized. Ultimate aim in our project is to be able to do trace detection at visible and NIR regions where the chemical sensitivity is higher.
APA, Harvard, Vancouver, ISO, and other styles
4

Fiadzomor, Phyllis Aku Yayra. "Trace detection of water vapour by cavity ring-down spectroscopy." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492638.

Full text
Abstract:
A continuous wave cavity ring-down (CRD) spectrometer has been developed for the measurement of trace levels of water vapour by absorption spectroscopy at wavelengths m make cavity ring-down spectroscopy potentially more useful than current techniques for measurement of trace water in process gases and vacuum environments of semiconductor manufacture where water vapour contamination has a detrimental effect on the final product.
APA, Harvard, Vancouver, ISO, and other styles
5

Mason, Bernard James. "Aerosol cavity ring down spectroscopy : from ensemble to single particle measurements." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658637.

Full text
Abstract:
Aerosol particles are prevalent in the atmosphere and impact the Earth's energy balance through scattering and absorption of incoming and outgoing radiation. Such particles represent one of the largest uncertainties when trying to characterise the anthropogenic causes in the Earth's changing radiation balance. This thesis describes the development of laboratory based techniques for measuring aerosol optical and microphysical properties that are atmospherically relevant. A single particle trapping technique that uses a Bessel-beam propagating counter to a' gas flow (Bessel-beam/gas-flow) is presented. The changing radius of the trapping particle is determined from the collected elastically scattered light. The fluctuating position of a particle trapped along the Bessel beam length is shown to be directly related to the particle radiation pressure efficiency and thus to its radius and refractive index counter to what is expected from , liquid phase optical chromatography measurements. It is shown that ensemble aerosol particle fractionation using a Bessel-beam/gas-flow instrument is not possible. An aerosol ensemble cavity ring down spectrometer (AE-CRDS) was used to determine the refractive index of hygroscopic sodium nitrate aerosols at different relative humidities, A comparison is made between the refractive index retrieved using AE-CRDS and the refractive index retrieved using a single particle, optical tweezers instrument. The accuracy of the optical tweezers refractive index measurement is found to be significantly higher due to the poorly defined size distribution of the aerosol ensemble in the cavity ring down technique. The development of the single particle cavity ring down spectroscopy (SP-CRDS) technique for highly accurate measurements of aerosol extinction efficiencies is presented. The SP-CRDS instrument uses a Bessel-beam/gas-flow optical trap to control the position of a particle within a cavity ring down spectrometer. A new method of accurately obtaining the real part of the refractive index using this technique is described. Measured extinction efficiencies are compared to Mie simulated extinction efficiencies to obtain the refractive index of single component aerosol particles to an accuracy of better than ± 0.1%.
APA, Harvard, Vancouver, ISO, and other styles
6

Fawcett, Beth. "Diode laser cavity ring down spectroscopy for the measurement of trace gases." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Jin. "Use of cavity ring-down spectroscopy for the retrieval of aerosol refractive indices." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabeau, James Robert. "The cavity ring-down spectroscopy of C₂ in a diamond forming microwave plasma." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/1148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burkart, Johannes. "Optical feedback frequency-stabilized cavity ring-down spectroscopy - Highly coherent near-infrared laser sources and metrological applications in molecular absorption spectroscopy." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY045/document.

Full text
Abstract:
La spectroscopie d'absorption moléculaire est un outil incontournable non seulement pour la physique fondamentale et la métrolgie mais aussi pour des domaines aussi divers que les sciences environnementales, la planétologie ou l'astrophysique. Ces dernières années, des techniques spectroscopiques qui exploitent l'amplification résonnante d'interaction entre lumière laser et molécules dans une cavité optique ont fourni des détectivités exceptionnelles sur l'axe d'absorption, tandis que l'axe de fréquence des spectromètres n'atteignait généralement pas le même niveau de précision.Dans cette thèse, nous avons répondu à ce défi en développant la spectroscopie en cavité par temps de déclin stabilisée en fréquence par rétroaction optique (OFFS-CRDS en anglais). Cette nouvelle technique présente une combinaison unique de stabilité et résolution fréquentielles sub-kHz, d'un niveau d'intensité lumineuse intra-cavité de l'ordre du kW/cm^2, d'une detectivite de 2 x 10^(−13) cm^(−1)Hz^(-1/2) limitée par le bruit de photons, et d'une limite de détection de 8.4 x 10^(−14) cm^(−1) sur une plage spectrale étroite. Ces performances inédites sont dues à l'asservissement de la cavité spectroscopique à un laser balayé en fréquence par modulation à bande latérale unique et stabilisé par rétroaction optique avec une cavité en V de réference ultrastable. Pour transférer la cohérence de ce laser sub-kHz à des lasers plus bruiteux dans d'autres gammes spectrales à travers un peigne de fréquence optique, nous avons exploré une nouvelle méthode de clonage de phase par une correction anticipative à large bande passante et démontré une erreur résiduelle de phase de 113 mrad. En appliquant l'OFFS-CRDS à la spectroscopie du CO2 à 1.6 μm, nous avons obtenu un spectre large bande avec une dynamique de 8 x 10^5, et nous avons déterminé douze fréquences de transition absolues avec une exactitude de l'ordre du kHz en mesurant des Lamb dips sub-Doppler en absorption saturée avec un dispositif équipé d'un peigne de fréquence. Par ailleurs, nous avons procédé à une analyse détaillée des sources d'erreurs systematiques en CRDS et nous avons déduit une formule analytique pour le déclin de cavité non-exponentiel dans un régime faiblement saturé qui est susceptible de contribuer à de futures mesures de moments de transition dipolaire indépendantes de la concentration. Nos résultats ouvrent des perspectives prometteuses pour des applications métrologiques de l'OFFS-CRDS, comme par exemple l'étude de profils de raie poussés, la mesures de rapports isotopiques et la spectroscopie d'absorption saturée extensive dans le proche infrarouge
High-precision molecular absorption spectroscopy is a powerful tool for fundamental physics and metrology, as well as for a broad range of applications in fields such as environmental sciences, planetology and astrophysics. In recent years, spectroscopic techniques based on the enhanced interaction of laser light with molecular samples in high-finesse optical cavities have provided outstanding detection sensitivities on the absorption axis, while the spectrometer frequency axis rarely met as high precision standards.In this thesis, we addressed this challenge by the development of Optical Feedback Frequency-Stabilized Cavity Ring-Down Spectroscopy (OFFS-CRDS). This novel technique features a unique combination of sub-kHz frequency resolution and stability, kW/cm^2-level intracavity light intensity, a shot-noise limited absorption detectivity down to 2 x 10^(−13) cm^(−1)Hz^(-1/2), as well as a detection limit of 8.4 x 10^(−14) cm^(−1) on a narrow spectral interval. This unprecedented performance is based on the tight Pound-Drever-Hall lock of the ring-down cavity to a single-sideband-tuned distributed-feedback diode laser which is optical-feedback-stabilized to a highly stable V-shaped reference cavity. To transfer the coherence of this sub-kHz laser source to noisier lasers in other spectral regions through an optical frequency comb, we have explored a novel high-bandwidth feed-forward phase cloning scheme and demonstrated a residual phase error as low as 113 mrad. Applying OFFS-CRDS to the spectroscopy of CO_2 near 1.6 μm, we obtained a broadband spectrum with a dynamic range of 8 x 10^5 and retrieved twelve absolute transition frequencies with kHz-accuracy by measuring sub-Doppler saturated absorption Lamb dips with a comb-assisted setup. Furthermore, we have performed a comprehensive analysis of systematic error sources in CRDS and derived an analytic formula for the non-exponential ring-down signal in a weakly saturated regime, which may contribute towards future concentration-independent transition dipole moment measurements. Our results open up promising perspectives for metrological applications of OFFS-CRDS, such as advanced absorption lineshape studies, isotopic ratio measurements and extensive saturated absorption spectroscopy in the near infrared
APA, Harvard, Vancouver, ISO, and other styles
10

MARTINS, JULIANNA MARIA DE ALMEIDA. "CAVITY RING-DOWN SPECTROSCOPY AS A TOOL FOR THE DETERMINATION OF CARBON ISOTOPE DISTRIBUTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20983@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
A análise isotópica vem crescendo a cada ano devido à sua grande área de atuação nas diversas áreas da ciência. Existem diversas técnicas utilizadas para realizar a determinação das concentrações naturais dos isótopos e suas variações, sendo que a mais utilizada é a espectrometria de massa de razões isotópicas (EMRI). Uma técnica analítica que vem ganhando espaço no mercado é a espectroscopia de cavidade ressonante do tipo ring-down (ECRRD) (Cavity Ring-Down Spectroscopy - CRDS), que é uma técnica baseada em laser. Ao contrário dos espectrômetros de massa, estes analisadores exigem pouco ou nenhum tratamento da amostra, diminuindo com isso o tempo de análise. O presente trabalho tem como objetivo obter a assinatura isotópica 13C/12C em amostra sólidas e líquidas, empregando um analisador a laser. Foi desenvolvido e implementado um método de análise isotópica empregando um analisador de carbono orgânico total acoplado a um espectrômetro de cavidade ressonante do tipo ring-down (iTOC-CRDS). Os resultados obtidos foram comparados com os obtidos através de um EMRI. O desempenho do método foi avaliado através dos parâmetros de linearidade; exatidão, pela utilização de materiais de referência certificados; precisão, pela repetitividade e reprodutibilidade; além dos cálculos das incertezas associadas. Foram analisadas amostras de açúcar, biomassas, bio-óleo, biocombustível, metanol e gasolina.
The use of isotopic analyses grows each year, due to large area of expertise in several science areas. Several techniques are used to perform the determination of natural isotope concentrations and their variations, with isotopic ratio mass spectroscopy (IRMS) being the most widely used. An analytical technique that is gaining market space is the cavity ring-down spectroscopy. Unlike mass spectrometers, these analyzers require little or no sample treatment, thereby reducing the analysis time. The present study aimed to obtain the 13C/12C isotopic signature in solid and liquid samples using a laser analyzer. An isotopic analysis method using a total organic carbon analyzer coupled to a cavity ring-down spectrometer (iTOC-CRDS) was developed and implemented. The results were compared with those obtained by IRMS. The method performance was evaluated by the parameters of linearity; accuracy, using standard reference materials; precision, using parameters of repeatability and reproducibility and by calculating the associated uncertainties. The analyzed samples were sugar, biomass, bio-oil, biofuel, methanol and gasoline.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ring down spectroscopy"

1

Berden, Giel, and Richard Engeln, eds. Cavity Ring-Down Spectroscopy. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9781444308259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Giel, Berden, and Engeln Richard, eds. Cavity ring-down spectroscopy: Techniques and applications. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berden, Giel, and Richard Engeln. Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley & Sons, Incorporated, John, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berden, Giel, and Richard Engeln. Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley & Sons, Limited, John, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cavity Ring-down Spectroscopy : Techniques and Applications: Techniques and Applications. Wiley & Sons, Limited, John, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ring down spectroscopy"

1

Maity, Abhijit, Mithun Pal, and Manik Pradhan. "Cavity Ring-Down Spectroscopy." In Modern Techniques of Spectroscopy, 287–305. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6084-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fry, Edward S., and John Mason. "Integrating Cavities and Ring-Down Spectroscopy." In 21st Century Nanoscience – A Handbook, 18–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429340420-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sneep, M., and W. Ubachs. "Cavity Ring-Down Spectroscopy of O2–O2 Collisional Induced Absorption." In Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, 203–11. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0025-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tong, Zhaoguo, R. Stephen Brown, Hans-Peter Loock, and Richard D. Oleschuk. "Fiber-Loop Ring-Down Spectroscopy for Enhanced Detection of Absorption with Limited Path Length." In Micro Total Analysis Systems 2002, 296–98. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0295-0_99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cancio, P., I. Galli, S. Bartalini, G. Giusfredi, D. Mazzotti, and P. De Natale. "Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR." In Springer Series in Optical Sciences, 143–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40003-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lehmann, Kevin K., and Haifeng Huang. "Optimal Signal Processing in Cavity Ring-Down Spectroscopy." In Frontiers of Molecular Spectroscopy, 623–58. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-444-53175-9.00018-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maity, Abhijit, Sanchi Maithani, and Manik Pradhan. "Cavity ring-down spectroscopy: recent technological advances and applications." In Molecular and Laser Spectroscopy, 83–120. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818870-5.00003-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Shui-Ming. "Trace gas measurements using cavity ring-down spectroscopy." In Advances in Spectroscopic Monitoring of the Atmosphere, 413–41. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-815014-6.00002-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"- Progress in the Investigation of Aerosols’ Optical Properties Using Cavity Ring-Down Spectroscopy: Theory and Methodology." In Fundamentals and Applications in Aerosol Spectroscopy, 288–315. CRC Press, 2010. http://dx.doi.org/10.1201/b10417-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chiellini, Grazia, Julia Haviland, Hannah Reliand, Dan Butz, Fariba M. Assadi-Porter, Thomas S. Scanlan, and Riccardo Zucchi. "New Insights into the Effects of 3-Iodothyronamine (T1AM) on Metabolism in Mice from Cavity Ring Down Spectroscopy (CRDS)." In BASIC - Hypothalamic-Pituitary-Thyroid Axis: Thyroid Hormone Metabolism, Cellular Uptake & Action, P1–663—P1–663. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p16.p1-663.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ring down spectroscopy"

1

Engeln, Richard, and Gerard Meijer. "A Fourier Transform Cavity Ring Down Spectrometer." In Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fts.1997.ftua.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zare, Richard. "Cavity ring-down spectroscopy: an overview." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/lacea.2002.fe1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pastor, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale. "Saturated-Absorption Cavity Ring-Down Spectroscopy." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.ftul4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suas-David, Nicolas, Robert Georges, Abdessamad Benidar, and Samir Kassi. "HYPERSONIC POST-SHOCK CAVITY RING-DOWN SPECTROSCOPY." In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.mh11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reed, Zachary, and Joseph Hodges. "FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY." In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.wf03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andrews, Nicholas L. P., Jessica Litman, Klaus Bescherer, Jack A. Barnes, and Hans-Peter Loock. "Fiber-Loop Cavity Ring-Down Absorption Spectroscopy." In Applied Industrial Optics: Spectroscopy, Imaging and Metrology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/aio.2014.am4a.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

van Zee, Roger D., John P. Looney, and Joseph T. Hodges. "Measuring pressure with cavity ring-down spectroscopy." In Photonics East (ISAM, VVDC, IEMB), edited by Wim A. de Groot. SPIE, 1999. http://dx.doi.org/10.1117/12.337482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nikolaev, Igor V., Vladimir N. Ochkin, Maxim V. Spiridonov, and Sergei N. Tskhai. "Cavity ring-down spectroscopy with diode array." In SPIE Proceedings, edited by Yurii N. Ponomarev, Semen N. Mikhailenko, and Leonid N. Sinitsa. SPIE, 2006. http://dx.doi.org/10.1117/12.724935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Weipeng, Xinyi Chen, Haoyun Wei, and Yan Li. "Dual comb-linked cavity ring-down spectroscopy." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.jth2a.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reed, Zachary, and Joseph Hodges. "FREQUENCY COMB PHASE-LOCKED CAVITY RING-DOWN SPECTROSCOPY." In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.mj03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ring down spectroscopy"

1

Marcus, Logan S., Ellen L. Holthoff, and Paul M. Pellegrino. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada608710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strecker, Kevin E., and David W. Chandler. Dual-etalon, cavity-ring-down, frequency comb spectroscopy. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1011624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zare, Richard N. Application of Cavity Ring-Down Spectroscopy to Liquid Samples. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada414354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/823019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/823949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Christopher C. Carter. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/828654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Christopher C. Carter. A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/850501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/820567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Christopher C. Carter, Ph D. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/821847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stromer, Bobbi, Anthony Bednar, Milo Janjic, Scott Becker, Tamara Kylloe, John Allen, Matt Trapani, John Hargrove, and James Hargrove. Trace explosives detection by cavity ring-down spectroscopy (CRDS). Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41520.

Full text
Abstract:
We built three successive versions of a thermal decomposition cavity ring-down spectrometer and tested their response to explosives. These explosive compound analyzers successfully detected nitroglycerine, 2,4,6-trinitrotoluene (TNT), pentaerythryl tetranitrate, hexahydro-1,3,5-trinitro-s-triazine and triacetone triperoxide (TATP). We determined the pathlength and limits of detection for each, with the best limit of detection being 13 parts per trillion (ppt) of TNT. For most of the explosive tests, the peak height was higher than the expected value, meaning that peroxy radical chain propagation was occurring with each of the explosives and not just the peroxide TATP.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography