Journal articles on the topic 'Ribosomal biogenesis'

To see the other types of publications on this topic, follow the link: Ribosomal biogenesis.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ribosomal biogenesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova, and Olga A. Dontsova. "Eukaryotic Ribosome Biogenesis: The 40S Subunit." Acta Naturae 14, no. 1 (May 10, 2022): 14–30. http://dx.doi.org/10.32607/actanaturae.11540.

Full text
Abstract:
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
APA, Harvard, Vancouver, ISO, and other styles
2

Moraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova, and Olga A. Dontsova. "Eukaryotic Ribosome Biogenesis: The 60S Subunit." Acta Naturae 14, no. 2 (July 21, 2022): 39–49. http://dx.doi.org/10.32607/actanaturae.11541.

Full text
Abstract:
Ribosome biogenesis is consecutive coordinated maturation of ribosomal precursors in the nucleolus, nucleoplasm, and cytoplasm. The formation of mature ribosomal subunits involves hundreds of ribosomal biogenesis factors that ensure ribosomal RNA processing, tertiary structure, and interaction with ribosomal proteins. Although the main features and stages of ribosome biogenesis are conservative among different groups of eukaryotes, this process in human cells has become more complicated due to the larger size of the ribosomes and pre-ribosomes and intricate regulatory pathways affecting their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. A previous part of this review summarized recent data on the processing of the primary rRNA transcript and compared the maturation of the small 40S subunit in yeast and human cells. This part of the review focuses on the biogenesis of the large 60S subunit of eukaryotic ribosomes.
APA, Harvard, Vancouver, ISO, and other styles
3

Sulima, Sergey, Kim Kampen, and Kim De Keersmaecker. "Cancer Biogenesis in Ribosomopathies." Cells 8, no. 3 (March 11, 2019): 229. http://dx.doi.org/10.3390/cells8030229.

Full text
Abstract:
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional “onco-specialization” of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

Pecoraro, Annalisa, Martina Pagano, Giulia Russo, and Annapina Russo. "Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins." International Journal of Molecular Sciences 22, no. 11 (May 23, 2021): 5496. http://dx.doi.org/10.3390/ijms22115496.

Full text
Abstract:
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Konikkat, Salini, and John L. Woolford,. "Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast." Biochemical Journal 474, no. 2 (January 6, 2017): 195–214. http://dx.doi.org/10.1042/bcj20160516.

Full text
Abstract:
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
APA, Harvard, Vancouver, ISO, and other styles
6

Sleiman, Sophie, and Francois Dragon. "Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10." Cells 8, no. 9 (September 5, 2019): 1035. http://dx.doi.org/10.3390/cells8091035.

Full text
Abstract:
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson–Gilford progeria syndrome.
APA, Harvard, Vancouver, ISO, and other styles
7

Lavdovskaia, Elena, Kärt Denks, Franziska Nadler, Emely Steube, Andreas Linden, Henning Urlaub, Marina V. Rodnina, and Ricarda Richter-Dennerlein. "Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes." Nucleic Acids Research 48, no. 22 (December 2, 2020): 12929–42. http://dx.doi.org/10.1093/nar/gkaa1132.

Full text
Abstract:
Abstract Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
8

Phan, Tamara, Fatima Khalid, and Sebastian Iben. "Nucleolar and Ribosomal Dysfunction—A Common Pathomechanism in Childhood Progerias?" Cells 8, no. 6 (June 4, 2019): 534. http://dx.doi.org/10.3390/cells8060534.

Full text
Abstract:
The nucleolus organizes around the sites of transcription by RNA polymerase I (RNA Pol I). rDNA transcription by this enzyme is the key step of ribosome biogenesis and most of the assembly and maturation processes of the ribosome occur co-transcriptionally. Therefore, disturbances in rRNA transcription and processing translate to ribosomal malfunction. Nucleolar malfunction has recently been described in the classical progeria of childhood, Hutchinson–Gilford syndrome (HGPS), which is characterized by severe signs of premature aging, including atherosclerosis, alopecia, and osteoporosis. A deregulated ribosomal biogenesis with enlarged nucleoli is not only characteristic for HGPS patients, but it is also found in the fibroblasts of “normal” aging individuals. Cockayne syndrome (CS) is also characterized by signs of premature aging, including the loss of subcutaneous fat, alopecia, and cataracts. It has been shown that all genes in which a mutation causes CS, are involved in rDNA transcription by RNA Pol I. A disturbed ribosomal biogenesis affects mitochondria and translates into ribosomes with a reduced translational fidelity that causes endoplasmic reticulum (ER) stress and apoptosis. Therefore, it is speculated that disease-causing disturbances in the process of ribosomal biogenesis may be more common than hitherto anticipated.
APA, Harvard, Vancouver, ISO, and other styles
9

Slimane, Sophie Nait, Virginie Marcel, Tanguy Fenouil, Frédéric Catez, Jean-Christophe Saurin, Philippe Bouvet, Jean-Jacques Diaz, and Hichem C. Mertani. "Ribosome Biogenesis Alterations in Colorectal Cancer." Cells 9, no. 11 (October 27, 2020): 2361. http://dx.doi.org/10.3390/cells9112361.

Full text
Abstract:
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
APA, Harvard, Vancouver, ISO, and other styles
10

Larson, D. E., P. Zahradka, and B. H. Sells. "Control points in eucaryotic ribosome biogenesis." Biochemistry and Cell Biology 69, no. 1 (January 1, 1991): 5–22. http://dx.doi.org/10.1139/o91-002.

Full text
Abstract:
Ribosome biogenesis in eucaryotic cells involves the coordinated synthesis of four rRNA species, transcribed by RNA polymerase I (18S, 28S, 5.8S) and RNA polymerase III (5S), and approximately 80 ribosomal proteins translated from mRNAs synthesized by RNA polymerase II. Assembly of the ribosomal subunits in the nucleolus, the site of 45S rRNA precursor gene transcription, requires the movement of 5S rRNA and ribosomal proteins from the nucleoplasm and cytoplasm, respectively, to this structure. To integrate these events and ensure the balanced production of individual ribosomal components, different strategies have been developed by eucaryotic organisms in response to a variety of physiological changes. This review presents an overview of the mechanisms modulating the production of ribosomal precursor molecules and the rate of ribosome biogenesis in various biological systems.Key words: rRNA, ribosomal proteins, nucleolus, ribosome.
APA, Harvard, Vancouver, ISO, and other styles
11

Collins, Jason C., Homa Ghalei, Joanne R. Doherty, Haina Huang, Rebecca N. Culver, and Katrin Karbstein. "Ribosome biogenesis factor Ltv1 chaperones the assembly of the small subunit head." Journal of Cell Biology 217, no. 12 (October 22, 2018): 4141–54. http://dx.doi.org/10.1083/jcb.201804163.

Full text
Abstract:
The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.
APA, Harvard, Vancouver, ISO, and other styles
12

Roychowdhury, Amlan, Clément Joret, Gabrielle Bourgeois, Valérie Heurgué-Hamard, Denis L. J. Lafontaine, and Marc Graille. "The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis." Nucleic Acids Research 47, no. 14 (June 12, 2019): 7548–63. http://dx.doi.org/10.1093/nar/gkz529.

Full text
Abstract:
Abstract Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.
APA, Harvard, Vancouver, ISO, and other styles
13

Albanèse, Véronique, Stefanie Reissmann, and Judith Frydman. "A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis." Journal of Cell Biology 189, no. 1 (April 5, 2010): 69–81. http://dx.doi.org/10.1083/jcb.201001054.

Full text
Abstract:
Molecular chaperones assist cellular protein folding as well as oligomeric complex assembly. In eukaryotic cells, several chaperones termed chaperones linked to protein synthesis (CLIPS) are transcriptionally and physically linked to ribosomes and are implicated in protein biosynthesis. In this study, we show that a CLIPS network comprising two ribosome-anchored J-proteins, Jjj1 and Zuo1, function together with their partner Hsp70 proteins to mediate the biogenesis of ribosomes themselves. Jjj1 and Zuo1 have overlapping but distinct functions in this complex process involving the coordinated assembly and remodeling of dozens of proteins on the ribosomal RNA (rRNA). Both Jjj1 and Zuo1 associate with nuclear 60S ribosomal biogenesis intermediates and play an important role in nuclear rRNA processing, leading to mature 25S rRNA. In addition, Zuo1, acting together with its Hsp70 partner, SSB (stress 70 B), also participates in maturation of the 35S rRNA. Our results demonstrate that, in addition to their known cytoplasmic roles in de novo protein folding, some ribosome-anchored CLIPS chaperones play a critical role in nuclear steps of ribosome biogenesis.
APA, Harvard, Vancouver, ISO, and other styles
14

Datta, Kaustuv, Jennifer L. Fuentes, and Janine R. Maddock. "The Yeast GTPase Mtg2p Is Required for Mitochondrial Translation and Partially Suppresses an rRNA Methyltransferase Mutant,mrm2." Molecular Biology of the Cell 16, no. 2 (February 2005): 954–63. http://dx.doi.org/10.1091/mbc.e04-07-0622.

Full text
Abstract:
The assembly of ribosomes involves the coordinated processing and modification of rRNAs with the temporal association of ribosomal proteins. This process is regulated by assembly factors such as helicases, modifying enzymes, and GTPases. In contrast to the assembly of cytoplasmic ribosomes, there is a paucity of information concerning the role of assembly proteins in the biogenesis of mitochondrial ribosomes. In this study, we demonstrate that the Saccharomyces cerevisiae GTPase Mtg2p (Yhr168wp) is essential for mitochondrial ribosome function. Cells lacking MTG2 lose their mitochondrial DNA, giving rise to petite cells. In addition, cells expressing a temperature-sensitive mgt2-1 allele are defective in mitochondrial protein synthesis and contain lowered levels of mitochondrial ribosomal subunits. Significantly, elevated levels of Mtg2p partially suppress the thermosensitive loss of mitochondrial DNA in a 21S rRNA methyltransferase mutant, mrm2. We propose that Mtg2p is involved in mitochondrial ribosome biogenesis. Consistent with this role, we show that Mtg2p is peripherally localized to the mitochondrial inner membrane and associates with the 54S large ribosomal subunit in a salt-dependent manner.
APA, Harvard, Vancouver, ISO, and other styles
15

Destefanis, Francesca, Valeria Manara, and Paola Bellosta. "Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer." International Journal of Molecular Sciences 21, no. 11 (June 5, 2020): 4037. http://dx.doi.org/10.3390/ijms21114037.

Full text
Abstract:
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth—processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc’s role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc’s control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
APA, Harvard, Vancouver, ISO, and other styles
16

Temaj, Gazmend, Silvia Chichiarelli, Margherita Eufemi, Fabio Altieri, Rifat Hadziselimovic, Ammad Ahmad Farooqi, Ilhan Yaylim, and Luciano Saso. "Ribosome-Directed Therapies in Cancer." Biomedicines 10, no. 9 (August 26, 2022): 2088. http://dx.doi.org/10.3390/biomedicines10092088.

Full text
Abstract:
The human ribosomes are the cellular machines that participate in protein synthesis, which is deeply affected during cancer transformation by different oncoproteins and is shown to provide cancer cell proliferation and therefore biomass. Cancer diseases are associated with an increase in ribosome biogenesis and mutation of ribosomal proteins. The ribosome represents an attractive anti-cancer therapy target and several strategies are used to identify specific drugs. Here we review the role of different drugs that may decrease ribosome biogenesis and cancer cell proliferation.
APA, Harvard, Vancouver, ISO, and other styles
17

Harold, Cecelia M., Amber F. Buhagiar, Yan Cheng, and Susan J. Baserga. "Ribosomal RNA Transcription Regulation in Breast Cancer." Genes 12, no. 4 (March 29, 2021): 502. http://dx.doi.org/10.3390/genes12040502.

Full text
Abstract:
Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
18

Levy, Michael, Reuven Falkovich, Shirley S. Daube, and Roy H. Bar-Ziv. "Autonomous synthesis and assembly of a ribosomal subunit on a chip." Science Advances 6, no. 16 (April 2020): eaaz6020. http://dx.doi.org/10.1126/sciadv.aaz6020.

Full text
Abstract:
Ribosome biogenesis is an efficient and complex assembly process that has not been reconstructed outside a living cell so far, yet is the most critical step for establishing a self-replicating artificial cell. We recreated the biogenesis of Escherichia coli’s small ribosomal subunit by synthesizing and capturing all its ribosomal proteins and RNA on a chip. Surface confinement provided favorable conditions for autonomous stepwise assembly of new subunits, spatially segregated from original intact ribosomes. Our real-time fluorescence measurements revealed hierarchal assembly, cooperative interactions, unstable intermediates, and specific binding to large ribosomal subunits. Using only synthetic genes, our methodology is a crucial step toward creation of a self-replicating artificial cell and a general strategy for the mechanistic investigation of diverse multicomponent macromolecular machines.
APA, Harvard, Vancouver, ISO, and other styles
19

Sondalle, Samuel B., Simonne Longerich, Lisa M. Ogawa, Patrick Sung, and Susan J. Baserga. "Fanconi anemia protein FANCI functions in ribosome biogenesis." Proceedings of the National Academy of Sciences 116, no. 7 (January 28, 2019): 2561–70. http://dx.doi.org/10.1073/pnas.1811557116.

Full text
Abstract:
Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.
APA, Harvard, Vancouver, ISO, and other styles
20

Ojha, Sandeep, Sulochan Malla, and Shawn M. Lyons. "snoRNPs: Functions in Ribosome Biogenesis." Biomolecules 10, no. 5 (May 18, 2020): 783. http://dx.doi.org/10.3390/biom10050783.

Full text
Abstract:
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
APA, Harvard, Vancouver, ISO, and other styles
21

Woellhaf, Michael W., Katja G. Hansen, Christoph Garth, and Johannes M. Herrmann. "Import of ribosomal proteins into yeast mitochondria." Biochemistry and Cell Biology 92, no. 6 (December 2014): 489–98. http://dx.doi.org/10.1139/bcb-2014-0029.

Full text
Abstract:
Mitochondrial ribosomes of baker’s yeast contain at least 78 protein subunits. All but one of these proteins are nuclear-encoded, synthesized on cytosolic ribosomes, and imported into the matrix for biogenesis. The import of matrix proteins typically relies on N-terminal mitochondrial targeting sequences that form positively charged amphipathic helices. Interestingly, the N-terminal regions of many ribosomal proteins do not closely match the characteristics of matrix targeting sequences, suggesting that the import processes of these proteins might deviate to some extent from the general import route. So far, the biogenesis of only two ribosomal proteins, Mrpl32 and Mrp10, was studied experimentally and indeed showed surprising differences to the import of other preproteins. In this review article we summarize the current knowledge on the transport of proteins into the mitochondrial matrix, and thereby specifically focus on proteins of the mitochondrial ribosome.
APA, Harvard, Vancouver, ISO, and other styles
22

Shayan, Ramtin, Dana Rinaldi, Natacha Larburu, Laura Plassart, Stéphanie Balor, David Bouyssié, Simon Lebaron, Julien Marcoux, Pierre-Emmanuel Gleizes, and Célia Plisson-Chastang. "Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy." Molecules 25, no. 5 (March 3, 2020): 1125. http://dx.doi.org/10.3390/molecules25051125.

Full text
Abstract:
Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the “resolution revolution” of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a “vibrating” or “wriggling” stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.
APA, Harvard, Vancouver, ISO, and other styles
23

Baßler, Jochen, and Ed Hurt. "Eukaryotic Ribosome Assembly." Annual Review of Biochemistry 88, no. 1 (June 20, 2019): 281–306. http://dx.doi.org/10.1146/annurev-biochem-013118-110817.

Full text
Abstract:
Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo–electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.
APA, Harvard, Vancouver, ISO, and other styles
24

Pollutri, Daniela, and Marianna Penzo. "Ribosomal Protein L10: From Function to Dysfunction." Cells 9, no. 11 (November 19, 2020): 2503. http://dx.doi.org/10.3390/cells9112503.

Full text
Abstract:
Eukaryotic cytoplasmic ribosomes are highly structured macromolecular complexes made up of four different ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs), which play a central role in the decoding of genetic code for the synthesis of new proteins. Over the past 25 years, studies on yeast and human models have made it possible to identify RPL10 (ribosomal protein L10 gene), which is a constituent of the large subunit of the ribosome, as an important player in the final stages of ribosome biogenesis and in ribosome function. Here, we reviewed the literature to give an overview of the role of RPL10 in physiologic and pathologic processes, including inherited disease and cancer.
APA, Harvard, Vancouver, ISO, and other styles
25

Jovanovic, Bogdan, Lisa Schubert, Fabian Poetz, and Georg Stoecklin. "Tagging of RPS9 as a tool for ribosome purification and identification of ribosome-associated proteins." Archives of Biological Sciences, no. 00 (2020): 57. http://dx.doi.org/10.2298/abs20120557j.

Full text
Abstract:
Ribosomes, the catalytic machinery required for protein synthesis, are comprised of 4 ribosomal RNAs and about 80 ribosomal proteins in mammals. Ribosomes further interact with numerous associated factors that regulate their biogenesis and function. As mutations of ribosomal proteins and ribosome associated proteins cause many diseases, it is important to develop tools by which ribosomes can be purified efficiently and with high specificity. Here, we designed a method to purify ribosomes from human cell lines by C-terminally tagging human RPS9, a protein of the small ribosomal subunit. The tag consists of a flag peptide and a streptavidin-binding peptide (SBP) separated by the tobacco etch virus (TEV) protease cleavage site. We demonstrate that RPS9-Flag-TEV-SBP (FTS) is efficiently incorporated into the ribosome without interfering with regular protein synthesis. Using HeLa-GFP-G3BP1 cells stably expressing RPS9-FTS or, as a negative control, mCherry-FTS, we show that complete ribosomes as well as numerous ribosome-associated proteins are efficiently and specifically purified following pull-down of RPS9-FTS using streptavidin beads. This tool will be helpful for the characterization of human ribosome heterogeneity, post-translational modifications of ribosomal proteins, and changes in ribosome-associated factors after exposing human cells to different stimuli and conditions.
APA, Harvard, Vancouver, ISO, and other styles
26

Kazibwe, Zakayo, Ang-Yu Liu, Gustavo C. MacIntosh, and Diane C. Bassham. "The Ins and Outs of Autophagic Ribosome Turnover." Cells 8, no. 12 (December 10, 2019): 1603. http://dx.doi.org/10.3390/cells8121603.

Full text
Abstract:
Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants.
APA, Harvard, Vancouver, ISO, and other styles
27

Koplin, Ansgar, Steffen Preissler, Yulia Ilina, Miriam Koch, Annika Scior, Marc Erhardt, and Elke Deuerling. "A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes." Journal of Cell Biology 189, no. 1 (April 5, 2010): 57–68. http://dx.doi.org/10.1083/jcb.200910074.

Full text
Abstract:
The yeast Hsp70/40 system SSB–RAC (stress 70 B–ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide–associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB–RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and SSB caused conditional loss of cell viability under protein-folding stress conditions. Furthermore, NAC mutations revealed genetic interaction with a deletion of Sse1, a nucleotide exchange factor regulating the cytosolic Hsp70 network. Cells lacking SSB or Sse1 showed protein aggregation, which is enhanced by additional loss of NAC; however, these mutants differ in their potential client repertoire. Aggregation of ribosomal proteins and biogenesis factors accompanied by a pronounced deficiency in ribosomal particles and translating ribosomes only occurs in ssbΔ and nacΔssbΔ cells, suggesting that SSB and NAC control ribosome biogenesis. Thus, SSB–RAC and NAC assist protein folding and likewise have important functions for regulation of ribosome levels. These findings emphasize the concept that ribosome production is coordinated with the protein-folding capacity of ribosome-associated chaperones.
APA, Harvard, Vancouver, ISO, and other styles
28

Temaj, Gazmend, Rifat Hadziselimovic, Hilada Nefic, and Nexhibe Nuhii. "Ribosome biogenesis and ribosome therapy in cancer cells." Research Results in Pharmacology 8, no. 4 (October 5, 2022): 15–24. http://dx.doi.org/10.3897/rrpharmacology.8.81706.

Full text
Abstract:
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway. Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found. Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy. Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years. Graphical abstract:
APA, Harvard, Vancouver, ISO, and other styles
29

Choi, Ilyeong, Young Jeon, Youngki Yoo, Hyun-Soo Cho, and Hyun-Sook Pai. "The in vivo functions of ARPF2 and ARRS1 in ribosomal RNA processing and ribosome biogenesis in Arabidopsis." Journal of Experimental Botany 71, no. 9 (April 10, 2020): 2596–611. http://dx.doi.org/10.1093/jxb/eraa019.

Full text
Abstract:
Abstract Yeast Rpf2 plays a critical role in the incorporation of 5S rRNA into pre-ribosomes by forming a binary complex with Rrs1. The protein characteristics and overexpression phenotypes of Arabidopsis Ribosome Production Factor 2 (ARPF2) and Arabidopsis Regulator of Ribosome Synthesis 1 (ARRS1) have been previously studied. Here, we analyze loss-of-function phenotypes of ARPF2 and ARRS1 using virus-induced gene silencing to determine their functions in pre-rRNA processing and ribosome biogenesis. ARPF2 silencing in Arabidopsis led to pleiotropic developmental defects. RNA gel blot analysis and circular reverse transcription–PCR revealed that ARPF2 depletion delayed pre-rRNA processing, resulting in the accumulation of multiple processing intermediates. ARPF2 fractionated primarily with the 60S ribosomal subunit. Metabolic rRNA labeling and ribosome profiling suggested that ARPF2 deficiency mainly affected 25S rRNA synthesis and 60S ribosome biogenesis. ARPF2 and ARRS1 formed the complex that interacted with the 60S ribosomal proteins RPL5 and RPL11. ARRS1 silencing resulted in growth defects, accumulation of processing intermediates, and ribosome profiling similar to those of ARPF2-silenced plants. Moreover, depletion of ARPF2 and ARRS1 caused nucleolar stress. ARPF2-deficient plants excessively accumulated anthocyanin and reactive oxygen species. Collectively, these results suggest that the ARPF2–ARRS1 complex plays a crucial role in plant growth and development by modulating ribosome biogenesis.
APA, Harvard, Vancouver, ISO, and other styles
30

Pelava, Andria, Claudia Schneider, and Nicholas J. Watkins. "The importance of ribosome production, and the 5S RNP–MDM2 pathway, in health and disease." Biochemical Society Transactions 44, no. 4 (August 15, 2016): 1086–90. http://dx.doi.org/10.1042/bst20160106.

Full text
Abstract:
Ribosomes are abundant, large RNA–protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease.
APA, Harvard, Vancouver, ISO, and other styles
31

Saurer, Martin, David J. F. Ramrath, Moritz Niemann, Salvatore Calderaro, Céline Prange, Simone Mattei, Alain Scaiola, et al. "Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery." Science 365, no. 6458 (September 12, 2019): 1144–49. http://dx.doi.org/10.1126/science.aaw5570.

Full text
Abstract:
Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo–electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
32

Shetty, Sunil, and Umesh Varshney. "An evolutionarily conserved element in initiator tRNAs prompts ultimate steps in ribosome maturation." Proceedings of the National Academy of Sciences 113, no. 41 (October 3, 2016): E6126—E6134. http://dx.doi.org/10.1073/pnas.1609550113.

Full text
Abstract:
Ribosome biogenesis, a complex multistep process, results in correct folding of rRNAs, incorporation of >50 ribosomal proteins, and their maturation. Deficiencies in ribosome biogenesis may result in varied faults in translation of mRNAs causing cellular toxicities and ribosomopathies in higher organisms. How cells ensure quality control in ribosome biogenesis for the fidelity of its complex function remains unclear. Using Escherichia coli, we show that initiator tRNA (i-tRNA), specifically the evolutionarily conserved three consecutive GC base pairs in its anticodon stem, play a crucial role in ribosome maturation. Deficiencies in cellular contents of i-tRNA confer cold sensitivity and result in accumulation of ribosomes with immature 3′ and 5′ ends of the 16S rRNA. Overexpression of i-tRNA in various strains rescues biogenesis defects. Participation of i-tRNA in the first round of initiation complex formation licenses the final steps of ribosome maturation by signaling RNases to trim the terminal extensions of immature 16S rRNA.
APA, Harvard, Vancouver, ISO, and other styles
33

Lejars, Maxence, Asaki Kobayashi, and Eliane Hajnsdorf. "RNase III, Ribosome Biogenesis and Beyond." Microorganisms 9, no. 12 (December 17, 2021): 2608. http://dx.doi.org/10.3390/microorganisms9122608.

Full text
Abstract:
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
APA, Harvard, Vancouver, ISO, and other styles
34

Tan, Thomas C. J., John Knight, Thomas Sbarrato, Kate Dudek, Anne E. Willis, and Rose Zamoyska. "Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells." Proceedings of the National Academy of Sciences 114, no. 30 (July 10, 2017): E6117—E6126. http://dx.doi.org/10.1073/pnas.1700939114.

Full text
Abstract:
Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.
APA, Harvard, Vancouver, ISO, and other styles
35

Castle, Christopher D., Erica K. Cassimere, Jinho Lee, and Catherine Denicourt. "Las1L Is a Nucleolar Protein Required for Cell Proliferation and Ribosome Biogenesis." Molecular and Cellular Biology 30, no. 18 (July 20, 2010): 4404–14. http://dx.doi.org/10.1128/mcb.00358-10.

Full text
Abstract:
ABSTRACT Ribosome biogenesis is a highly regulated process ensuring that cell growth (increase in biomass) is coordinated with cell proliferation. The formation of eukaryotic ribosomes is a multistep process initiated by the transcription and processing of rRNA in the nucleolus. Concomitant with this, several preribosomal particles, which transiently associate with numerous nonribosomal factors before mature 60S and 40S subunits are formed and exported in the cytoplasm, are generated. Here we identify Las1L as a previously uncharacterized nucleolar protein required for ribosome biogenesis. Depletion of Las1L causes inhibition of cell proliferation characterized by a G1 arrest dependent on the tumor suppressor p53. Moreover, we demonstrate that Las1L is crucial for ribosome biogenesis and that depletion of Las1L leads to inhibition of rRNA processing and failure to synthesize the mature 28S rRNA. Taken together, our data demonstrate that Las1L is essential for cell proliferation and biogenesis of the 60S ribosomal subunit.
APA, Harvard, Vancouver, ISO, and other styles
36

Piazzi, Manuela, Alberto Bavelloni, Angela Gallo, Irene Faenza, and William L. Blalock. "Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster." International Journal of Molecular Sciences 20, no. 11 (June 3, 2019): 2718. http://dx.doi.org/10.3390/ijms20112718.

Full text
Abstract:
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
APA, Harvard, Vancouver, ISO, and other styles
37

Jiang, M., S. M. Sullivan, A. K. Walker, J. R. Strahler, P. C. Andrews, and J. R. Maddock. "Identification of Novel Escherichia coli Ribosome-Associated Proteins Using Isobaric Tags and Multidimensional Protein Identification Techniques." Journal of Bacteriology 189, no. 9 (March 2, 2007): 3434–44. http://dx.doi.org/10.1128/jb.00090-07.

Full text
Abstract:
ABSTRACT Biogenesis of the large ribosomal subunit requires the coordinate assembly of two rRNAs and 33 ribosomal proteins. In vivo, additional ribosome assembly factors, such as helicases, GTPases, pseudouridine synthetases, and methyltransferases, are also critical for ribosome assembly. To identify novel ribosome-associated proteins, we used a proteomic approach (isotope tagging for relative and absolute quantitation) that allows for semiquantitation of proteins from complex protein mixtures. Ribosomal subunits were separated by sucrose density centrifugation, and the relevant fractions were pooled and analyzed. The utility and reproducibility of the technique were validated via a double duplex labeling method. Next, we examined proteins from 30S, 50S, and translating ribosomes isolated at both 16°C and 37°C. We show that the use of isobaric tags to quantify proteins from these particles is an excellent predictor of the particles with which the proteins associate. Moreover, in addition to bona fide ribosomal proteins, additional proteins that comigrated with different ribosomal particles were detected, including both known ribosomal assembly factors and unknown proteins. The ribosome association of several of these proteins, as well as others predicted to be associated with ribosomes, was verified by immunoblotting. Curiously, deletion mutants for the majority of these ribosome-associated proteins had little effect on cell growth or on the polyribosome profiles.
APA, Harvard, Vancouver, ISO, and other styles
38

Jayalath, Kumudie, Sean Frisbie, Minhchau To, and Sanjaya Abeysirigunawardena. "Pseudouridine Synthase RsuA Captures an Assembly Intermediate That Is Stabilized by Ribosomal Protein S17." Biomolecules 10, no. 6 (May 30, 2020): 841. http://dx.doi.org/10.3390/biom10060841.

Full text
Abstract:
The ribosome is a large ribonucleoprotein complex that synthesizes protein in all living organisms. Ribosome biogenesis is a complex process that requires synchronization of various cellular events, including ribosomal RNA (rRNA) transcription, ribosome assembly, and processing and post-transcriptional modification of rRNA. Ribosome biogenesis is fine-tuned with various assembly factors, possibly including nucleotide modification enzymes. Ribosomal small subunit pseudouridine synthase A (RsuA) pseudouridylates U516 of 16S helix 18. Protein RsuA is a multi-domain protein that contains the N-terminal peripheral domain, which is structurally similar to the ribosomal protein S4. Our study shows RsuA preferably binds and pseudouridylates an assembly intermediate that is stabilized by ribosomal protein S17 over the native-like complex. In addition, the N-terminal domain truncated RsuA showed that the presence of the S4-like domain is important for RsuA substrate recognition.
APA, Harvard, Vancouver, ISO, and other styles
39

Firmino, Alexandre Augusto Pereira, Michal Gorka, Alexander Graf, Aleksandra Skirycz, Federico Martinez-Seidel, Kerstin Zander, Joachim Kopka, and Olga Beine-Golovchuk. "Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes." Plants 9, no. 7 (July 14, 2020): 892. http://dx.doi.org/10.3390/plants9070892.

Full text
Abstract:
Conventional preparation methods of plant ribosomes fail to resolve non-translating chloroplast or cytoplasmic ribosome subunits from translating fractions. We established preparation of these ribosome complexes from Arabidopsis thaliana leaf, root, and seed tissues by optimized sucrose density gradient centrifugation of protease protected plant extracts. The method co-purified non-translating 30S and 40S ribosome subunits separated non-translating 50S from 60S subunits, and resolved assembled monosomes from low oligomeric polysomes. Combining ribosome fractionation with microfluidic rRNA analysis and proteomics, we characterized the rRNA and ribosomal protein (RP) composition. The identity of cytoplasmic and chloroplast ribosome complexes and the presence of ribosome biogenesis factors in the 60S-80S sedimentation interval were verified. In vivo cross-linking of leaf tissue stabilized ribosome biogenesis complexes, but induced polysome run-off. Omitting cross-linking, the established paired fractionation and proteome analysis monitored relative abundances of plant chloroplast and cytoplasmic ribosome fractions and enabled analysis of RP composition and ribosome associated proteins including transiently associated biogenesis factors.
APA, Harvard, Vancouver, ISO, and other styles
40

Iouk, Tatiana L., John D. Aitchison, Shawna Maguire, and Richard W. Wozniak. "Rrb1p, a Yeast Nuclear WD-Repeat Protein Involved in the Regulation of Ribosome Biosynthesis." Molecular and Cellular Biology 21, no. 4 (February 15, 2001): 1260–71. http://dx.doi.org/10.1128/mcb.21.4.1260-1271.2001.

Full text
Abstract:
ABSTRACT Ribosome biogenesis is regulated by environmental cues that coordinately modulate the synthesis of ribosomal components and their assembly into functional subunits. We have identified an essential yeast WD-repeat-containing protein, termed Rrb1p, that has a role in both the assembly of the 60S ribosomal subunits and the transcriptional regulation of ribosomal protein (RP) genes. Rrb1p is located in the nucleus and is concentrated in the nucleolus. Its presence is required to maintain normal cellular levels of 60S subunits, 80S ribosomes, and polyribosomes. The function of Rrb1p in ribosome biogenesis appears to be linked to its association with the ribosomal protein rpL3. Immunoprecipitation of Rrb1p from nuclear extracts revealed that it physically interacts with rpL3. Moreover, the overproduction of Rrb1p led to increases in cellular levels of free rpL3 that accumulated in the nucleus together with Rrb1p. The concentration of these proteins within the nucleus was dependent on ongoing protein translation. We also showed that overexpression of RRB1 led to an increase in the expression of RPL3 while all other examined RP genes were unaffected. In contrast, depletion of RRB1 caused an increase in the expression of all RP genes examined except RPL3. These results suggest that Rrb1p regulates RPL3 expression and uncouples it from the coordinated expression of other RP genes.
APA, Harvard, Vancouver, ISO, and other styles
41

Cottilli, Patrick, Borja Belda-Palazón, Charith Raj Adkar-Purushothama, Jean-Pierre Perreault, Enrico Schleiff, Ismael Rodrigo, Alejandro Ferrando, and Purificación Lisón. "Citrus exocortis viroid causes ribosomal stress in tomato plants." Nucleic Acids Research 47, no. 16 (August 8, 2019): 8649–61. http://dx.doi.org/10.1093/nar/gkz679.

Full text
Abstract:
Abstract Viroids are naked RNAs that do not code for any known protein and yet are able to infect plants causing severe diseases. Because of their RNA nature, many studies have focused on the involvement of viroids in RNA-mediated gene silencing as being their pathogenesis mechanism. Here, the alterations caused by the Citrus exocortis viroid (CEVd) on the tomato translation machinery were studied as a new aspect of viroid pathogenesis. The presence of viroids in the ribosomal fractions of infected tomato plants was detected. More precisely, CEVd and its derived viroid small RNAs were found to co-sediment with tomato ribosomes in vivo, and to provoke changes in the global polysome profiles, particularly in the 40S ribosomal subunit accumulation. Additionally, the viroid caused alterations in ribosome biogenesis in the infected tomato plants, affecting the 18S rRNA maturation process. A higher expression level of the ribosomal stress mediator NAC082 was also detected in the CEVd-infected tomato leaves. Both the alterations in the rRNA processing and the induction of NAC082 correlate with the degree of viroid symptomatology. Taken together, these results suggest that CEVd is responsible for defective ribosome biogenesis in tomato, thereby interfering with the translation machinery and, therefore, causing ribosomal stress.
APA, Harvard, Vancouver, ISO, and other styles
42

De, Sandip, and Saverio Brogna. "Are ribosomal proteins present at transcription sites on or off ribosomal subunits?" Biochemical Society Transactions 38, no. 6 (November 24, 2010): 1543–47. http://dx.doi.org/10.1042/bst0381543.

Full text
Abstract:
RPs (ribosomal proteins) are main components of the ribosome having essential functions in its biogenesis, function and structural integrity. Although most of the RP molecules are in the cytoplasm, being incorporated into translating ribosomes, some RPs have non-ribosomal functions when they are off ribosomal subunits. Notably, in eukaryotes, RPs are also present at transcription sites and some of these proteins have a function in transcription and pre-mRNA processing of specific genes. Although the consensus is that the proteins found at these sites are isolated RPs not assembled into ribosomal subunits, it has been proposed that ribosomal subunits might also be present. In the present paper, we review the available evidence for RPs at transcription sites and conclude that ribosomal subunits might be present, but additional studies will be required to solve this important issue.
APA, Harvard, Vancouver, ISO, and other styles
43

Gamerdinger, Martin. "Protein quality control at the ribosome: focus on RAC, NAC and RQC." Essays in Biochemistry 60, no. 2 (October 15, 2016): 203–12. http://dx.doi.org/10.1042/ebc20160011.

Full text
Abstract:
The biogenesis of new polypeptides by ribosomes and their subsequent correct folding and localization to the appropriate cellular compartments are essential key processes to maintain protein homoeostasis. These complex mechanisms are governed by a repertoire of protein biogenesis factors that directly bind to the ribosome and chaperone nascent polypeptide chains as soon as they emerge from the ribosomal tunnel exit. This nascent chain ‘welcoming committee’ regulates multiple co-translational processes including protein modifications, folding, targeting and degradation. Acting at the front of the protein production line, these ribosome-associated protein biogenesis factors lead the way in the cellular proteostasis network to ensure proteome integrity. In this article, I focus on three different systems in eukaryotes that are critical for the maintenance of protein homoeostasis by controlling the birth, life and death of nascent polypeptide chains.
APA, Harvard, Vancouver, ISO, and other styles
44

Dong, Jinsheng, Ruby Lai, Jennifer L. Jennings, Andrew J. Link, and Alan G. Hinnebusch. "The Novel ATP-Binding Cassette Protein ARB1 Is a Shuttling Factor That Stimulates 40S and 60S Ribosome Biogenesis." Molecular and Cellular Biology 25, no. 22 (November 15, 2005): 9859–73. http://dx.doi.org/10.1128/mcb.25.22.9859-9873.2005.

Full text
Abstract:
ABSTRACT ARB1 is an essential yeast protein closely related to members of a subclass of the ATP-binding cassette (ABC) superfamily of proteins that are known to interact with ribosomes and function in protein synthesis or ribosome biogenesis. We show that depletion of ARB1 from Saccharomyces cerevisiae cells leads to a deficit in 18S rRNA and 40S subunits that can be attributed to slower cleavage at the A0, A1, and A2 processing sites in 35S pre-rRNA, delayed processing of 20S rRNA to mature 18S rRNA, and a possible defect in nuclear export of pre-40S subunits. Depletion of ARB1 also delays rRNA processing events in the 60S biogenesis pathway. We further demonstrate that ARB1 shuttles from nucleus to cytoplasm, cosediments with 40S, 60S, and 80S/90S ribosomal species, and is physically associated in vivo with TIF6, LSG1, and other proteins implicated previously in different aspects of 60S or 40S biogenesis. Mutations of conserved ARB1 residues expected to function in ATP hydrolysis were lethal. We propose that ARB1 functions as a mechanochemical ATPase to stimulate multiple steps in the 40S and 60S ribosomal biogenesis pathways.
APA, Harvard, Vancouver, ISO, and other styles
45

Martinez-Seidel, Federico, Olga Beine-Golovchuk, Yin-Chen Hsieh, Kheloud El Eshraky, Michal Gorka, Bo-Eng Cheong, Erika V. Jimenez-Posada, et al. "Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis." International Journal of Molecular Sciences 22, no. 11 (June 7, 2021): 6160. http://dx.doi.org/10.3390/ijms22116160.

Full text
Abstract:
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
APA, Harvard, Vancouver, ISO, and other styles
46

Yu, Yue, Leonard B. Maggi, Suzanne N. Brady, Anthony J. Apicelli, Mu-Shui Dai, Hua Lu, and Jason D. Weber. "Nucleophosmin Is Essential for Ribosomal Protein L5 Nuclear Export." Molecular and Cellular Biology 26, no. 10 (May 15, 2006): 3798–809. http://dx.doi.org/10.1128/mcb.26.10.3798-3809.2006.

Full text
Abstract:
ABSTRACT Nucleophosmin (NPM/B23) is a key regulator in the regulation of a number of processes including centrosome duplication, maintenance of genomic integrity, and ribosome biogenesis. While the mechanisms underlying NPM function are largely uncharacterized, NPM loss results in severe dysregulation of developmental and growth-related events. We show that NPM utilizes a conserved CRM1-dependent nuclear export sequence in its amino terminus to enable its shuttling between the nucleolus/nucleus and cytoplasm. In search of NPM trafficking targets, we biochemically purified NPM-bound protein complexes from HeLa cell lysates. Consistent with NPM's proposed role in ribosome biogenesis, we isolated ribosomal protein L5 (rpL5), a known chaperone for the 5S rRNA. Direct interaction of NPM with rpL5 mediated the colocalization of NPM with maturing nuclear 60S ribosomal subunits, as well as newly exported and assembled 80S ribosomes and polysomes. Inhibition of NPM shuttling or loss of NPM blocked the nuclear export of rpL5 and 5S rRNA, resulting in cell cycle arrest and demonstrating that NPM and its nuclear export provide a unique and necessary chaperoning activity to rpL5/5S.
APA, Harvard, Vancouver, ISO, and other styles
47

Maksimova, Elena, Olesya Kravchenko, Alexey Korepanov, and Elena Stolboushkina. "Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria." Microorganisms 10, no. 4 (March 30, 2022): 747. http://dx.doi.org/10.3390/microorganisms10040747.

Full text
Abstract:
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
APA, Harvard, Vancouver, ISO, and other styles
48

Scull, Catherine E., Yinfeng Zhang, Nichole Tower, Lynn Rasmussen, Indira Padmalayam, Robert Hunter, Ling Zhai, Robert Bostwick, and David A. Schneider. "Discovery of novel inhibitors of ribosome biogenesis by innovative high throughput screening strategies." Biochemical Journal 476, no. 15 (August 9, 2019): 2209–19. http://dx.doi.org/10.1042/bcj20190207.

Full text
Abstract:
Abstract Over the past two decades, ribosome biogenesis has emerged as an attractive target for cancer treatment. In this study, two high-throughput screens were used to identify ribosome biogenesis inhibitors. Our primary screen made use of the HaloTag selective labeling strategy to identify compounds that decreased the abundance of newly synthesized ribosomes in A375 malignant melanoma cells. This screen identified 5786 hit compounds. A subset of those initial hit compounds were tested using a secondary screen that directly measured pre-ribosomal RNA (pre-rRNA) abundance as a reporter of rRNA synthesis rate, using quantitative RT-PCR. From the secondary screen, we identified two structurally related compounds that are potent inhibitors of rRNA synthesis. These two compounds, Ribosome Biogenesis Inhibitors 1 and 2 (RBI1 and RBI2), induce a substantial decrease in the viability of A375 cells, comparable to the previously published ribosome biogenesis inhibitor CX-5461. Anchorage-independent cell growth assays further confirmed that RBI2 inhibits cell growth and proliferation. Thus, the RBI compounds have promising properties for further development as potential cancer chemotherapeutics.
APA, Harvard, Vancouver, ISO, and other styles
49

Prieto, J. L., and B. McStay. "Nucleolar biogenesis: the first small steps." Biochemical Society Transactions 33, no. 6 (October 26, 2005): 1441–43. http://dx.doi.org/10.1042/bst0331441.

Full text
Abstract:
The nucleolus is the site of rRNA transcription, pre-rRNA processing and ribosome subunit assembly. The nucleolus assembles around clusters of ribosomal gene repeats during late telophase, persists throughout interphase and then disassembles as cells enter mitosis. The initial step in nucleolar formation is ribosomal gene transcription, which is mediated by Pol I (RNA polymerase I) and its associated transcription factors: UBF (upstream-binding factor), SL1 (selectivity factor) and TIF-IA (transcription initiation factor IA)/Rrn3. Ribosomal gene clusters, termed NORs (nucleolar organizer regions), are found on each of the five human acrocentric chromosomes. Though transcription is repressed during metaphase, NORs that were active in the previous interphase form prominent cytogenetic features, namely secondary constrictions. The main defining characteristic of these constrictions is under-condensation in comparison with the rest of the chromosome. Extensive binding of UBF over the ribosomal gene repeat is responsible for the formation of this chromosomal feature. During interphase, the majority of the Pol I transcription machinery, though present in nucleoli, is not actively engaged in transcription. Interaction with UBF bound across the gene repeat provides an explanation for how this non-engaged Pol I machinery is sequestered by nucleoli.
APA, Harvard, Vancouver, ISO, and other styles
50

Nazar, Ross. "Ribosomal RNA Processing and Ribosome Biogenesis in Eukaryotes." IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 56, no. 8 (August 1, 2004): 457–65. http://dx.doi.org/10.1080/15216540400010867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography