Academic literature on the topic 'Riemannian and barycentric geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riemannian and barycentric geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Riemannian and barycentric geometry"
Pihajoki, Pauli, Matias Mannerkoski, and Peter H. Johansson. "Barycentric interpolation on Riemannian and semi-Riemannian spaces." Monthly Notices of the Royal Astronomical Society 489, no. 3 (September 2, 2019): 4161–69. http://dx.doi.org/10.1093/mnras/stz2447.
Full textMiranda Jr., Gastão F., Gilson Giraldi, Carlos E. Thomaz, and Daniel Millàn. "Composition of Local Normal Coordinates and Polyhedral Geometry in Riemannian Manifold Learning." International Journal of Natural Computing Research 5, no. 2 (April 2015): 37–68. http://dx.doi.org/10.4018/ijncr.2015040103.
Full textSabatini, Luca. "Volume Comparison in the presence of a Gromov-Hausdorff ε−approximation II." Annals of West University of Timisoara - Mathematics and Computer Science 56, no. 1 (July 1, 2018): 99–135. http://dx.doi.org/10.2478/awutm-2018-0008.
Full textWu, H., and Wilhelm Klingenberg. "Riemannian Geometry." American Mathematical Monthly 92, no. 7 (August 1985): 519. http://dx.doi.org/10.2307/2322529.
Full textLord, Nick, M. P. do Carmo, S. Gallot, D. Hulin, J. Lafontaine, I. Chavel, and D. Martin. "Riemannian Geometry." Mathematical Gazette 79, no. 486 (November 1995): 623. http://dx.doi.org/10.2307/3618122.
Full textMrugała, R. "Riemannian geometry." Reports on Mathematical Physics 27, no. 2 (April 1989): 283–85. http://dx.doi.org/10.1016/0034-4877(89)90011-6.
Full textM.Osman, Mohamed. "Differentiable Riemannian Geometry." International Journal of Mathematics Trends and Technology 29, no. 1 (January 25, 2016): 45–55. http://dx.doi.org/10.14445/22315373/ijmtt-v29p508.
Full textDimakis, Aristophanes, and Folkert Müller-Hoissen. "Discrete Riemannian geometry." Journal of Mathematical Physics 40, no. 3 (March 1999): 1518–48. http://dx.doi.org/10.1063/1.532819.
Full textBeggs, Edwin J., and Shahn Majid. "Poisson–Riemannian geometry." Journal of Geometry and Physics 114 (April 2017): 450–91. http://dx.doi.org/10.1016/j.geomphys.2016.12.012.
Full textStrichartz, Robert S. "Sub-Riemannian geometry." Journal of Differential Geometry 24, no. 2 (1986): 221–63. http://dx.doi.org/10.4310/jdg/1214440436.
Full textDissertations / Theses on the topic "Riemannian and barycentric geometry"
Farina, Sofia. "Barycentric Subspace Analysis on the Sphere and Image Manifolds." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15797/.
Full textLord, Steven. "Riemannian non-commutative geometry /." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl8661.pdf.
Full textMaignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.
Full textAn MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
Lidberg, Petter. "Barycentric and harmonic coordinates." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179487.
Full textHall, Stuart James. "Numerical methods and Riemannian geometry." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538692.
Full textFerreira, Ana Cristina Castro. "Riemannian geometry with skew torsion." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526550.
Full textWu, Bao Qiang. "Geometry of complete Riemannian Submanifolds." Lyon 1, 1998. http://www.theses.fr/1998LYO10064.
Full textBoarotto, Francesco. "Topics in sub-Riemannian geometry." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4881.
Full textPalmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.
Full textRaineri, Emanuele. "Quantum Riemannian geometry of finite sets." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414738.
Full textBooks on the topic "Riemannian and barycentric geometry"
Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97242-3.
Full textPetersen, Peter. Riemannian Geometry. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-6434-5.
Full textCarmo, Manfredo Perdigão do. Riemannian Geometry. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-2201-7.
Full textGallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18855-8.
Full textPetersen, Peter. Riemannian Geometry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26654-1.
Full textGallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-97026-9.
Full text1959-, Hulin D., and Lafontaine, J. 1944 Mar. 10-, eds. Riemannian geometry. Berlin: Springer-Verlag, 1987.
Find full textSakai, T. Riemannian geometry. Providence, R.I: American Mathematical Society, 1996.
Find full textRiemannian geometry. 2nd ed. Berlin: W. de Gruyter, 1995.
Find full textCarmo, Manfredo Perdigão do. Riemannian geometry. Boston: Birkhäuser, 1992.
Find full textBook chapters on the topic "Riemannian and barycentric geometry"
Bambi, Cosimo. "Riemannian Geometry." In Introduction to General Relativity, 85–105. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1090-4_5.
Full textConlon, Lawrence. "Riemannian Geometry." In Differentiable Manifolds, 293–348. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.
Full textAubin, Thierry. "Riemannian Geometry." In Some Nonlinear Problems in Riemannian Geometry, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-13006-3_1.
Full textKumaresan, S. "Riemannian Geometry." In A Course in Differential Geometry and Lie Groups, 232–80. Gurgaon: Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-08-8_5.
Full textGadea, P. M., and J. Muñoz Masqué. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds, 233–349. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3564-6_6.
Full textKoch, Helmut. "Riemannian geometry." In Introduction to Classical Mathematics I, 182–209. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3218-3_14.
Full textMcInerney, Andrew. "Riemannian Geometry." In Undergraduate Texts in Mathematics, 195–270. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7732-7_5.
Full textChow, Bennett, Peng Lu, and Lei Ni. "Riemannian geometry." In Hamilton’s Ricci Flow, 1–93. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/gsm/077/01.
Full textGadea, Pedro M., Jaime Muñoz Masqué, and Ihor V. Mykytyuk. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds, 343–546. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5952-7_6.
Full textHassani, Sadri. "Riemannian Geometry." In Mathematical Physics, 1143–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_37.
Full textConference papers on the topic "Riemannian and barycentric geometry"
Moran, William, Stephen D. Howard, Douglas Cochran, and Sofia Suvorova. "Sensor management via riemannian geometry." In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012. http://dx.doi.org/10.1109/allerton.2012.6483240.
Full textHadwiger, Markus, Thomas Theußl, and Peter Rautek. "Riemannian Geometry for Scientific Visualization." In SA '22: SIGGRAPH Asia 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3550495.3558227.
Full textGMIRA, B., and L. VERSTRAELEN. "A CURVATURE INEQUALITY FOR RIEMANNIAN SUBMANIFOLDS IN A SEMI–RIEMANNIAN SPACE FORM." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0016.
Full textLenz, Reiner, Rika Mochizuki, and Jinhui Chao. "Iwasawa Decomposition and Computational Riemannian Geometry." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.1086.
Full textBejancu, Aurel. "Sub-Riemannian geometry and nonholonomic mechanics." In ALEXANDRU MYLLER MATHEMATICAL SEMINAR CENTENNIAL CONFERENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3546072.
Full textChen, Guohua. "Digital Riemannian Geometry and Its Application." In International Conference on Advances in Computer Science and Engineering. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/cse.2013.63.
Full textBarachant, Alexandre, Stphane Bon, Marco Congedo, and Christian Jutten. "Common Spatial Pattern revisited by Riemannian geometry." In 2010 IEEE 12th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2010. http://dx.doi.org/10.1109/mmsp.2010.5662067.
Full textZeestraten, Martijn J. A., Ioannis Havoutis, Sylvain Calinon, and Darwin G. Caldwell. "Learning task-space synergies using Riemannian geometry." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8202140.
Full textShao, Hang, Abhishek Kumar, and P. Thomas Fletcher. "The Riemannian Geometry of Deep Generative Models." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00071.
Full textGordina, Maria. "Riemannian geometry of Diff(S1)/S1 revisited." In Proceedings of a Satellite Conference of ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812791559_0002.
Full text