Academic literature on the topic 'Rice trade Asia Econometric models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rice trade Asia Econometric models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rice trade Asia Econometric models"

1

Julitasari, Evi Nurifah. "The Overview of Asean Rice Trade Toward Asean Integrated Food Security (AIFS)." Journal of Emerging Economies and Islamic Research 2, no. 3 (September 30, 2014): 78. http://dx.doi.org/10.24191/jeeir.v2i3.9634.

Full text
Abstract:
ASEAN takes serious effort to address the challenge of Food Security, within the region of Southeast Asia. Especially for rice trade among ASEAN country was taken place a long ago. In 2015 we would be integragted market. The aims of study are (1) to analysys the potential of rice supply and demand (2) the effect of trade restriction (export and import restriction). The models were constructed by econometric simulation analysis with time series data from 1984-2007. The results shows: (1) the trend of ASEAN paddy production was increasing. The average increase of the ASEAN paddy production was 130,46 MT/year with the rate 2,84 percent/year (2) the effect of export restriction will be increase an export price more than 10 percent, and the effect of import restriction will be increase an import price in all importer countries.
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Zixia, Xiaowei Feng, Yangyang Dong, and Yujiao Xian. "Energy and water footprints comparison of East Asia: A heterogeneity analysis." APN Science Bulletin 2022, no. 1 (June 1, 2022): 44–54. http://dx.doi.org/10.30852/sb.2022.1816.

Full text
Abstract:
Population and economic growth have posed serious challenges to meet global energy and water needs. With the formation of global value chains and regional economic models changing the location and scale of environmental pressures, East Asia deserves special attention because of its importance in world trade. This paper constructed a global multi-regional input-output table based on the Global Trade Analysis Project (GTAP) 10 database and innovatively matched the energy and water databases to analyze the issues in 2014. The results show that in East Asia, (1) China is a net exporter and presents unique embodied energy characteristics with a trade deficit of 392Mtoe. Moreover, trade is the main reason for embodied energy and water in countries other than China. (2) The electricity sector, petroleum and coal products sector, and the services sector are the main sectors of embodied energy use, in which the latter accounts for 25.9% - 43.9% of the total embodied energy use in major countries. (3) Paddy rice sector and processed foods sector produce lots of embodied water for production and consumption, respectively. And the embodied water of processed foods accounts for more than 40% of major countries consumption.
APA, Harvard, Vancouver, ISO, and other styles
3

Hossain, Syed Shoyeb, and Huang Delin. "Rice and Wheat Tariff Impact in Bangladesh: CGE Analysis Using Gtap Model." Journal of Agricultural Science 11, no. 10 (July 15, 2019): 63. http://dx.doi.org/10.5539/jas.v11n10p63.

Full text
Abstract:
Computable General Equilibrium (CGE) models are mostly used for agricultural market analysis globally. This paper constructs a Computable General Equilibrium model using Global Trade Analysis Project (GTAP) model followed by the GTAP 9A database. The primary aim of this paper is to analyze the potential impact of tariff increase on Agricultural crop sectors (Rice and Wheat) in Bangladesh and then describes the construction of the database. It also attempts to detect the trend of the tariff change impact on rice and wheat production in Bangladesh and other South Asian countries. Using database reference year 2011, this paper builds a computable general equilibrium model to measure the Tariff impact in Bangladesh. Result of the model suggests that if an import tariff is imposed, it will affect domestic-foreign relative price between Bangladesh and other south Asian countries. Bilateral trade between Bangladesh and South Asia country will decline sharply. Finally, this paper explained the policy scenario, data sources, and processing methods in details.
APA, Harvard, Vancouver, ISO, and other styles
4

Godfray, H. Charles J., Daniel Mason-D'Croz, and Sherman Robinson. "Food system consequences of a fungal disease epidemic in a major crop." Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1709 (December 5, 2016): 20150467. http://dx.doi.org/10.1098/rstb.2015.0467.

Full text
Abstract:
Fungal diseases are major threats to the most important crops upon which humanity depends. Were there to be a major epidemic that severely reduced yields, its effects would spread throughout the globalized food system. To explore these ramifications, we use a partial equilibrium economic model of the global food system (IMPACT) to study a hypothetical severe but short-lived epidemic that reduces rice yields in the countries affected by 80%. We modelled a succession of epidemic scenarios of increasing severity, starting with the disease in a single country in southeast Asia and ending with the pathogen present in most of eastern Asia. The epidemic and subsequent crop losses led to substantially increased global rice prices. However, as long as global commodity trade was unrestricted and able to respond fast enough, the effects on individual calorie consumption were, to a large part, mitigated. Some of the worse effects were projected to be experienced by poor net-rice importing countries in sub-Saharan Africa, which were not affected directly by the disease but suffered because of higher rice prices. We critique the assumptions of our models and explore political economic pressures to restrict trade at times of crisis. We finish by arguing for the importance of ‘stress-testing’ the resilience of the global food system to crop disease and other shocks. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.
APA, Harvard, Vancouver, ISO, and other styles
5

Jägermeyr, Jonas, Alan Robock, Joshua Elliott, Christoph Müller, Lili Xia, Nikolay Khabarov, Christian Folberth, et al. "A regional nuclear conflict would compromise global food security." Proceedings of the National Academy of Sciences 117, no. 13 (March 16, 2020): 7071–81. http://dx.doi.org/10.1073/pnas.1919049117.

Full text
Abstract:
A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.
APA, Harvard, Vancouver, ISO, and other styles
6

Mukherjee, Dhiman. "Food Security Under The Era Of Climate Change Threat." Journal of Advanced Agriculture & Horticulture Research 1, no. 1 (June 25, 2021): 1–4. http://dx.doi.org/10.55124/jahr.v1i1.78.

Full text
Abstract:
Agriculture production is directly dependent on climate change and weather. Possible changes in temperature, precipitation and CO2 concentration are expected to significantly impact crop growth and ultimately we lose our crop productivity and indirectly affect the sustainable food availability issue. The overall impact of climate change on worldwide food production is considered to be low to moderate with successful adaptation and adequate irrigation. Climate change has a serious impact on the availability of various resources on the earth especially water, which sustains life on this planet. The global food security situation and outlook remains delicately imbalanced amid surplus food production and the prevalence of hunger, due to the complex interplay of social, economic, and ecological factors that mediate food security outcomes at various human and institutional scales. Weather aberration poses complex challenges in terms of increased variability and risk for food producers and the energy and water sectors. Changes in the biosphere, biodiversity and natural resources are adversely affecting human health and quality of life. Throughout the 21st century, India is projected to experience warming above global level. India will also begin to experience more seasonal variation in temperature with more warming in the winters than summers. Longevity of heat waves across India has extended in recent years with warmer night temperatures and hotter days, and this trend is expected to continue. Strategic research priorities are outlined for a range of sectors that underpin global food security, including: agriculture, ecosystem services from agriculture, climate change, international trade, water management solutions, the water-energy-food security nexus, service delivery to smallholders and women farmers, and better governance models and regional priority setting. There is a need to look beyond agriculture and invest in affordable and suitable farm technologies if the problem of food insecurity is to be addressed in a sustainable manner. Introduction Globally, agriculture is one of the most vulnerable sectors to climate change. This vulnerability is relatively higher in India in view of the large population depending on agriculture and poor coping capabilities of small and marginal farmers. Impacts of climate change pose a serious threat to food security. “Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life” (World Food Summit, 1996). This definition gives rise to four dimensions of food security: availability of food, accessibility (economically and physically), utilization (the way it is used and assimilated by the human body) and stability of these three dimensions. According to the United Nations, in 2015, there are still 836 million people in the world living in extreme poverty (less than USD1.25/day) (UN, 2015). And according to the International Fund for Agricultural Development (IFAD), at least 70 percent of the very poor live in rural areas, most of them depending partly (or completely) on agriculture for their livelihoods. It is estimated that 500 million smallholder farms in the developing world are supporting almost 2 billion people, and in Asia and sub-Saharan Africa these small farms produce about 80 percent of the food consumed. Climate change threatens to reverse the progress made so far in the fight against hunger and malnutrition. As highlighted by the assessment report of the Intergovernmental Panel on Climate change (IPCC), climate change augments and intensifies risks to food security for the most vulnerable countries and populations. Few of the major risks induced by climate change, as identified by IPCC have direct consequences for food security (IPCC, 2007). These are mainly to loss of rural livelihoods and income, loss of marine and coastal ecosystems, livelihoods loss of terrestrial and inland water ecosystems and food insecurity (breakdown of food systems). Rural farmers, whose livelihood depends on the use of natural resources, are likely to bear the brunt of adverse impacts. Most of the crop simulation model runs and experiments under elevated temperature and carbon dioxide indicate that by 2030, a 3-7% decline in the yield of principal cereal crops like rice and wheat is likely in India by adoption of current production technologies. Global warming impacts growth, reproduction and yields of food and horticulture crops, increases crop water requirement, causes more soil erosion, increases thermal stress on animals leading to decreased milk yields and change the distribution and breeding season of fisheries. Fast changing climatic conditions, shrinking land, water and other natural resources with rapid growing population around the globe has put many challenges before us (Mukherjee, 2014). Food is going to be second most challenging issue for mankind in time to come. India will also begin to experience more seasonal variation in temperature with more warming in the winters than summers (Christensen et al., 2007). Climate change is posing a great threat to agriculture and food security in India and it's subcontinent. Water is the most critical agricultural input in India, as 55% of the total cultivated areas do not have irrigation facilities. Currently we are able to secure food supplies under these varying conditions. Under the threat of climate variability, our food grain production system becomes quite comfortable and easily accessible for local people. India's food grain production is estimated to rise 2 per cent in 2020-21 crop years to an all-time high of 303.34 million tonnes on better output of rice, wheat, pulse and coarse cereals amid good monsoon rains last year. In the 2019-20 crop year, the country's food grain output (comprising wheat, rice, pulses and coarse cereals) stood at a record 297.5 million tonnes (MT). Releasing the second advance estimates for 2020-21 crop year, the agriculture ministry said foodgrain production is projected at a record 303.34 MT. As per the data, rice production is pegged at record 120.32 MT as against 118.87 MT in the previous year. Wheat production is estimated to rise to a record 109.24 MT in 2020-21 from 107.86 MT in the previous year, while output of coarse cereals is likely to increase to 49.36 MT from 47.75 MT. Pulses output is seen at 24.42 MT, up from 23.03 MT in 2019-20 crop year. In the non-foodgrain category, the production of oilseeds is estimated at 37.31 MT in 2020-21 as against 33.22 MT in the previous year. Sugarcane production is pegged at 397.66 MT from 370.50 MT in the previous year, while cotton output is expected to be higher at 36.54 million bales (170 kg each) from 36.07. This production figure seem to be sufficient for current population, but we need to improve more and more with vertical farming and advance agronomic and crop improvement tools for future burgeoning population figure under the milieu of climate change issue. Our rural mass and tribal people have very limited resources and they sometime complete depend on forest microhabitat. To order to ensure food and nutritional security for growing population, a new strategy needs to be initiated for growing of crops in changing climatic condition. The country has a large pool of underutilized or underexploited fruit or cereals crops which have enormous potential for contributing to food security, nutrition, health, ecosystem sustainability under the changing climatic conditions, since they require little input, as they have inherent capabilities to withstand biotic and abiotic stress. Apart from the impacts on agronomic conditions of crop productions, climate change also affects the economy, food systems and wellbeing of the consumers (Abbade, 2017). Crop nutritional quality become very challenging, as we noticed that, zinc and iron deficiency is a serious global health problem in humans depending on cereal-diet and is largely prevalent in low-income countries like Sub-Saharan Africa, and South and South-east Asia. We report inefficiency of modern-bred cultivars of rice and wheat to sequester those essential nutrients in grains as the reason for such deficiency and prevalence (Debnath et al., 2021). Keeping in mind the crop yield and nutritional quality become very daunting task to our food security issue and this can overcome with the proper and time bound research in cognizance with the environment. Threat and challenges In recent years, climate change has become a debatable issue worldwide. South Asia will be one of the most adversely affected regions in terms of impacts of climate change on agricultural yield, economic activity and trading policies. Addressing climate change is central for global future food security and poverty alleviation. The approach would need to implement strategies linked with developmental plans to enhance its adaptive capacity in terms of climate resilience and mitigation. Over time, there has been a visible shift in the global climate change initiative towards adaptation. Adaptation can complement mitigation as a cost-effective strategy to reduce climate change risks. The impact of climate change is projected to have different effects across societies and countries. Mitigation and adaptation actions can, if appropriately designed, advance sustainable development and equity both within and across countries and between generations. One approach to balancing the attention on adaptation and mitigation strategies is to compare the costs and benefits of both the strategies. The most imminent change is the increase in the atmospheric temperatures due to increase levels of GHGs (Green House Gases) i.e. carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs) etc into the atmosphere. The global mean annual temperatures at the end of the 20th century were almost 0.7 degree centigrade above than those recorded at the end of the 19th century and likely to increase further by 1.8- 6.4ºC by 2100 AD. The quantity of rainfall and its distribution will be affected to a great extent resulting in more flooding. The changes in soil properties such as loss of organic matter, leaching of soil nutrients, salinization and erosion are a likely outcome of climate change in many cases. Water crisis can be a serious problem with the anticipated global warming and climate change. With increasing exploitation of natural resources and environmental pollution, the atmospheric temperature is expected to rise by 3-5 0C in next 75-100 years (www.ipcc.ch/sr15/chapter/chapter-1). If it happens most of the rivers originating from the Himalayas may dry up and cause severe shortage of water for irrigation, suppressing agriculture production by 40-50%. There has been considerable concern in recent years about climatic changes caused by human activities and their effects on agriculture. Surface climate is always changing, but at the beginning of industrial revolution these changes have been more noticeable due to interference of human beings activity. Studies of climate change impacts on agriculture initially focused on increasing temperature. Many researchers, including reported that changes in temperature, radiation and precipitation need to be studied in order to evaluate the impact of climate change. Temperature changes can affect crop productivity. Higher temperatures may increase plant carboxilation and stimulate higher photosynthesis, respiration, and transpiration rates. Meanwhile, flowering may also be partially triggered by higher temperatures, while low temperatures may reduce energy use and increased sugar storage. Changes in temperature can also affect air vapor pressure deficits, thus impacting the water use in agricultural landscapes. This coupling affects transpiration and can cause significant shifts in temperature and water loss (Mukherjee, 2017). In chickpea and other pulse crop this increase in temperature due to climate change affects to a greater extent flower numbers, pod production, pollen viability, and pistilfunction are reduced and flower and pod abortion increased under terminal heat stress which ultimately leads to hamper its productivity on large scale. There is probability of 10-40% loss in crop production in India with the expected temperature increase by 2080-2100. Rice yields in northern India during last three decades are showing a decreasing trend (Aggarwal et al., 2000). Further, the IPCC (2007) report also projected that cereal yields in seasonally dry and tropical regions like India are likely to decrease for even small local temperature increases. wheat production will be reduced by 4-5 million tonnes with the rise of every 10C temperature throughout the growing period that coincides in India with 2020-30. However, grain yield of rice declined by 10% for each 1ºC increase in growing season. A 1ºC increase in temperature may reduce rapeseed mustard yield by 3-7%. Thus a productivity of 2050-2562 kg/ha for rapeseed mustard would have to be achieved by 2030 under the changing scenario of climate, decreasing and degrading land and water resources, costly inputs, government priority of food crops and other policy imperatives from the present level of nearly 1200 kg/ha. Diseases and pest infestation In future, plant protection will assume even more significance given the daunting task before us to feed the growing population under the era of shifting climate pattern, as it directly influence pest life cycle in crop calendar (Mukherjee, 2019). Every year, about USD 8.5 billion worth of crops are lost in India because of disease and insects pests and another 2.5 billion worth of food grains in storages. In the scenario of climate change, experts believe that these losses could rise as high as four folds. Global warming and climate change would lead to emergence of more aggressive pests and diseases which can cause epidemics resulting in heavy losses (Mesterhazy et al., 2020). The range of many insects will change or expand and new combinations of diseases and pests may emerge. The well-known interaction between host × pathogen × environment for plant disease epidemic development and weather based disease management strategies have been routinely exploited by plant pathologists. However, the impact of inter annual climatic variation resulting in the abundance of pathogen populations and realistic assessment of climatic change impacts on host-pathogen interactions are still scarce and there are only handful of studies. Further emerging of new disease with climate alteration in grain crop such as wheat blast, become challenging for growers and hamper food chain availability (Mukherjee et al., 2019). Temperature increase associated with climatic changes could result in following changes in plant diseases: Extension of geographical range of pathogens Changes in population growth rates of pathogens Changes in relative abundance and effectiveness of bio control agents Changes in pathogen × host × environment interactions Loss of resistance in cultivars containing temperature-sensitive genes Emergence of new diseases/and pathogen forms Increased risk of invasion by migrant diseases Reduced efficacy of integrated disease management practices These changes will have major implications for food and nutritional security, particularly in the developing countries of the dry-tropics, where the need to increase and sustain food production is most urgent. The current knowledge on the main potential effects of climate change on plant patho systems has been recently summarized by Pautasso et al. (2012). Their overview suggests that maintaining plant health across diversified environments is a key requirement for climate change mitigation as well as the conservation of biodiversity and provisions of ecosystem services under global change. Changing in weed flora pattern under different cropping system become very challenging to the food growers, and threat to our food security issue. It has been estimated that the potential losses due to weeds in different field crops would be around 180 million tonnes valued Rs 1,05,000 crores annually. In addition to the direct effect on crop yield, weeds result in considerable reduction in the efficiency of inputs used and food quality. Increasing atmospheric CO2 and temperature have the potential to directly affect weed physiology and crop-weed interactions vis-à-vis their response to weed control methods. Many of the world’s major weeds are C4 plants and major crops are C3 plants (Mandal and Mukherjee, 2018). The differential effects of CO2 on C3 and C4 plants may have implications on crop-weed interactions. Weed species have a greater genetic diversity than most crops and therefore, under the changing scenario of resources (eg., light, moisture, nutrients, CO2), weeds will have the greater capacity for growth and reproductive response than most crops. Differential response to seed emergence with temperature could also influence species establishment and subsequent weed-crop competition. Increasing temperature might allow some sleeper weeds to become invasive (Mukherjeee, 2020; Science Daily, 2009). Studies suggest that proper weed management techniques if adopted can result in an additional production of 103 million tonnes of food grains, 15 million tonnes of pulses,10 million tonnes of oilseeds, and 52 million tonnes of commercial crops per annum, which in few cases are even equivalent to the existing annual production (Rao and Chauhan, 2015). There is tremendous scope to increase agricultural productivity by adopting improved weed management technologies that have been developed in the country. Conclusion The greatest challenge before us is to enhance the production of required amount of food items viz., cereals, pulses, oilseeds, vegetable, underutilized fruit etc to keep pace with population growth through employing suitable crop cultivars, biotechnological approaches, conserving natural resources and protecting crops from weeds, insects pests and diseases eco-friendly with climate change. Research is a continuous process that has to be pursued vigorously and incessantly in the critical areas viz., evolvement of new genotype, land development and reclamation, soil and moisture conservation, soil health care, seeds and planting material, enhancing fertilizer and water use efficiencies, conservation agriculture, eco-friendly plant protection measures etc. Due to complexity of crop environment interaction under different climate situation, a multidisciplinary approach to the problem is required in which plant breeders, agronomists, crop physiologists and agrometeorologists need to interact for finding long term solutions in sustaining crop production. References: Abbade, E. B. 2017. Availability, access and utilization: Identifying the main fragilities for promoting food security in developing countries. World Journal of Science, Technology and Sustainable Development, 14(4): 322–335. doi:10.1108/WJSTSD-05-2016-0033 Aggrawal, P.K., Bandyopadhyay, S. and Pathak, S. 2020. Analysis of yield trends of the Rice-Wheat system in north-western India. Outlook on Agriculture, 29(4):259-268. Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A. and Gao, X, 2007. Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Cambridge University Press. Cambridge, United Kingdom. Debnath, S., Mandal, B., Saha, S., Sarkar, D., Batabyal, K., Murmu, S., Patra, B.C., Mukherjee, and Biswas, T. 2021. Are the modern-bred rice and wheat cultivars in India inefficient in zinc and iron sequestration?. Environmental and Experimental Botany,189:1-7. (https://doi.org/10.1016/j.envexpbot.2021.104535) 2007. Climate Change 2007- Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976pp. Mandal, B and Mukherjee, D. 2018. Influenced of different weed management Practices for Higher Productivity of Jute (Corchorus olitorius) in West Bengal. International Journal of Bioresource Science, 5 (1): 21-26. Mesterhazy, A., Olah, J. and Popp, J. 2020. Losses in the grain supply chain: causes and solutions. Sustainability, 12, 2342; doi:10.3390/su12062342. Mukherjee D. 2019. Effect of various crop establishment methods and weed management practices on growth and yield of rice. Journal of Cereal Research, 11(3): 300-303. http://doi.org/10.25174/2249-4065/2019/95811. Mukherjee, D. 2014. Climate change and its impact on Indian agriculture. In : Plant Disease Management and Microbes (eds. Nehra, S.). Aavishkar Publishers, Jaipur, India. Pp 193-206. Mukherjee, D. 2017. Rising weed problems and their effects on production potential of various crops under changing climate situation of hill. Indian Horticulture Journal, 7(1): 85-89. Mukherjee, D., Mahapatra, S., Singh, D.P., Kumar, S., Kashyap , P.L. and Singh, G.P. 2019. Threat assessment of wheat blast like disease in the West Bengal". 4th International Group Meeting on Wheat production enhancement through climate smart practices. at CSK HPKV, Palampur, HP, India, February, 14-16, 2019. Organized by CSK HPKV, Palampur and Society of Advancement of Wheat and Barley Research (SAWBAR). Journal of Cereal Research, 11 (1): 78. Mukherjee, D. 2020. Herbicide combinations effect on weeds and yield of wheat in North-Eastern plain. Indian Journal of Weed Science, 52 (2): 116–122. Pautasso, M. 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology, 38:56-74. .Doi:10.1080/11250003.2011.627381 Rao, A.N. and Chauhan, B.S. 2015. Weeds and weed management in India -A Review. 25 Asian Pacific Weed Science Society Conference, at Hyderabad, India, Volume: 1 (A.N. Rao and N.T. Yaduraju (eds.). pp 87-118.
APA, Harvard, Vancouver, ISO, and other styles
7

Wiseman, Taylor, Jeff Luckstead, and Alvaro Durand-Morat. "Asymmetric Exchange Rate Pass-Through in Southeast Asian Rice Trade." Journal of Agricultural and Applied Economics, August 2, 2021, 1–34. http://dx.doi.org/10.1017/aae.2021.7.

Full text
Abstract:
Abstract Asian countries consume approximately 90% of the world’s rice supply. Between 2007 and 2014, Thailand, Vietnam, and India accounted for 60% of the world’s exports of rice. A nonlinear autoregressive distributed lag (NARDL) econometric model is utilized to estimate the impact of exchange rate fluctuations on rice trade in Southeast Asia. Focusing on the largest importing countries and exporting country by volume, the analysis considers Malaysian, Indonesian, the Philippines, and Chinese rice imports from Thailand. Results show that importing countries’ state trading enterprises (STEs) generally do not follow profit-maximizing behavior in reacting to exchange rate volatility.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Maodian, Qianru Zhang, Menghan Cheng, Yipeng He, Long Chen, Haoran Zhang, Hanlin Cao, et al. "Rice life cycle-based global mercury biotransport and human methylmercury exposure." Nature Communications 10, no. 1 (November 14, 2019). http://dx.doi.org/10.1038/s41467-019-13221-2.

Full text
Abstract:
AbstractProtecting the environment and enhancing food security are among the world’s greatest challenges. Fish consumption is widely considered to be the single significant dietary source of methylmercury. Nevertheless, by synthesizing data from the past six decades and using a variety of models, we find that rice could be a significant global dietary source of human methylmercury exposure, especially in South and Southeast Asia. In 2013, globalization caused 9.9% of human methylmercury exposure via the international rice trade and significantly aggravated rice-derived exposure in Africa (62%), Central Asia (98%) and Europe (42%). In 2016, 180 metric tons of mercury were generated in rice plants, 14-fold greater than that exported from oceans via global fisheries. We suggest that future research should consider both the joint ingestion of rice with fish and the food trade in methylmercury exposure assessments, and anthropogenic biovectors such as crops should be considered in the global mercury cycle.
APA, Harvard, Vancouver, ISO, and other styles
9

Habib-ur-Rahman, Muhammad, Ashfaq Ahmad, Ahsan Raza, Muhammad Usama Hasnain, Hesham F. Alharby, Yahya M. Alzahrani, Atif A. Bamagoos, et al. "Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia." Frontiers in Plant Science 13 (October 10, 2022). http://dx.doi.org/10.3389/fpls.2022.925548.

Full text
Abstract:
Agricultural production is under threat due to climate change in food insecure regions, especially in Asian countries. Various climate-driven extremes, i.e., drought, heat waves, erratic and intense rainfall patterns, storms, floods, and emerging insect pests have adversely affected the livelihood of the farmers. Future climatic predictions showed a significant increase in temperature, and erratic rainfall with higher intensity while variability exists in climatic patterns for climate extremes prediction. For mid-century (2040–2069), it is projected that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in minimum temperature in Pakistan. To respond to the adverse effects of climate change scenarios, there is a need to optimize the climate-smart and resilient agricultural practices and technology for sustainable productivity. Therefore, a case study was carried out to quantify climate change effects on rice and wheat crops and to develop adaptation strategies for the rice-wheat cropping system during the mid-century (2040–2069) as these two crops have significant contributions to food production. For the quantification of adverse impacts of climate change in farmer fields, a multidisciplinary approach consisted of five climate models (GCMs), two crop models (DSSAT and APSIM) and an economic model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used in this case study. DSSAT predicted that there would be a yield reduction of 15.2% in rice and 14.1% in wheat and APSIM showed that there would be a yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by modification in crop management like sowing time and density, nitrogen, and irrigation application have the potential to enhance the overall productivity and profitability of the rice-wheat cropping system under climate change scenarios. Moreover, this paper reviews current literature regarding adverse climate change impacts on agricultural productivity, associated main issues, challenges, and opportunities for sustainable productivity of agriculture to ensure food security in Asia. Flowing opportunities such as altering sowing time and planting density of crops, crop rotation with legumes, agroforestry, mixed livestock systems, climate resilient plants, livestock and fish breeds, farming of monogastric livestock, early warning systems and decision support systems, carbon sequestration, climate, water, energy, and soil smart technologies, and promotion of biodiversity have the potential to reduce the negative effects of climate change.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rice trade Asia Econometric models"

1

Kwŏn, Yŏng-dae. "Political macroeconomy of agricultural policy : rice policy adjustments in Korea." Thesis, 1989. http://hdl.handle.net/10125/9215.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rice trade Asia Econometric models"

1

Kalirajan, K. P. Rice production: An econometric analysis. New Delhi: Oxford & IBH Pub. Co., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalirajan, K. P. Rice production: An econometric analysis. London: Aspect Pub., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baffes, John. Is growth in Bangladesh's rice production sustainable? Washington, DC: World Bank, International Economics Dept., Commodity Policy and Analysis Unit, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duc, Ngo Huy. Intra-industry trade among Asia-Pacific economies: A case study in econometric analysis. Canberra, Australia: Research School of Pacific and Asian Studies, ANU, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayami, Yūjirō. Economics and politics of rice policy in Japan: A perspective on the Uruguay Round. Cambridge, MA: National Bureau of Economic Research, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Elminiawy, Ahmed Mahmoud. The Egyptian rice market: A model analysis of the effects of government interventions and subsidies. Washington, D.C: International Food Policy Research Institute, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodrik, Dani. Trade strategy, investment and exports: Another look at East Asia. Cambridge, MA: National Bureau of Economic Research, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rodrik, Dani. Trade strategy, investment and exports: Another look at East Asia. London: Centre for Economic Policy Research, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Asia Pacific Economic Cooperation (Organization). Economic Committee., ed. Trade liberalization and APEC. New York: Routledge, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fontana, Marzia. Macro policies and the food sector in Bangladesh: A general equilibrium analysis. Dhaka: Food Management & Research Support Project, Ministry of Food, Government of the People's Republic of Bangladesh, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rice trade Asia Econometric models"

1

Ishikawa-Ishiwata, Yuki, and Jun Furuya. "Economic Evaluation and Climate Change Adaptation Measures for Rice Production in Vietnam Using a Supply and Demand Model: Special Emphasis on the Mekong River Delta Region in Vietnam." In Interlocal Adaptations to Climate Change in East and Southeast Asia, 45–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81207-2_4.

Full text
Abstract:
AbstractVietnam is one of the most affected countries in terms of monetary losses or mortality of extreme events due to climate change in the world. Since agriculture is directly affected by the climate conditions in Vietnam, several adaptation measures such as shifting transplanting dates and/or using different cultivars have been taken to mitigate the loss of rice production because of climate change. In this chapter, we introduce the econometric evaluation methods of the adaptation measures with the supply and demand models. The supply and demand models each consist of yield, planted area, exports, imports, stock changes, and food demand functions of rice. By measuring the yield and planted area functions with climate variables, the effect of climate change on future rice production and food demand can be estimated. By inserting a mathematical model of dissemination of new cultivars, the possible outlook of the adaptation measure can be assessed as scenarios. In the case of the Mekong Delta Region, farmers in the coastal to central areas have been shifting the aquaculture-based farming style. We also discuss these transitions of farming style.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography