Academic literature on the topic 'Rhodococcu'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rhodococcu.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rhodococcu"
Alvarez, Héctor M., Martín A. Hernández, Mariana P. Lanfranconi, Roxana A. Silva, and María S. Villalba. "Rhodococcus as Biofactories for Microbial Oil Production." Molecules 26, no. 16 (August 11, 2021): 4871. http://dx.doi.org/10.3390/molecules26164871.
Full textGarrido-Sanz, Daniel, Miguel Redondo-Nieto, Marta Martín, and Rafael Rivilla. "Comparative Genomics of the Rhodococcus Genus Shows Wide Distribution of Biodegradation Traits." Microorganisms 8, no. 5 (May 21, 2020): 774. http://dx.doi.org/10.3390/microorganisms8050774.
Full textRASTIMESINA, Inna, Olga POSTOLACHI, and Valentina JOSAN. "Dissociation of Rhodococcus rhodochrous Population after the Whole Cells Immobilization." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 78, no. 1 (May 14, 2021): 28. http://dx.doi.org/10.15835/buasvmcn-agr:2020.0043.
Full textChane, Andrea, Yvann Bourigault, Mathilde Bouteiller, Yoan Konto-Ghiorghi, Annabelle Merieau, Corinne Barbey, and Xavier Latour. "Close-up on a bacterial informational war in the geocaulosphere." Canadian Journal of Microbiology 66, no. 7 (July 2020): 447–54. http://dx.doi.org/10.1139/cjm-2019-0546.
Full textIvshina, Irina, Grigory Bazhutin, Semyon Tyan, Maxim Polygalov, Maria Subbotina, and Elena Tyumina. "Cellular Modifications of Rhodococci Exposed to Separate and Combined Effects of Pharmaceutical Pollutants." Microorganisms 10, no. 6 (May 26, 2022): 1101. http://dx.doi.org/10.3390/microorganisms10061101.
Full textWhyte, L. G., T. H. M. Smits, D. Labbé, B. Witholt, C. W. Greer, and J. B. van Beilen. "Gene Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus Strains Q15 and NRRL B-16531." Applied and Environmental Microbiology 68, no. 12 (December 2002): 5933–42. http://dx.doi.org/10.1128/aem.68.12.5933-5942.2002.
Full textLilwani, Simran R., Sneha M. Dokhale, Parvathi JR, and Madhavi R. Vernekar. "Isolation and characterization of a rare polar carotenoid 1’-OH-4-keto-ϒ-carotene from an indigenously isolated Rhodococcus kroppenstedtii MH715196." Food Science and Applied Biotechnology 5, no. 2 (October 13, 2022): 199. http://dx.doi.org/10.30721/fsab2022.v5.i2.200.
Full textThi Mo, Luong, Puntus Irina, Suzina Natalia, Nechaeva Irina, Akhmetov Lenar, Filonov Andrey, Akatova Ekaterina, Alferov Sergey, and Ponamoreva Olga. "Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States." Microorganisms 10, no. 8 (August 8, 2022): 1594. http://dx.doi.org/10.3390/microorganisms10081594.
Full textStecker, Christiane, Andre Johann, Christina Herzberg, Beate Averhoff, and Gerhard Gottschalk. "Complete Nucleotide Sequence and Genetic Organization of the 210-Kilobase Linear Plasmid of Rhodococcus erythropolis BD2." Journal of Bacteriology 185, no. 17 (September 1, 2003): 5269–74. http://dx.doi.org/10.1128/jb.185.17.5269-5274.2003.
Full textЕгорова, Д. О., Т. И. Горбунова, Т. Д. Кирьянова, М. Г. Первова, and Е. Г. Плотникова. "Моделирование структуры α-субъединицы бифенил диоксигеназы штаммов рода Rhodococcu s и особенности деструкции хлорированных- и гидроксилированных бифенилов при различных температурах." Прикладная биохимия и микробиология 57, no. 6 (2021): 571–82. http://dx.doi.org/10.31857/s0555109921060027.
Full textDissertations / Theses on the topic "Rhodococcu"
DI, CANITO ALESSANDRA. "Genomic and functional analysis of Rhodococcus strains to identify genes and degradative functions for soil quality evaluation." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241307.
Full textSoil quality has been one of the major issues of the last decades, because of the increase of anthropogenic pollution. Soil contains organisms involved in vital functions (nutrient/hydrological cycles and degradation of toxic compounds). Under stress conditions, soil microorganisms undergo several alterations so molecular technologies use microbial communities as an ecological parameter in monitoring polluted sites. Bacteria belonging to Rhodococcus genus have an important role in recalcitrant compound degradations. It is a metabolically versatile genus, widely distributed in nature. Rhodococcus spp. can degrade a wide range of organic compounds (aliphatic/aromatic hydrocarbons, heterocyclic, nitriles, sulfuric, herbicides) and to survive in presence of toxic compounds, carbon starvation, UV irradiation and osmotic stress. In line with their catabolic diversity, they possess large and complex genomes, containing a multiplicity of catabolic genes, high genetic redundancy and a sophisticated regulatory network. The aim of this project is to obtain molecular tools to use as "marker" sequences for soil assessment, through analysis of metabolic pathways and catabolic gene clusters involved in the degradation of the most diffused environmental contaminants. In particular, this work focused the attention on three Rhodococcus strain genomes: R. opacus R7, R. aetherivorans BCP1 and R. erythropolis MI2. A Phenotype Microarray approach was used to evaluate R7 and BCP1 strains metabolic potential and their stress response. Also, the capability to utilize various contaminants (aliphatic hydrocarbons and cycloalkanes, aromatic compounds, polycyclic aromatic compounds, naphthenic acids and other carboxylic acids) and to persist under stress conditions (high osmolarity, pH stress, toxic compounds, antibiotics) was tested. A genome-based approach was used to relate their abilities to genetic determinants involved in the analysed metabolisms (naphthalene, o-xylene, n-alkanes, naphthenic acids, phenols, phthalate) and in their environmental persistence. In particular, o-xylene and naphthenic acids degradations were investigated in R. opacus R7. Computational and molecular analyses revealed the putative involvement of several genes in these degradation pathways. R7 can degrade o-xylene by the induction of the akb genes (deoxygenation) producing the corresponding dihydrodiol. Likewise, the redundancy of sequences encoding for monooxygenases/hydroxylases (prmA and pheA1A2A3), supports the involvement of other genes that induce the formation of phenols, converging to the phenol oxidation path. The activation of converging oxygenase systems represents a strategy in Rhodococcus genus to degrade recalcitrant compounds and to persist in contaminated environments. NAs degradation pathway is not fully clear but two main routes have been proposed: i) aromatization of the cyclohexane ring ii) activation as CoA thioester. RT and RT-qPCR results showed that R. opacus R7 degrade cyclohexanecarboxylic acid (CHCA) molecule (used as a model) by a cyclohexane carboxylate CoA ligase (aliA). An application of this work was demonstrated by a microcosm approach, simulating a bioaugmentation process with R7 strain. Autochthone bacteria and R7 capabilities to degrade CHCA were evaluated and compared; results indicated that R7 can degrade the contaminant faster than the microbial community and that its contribute increased CHCA degradation rate. The degradation rate was followed by RT and RT-qPCR, monitoring the expression of the aliA gene. Moreover, a biotechnological application was investigated in R. erythropolis MI2, studying the disulfide 4,4-dithiodibutyric acid (DTDB) degradation pathway. DTDB is a promising substrate for polythioester (PTE) synthesis; indeed, its degradation produces the PTE building block 4-mercaptobutyric acid. The aim was pursued generating R. erythropolis MI2 marker-free deletion mutants for genes involved in the final steps of the pathway.
Naʼamnieh, Shukrallah. "Entwicklung eines rekombinanten Ganzzellsystems - Klonierung, Coexpression und Mutagenese der Phenylalanin-Dehydrogenase aus Rhodococcus sp. M4 und des malic enzymes aus E.coli K12." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966050142.
Full textAbokitse, Kofi. "Biochemische und molekularbiologische Charakterisierung von Alkoholdehydrogenasen und einer Oxygenase aus Rhodococcus Spezies." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971968446.
Full textStoecker, Matthew A. "Biodegradation of aromatic and aliphatic hydrocarbons by Rhodococcus spp. /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11495.
Full textGanguly, Sangeeta. "Enhanced Stabilization of Nitrile Hydratase Enzyme From Rhodococcus Sp. DAP 96253 and Rhodococcus." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/biology_diss/25.
Full textTaylor, James Andrew. "The plasmids of Rhodococcus aetherivorans I24." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613971.
Full textOliveira, Luiz Gustavo Schneider. "Infecção por Rhodococcus equi em potros." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/75650.
Full textRhodococcus equi is an important bacterial pathogen in veterinary medicine, especially associated with piogranulomatous pneumonia in foals under six months of age. Twenty cases of R. equi infection in foals received for necropsy at the Pathology Veterinary Sector (SPV) of the Federal University of Rio Grande do Sul (UFRGS) between January 1997 and January 2013 are described in this paper. Clinical history obtained with veterinary practitioners presented high variability, and even classical respiratory signs and fever were only observed in half of the cases. Data collected in an investigative visiting to a breeding farm showed that the foal superpopulation and the introduction of females to the parturition group contributed to the occurrence of an outbreak. Necropsy and histologic examinations revealed that multifocal piogranulomatous pneumonia was the most constant presentation (nineteen cases), followed by piogranulomatous lymphadenitis (ten cases) and piogranulomatous and ulcerative typhlocolitis (five cases). Three animals presented piogranulomatous osteomyelitis, two of them in vertebrae. Aseptic uveitis and polisynovitis were verified in three cases. Anti-Rhodococcus equi immunohistochemical examination stained positive in all lungs containing lesions, although lymphnodes have stained positive in only three of nine samples tested. Bacteriologic examination of the necropsy samples was positive in fifteen cases and in a soil sample from the visited breeding farm. Polymerase chain reaction (PCR) test revealed the VapA virulence factor of R.equi in all clinical isolates, but not in the soil sample. Additionally, the lungs were tested to the presence of Pneumocystis sp. by immunohistochemistry, and stained positive in thirteen of twenty cases.
Chong, Chun Shiong. "Biodegradation of RDX in Rhodococcus spp." Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/1668/.
Full textHunt, Jonathan Ralph. "Biotransformation of alkenes by Rhodococcus OU." Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/109487/.
Full textHullmann, Axel-Günther. "Prophylaxe der Rhodococcus-equi-Pneumonie bei Fohlen durch Vakzination mit Rhodococcus-equi-Impfstoff und Adjuvans CpG XXXX." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=984730109.
Full textBooks on the topic "Rhodococcu"
Dorothy Russell Havemeyer Foundation workshop on Rhodococcus equi and equine rhodococcal pneumonia (2002 Pullman, Wash.). Workshop on Rhodococcus equi and equine rhodococcal pneumonia. [Pullman, Wash.]: College of Veterinary Medicine, Washington State University, 2002.
Find full textAlvarez, Héctor M. Biology of Rhodococcus. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textAlvarez, Héctor M., ed. Biology of Rhodococcus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12937-7.
Full textAlvarez, Héctor M., ed. Biology of Rhodococcus. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9.
Full textHunt, Jonathan Ralph. Biotransformation of alkenes by Rhodococcus OU. [s.l.]: typescript, 1991.
Find full textAshraf, William. The genetics and biochemistry of a propane-utilizing "rhodococcus rhodochrous". [s.l.]: typescript, 1990.
Find full textMihdhir, Alaa. The physiology, biochemistry and genetics of propane metabolism in Rhodococcus rhodochrous PNKb1. [s.l.]: typescript, 1993.
Find full textBala, Monu. Rhodococcus Genomes. Vyusta Ventures LLP, 2023.
Find full textBala, Monu. Rhodococcus Genomes. Vyusta Ventures LLP, 2021.
Find full textAlvarez, Héctor M. Biology of Rhodococcus. Springer, 2012.
Find full textBook chapters on the topic "Rhodococcu"
Prescott, J. F., W. G. Meijer, and J. A. Vázquez-Boland. "Rhodococcus." In Pathogenesis of Bacterial Infections in Animals, 149–66. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780470958209.ch9.
Full textLarkin, M. J., L. A. Kulakov, and C. C. R. Allen. "Rhodococcus." In Handbook of Hydrocarbon and Lipid Microbiology, 1839–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_134.
Full textSangal, Vartul, Michael Goodfellow, Amanda L. Jones, Robert J. Seviour, and Iain C. Sutcliffe. "Refined Systematics of the Genus Rhodococcus Based on Whole Genome Analyses." In Biology of Rhodococcus, 1–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_1.
Full textKuyukina, Maria S., and Irena B. Ivshina. "Production of Trehalolipid Biosurfactants by Rhodococcus." In Biology of Rhodococcus, 271–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_10.
Full textAlvarez, Héctor M., and Alexander Steinbüchel. "Biology of Triacylglycerol Accumulation by Rhodococcus." In Biology of Rhodococcus, 299–332. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_11.
Full textPresentato, Alessandro, Elena Piacenza, Martina Cappelletti, and Raymond J. Turner. "Interaction of Rhodococcus with Metals and Biotechnological Applications." In Biology of Rhodococcus, 333–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_12.
Full textFrancis, Isolde M., and Danny Vereecke. "Plant-Associated Rhodococcus Species, for Better and for Worse." In Biology of Rhodococcus, 359–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_13.
Full textCappelletti, Martina, Jessica Zampolli, Patrizia Di Gennaro, and Davide Zannoni. "Genomics of Rhodococcus." In Biology of Rhodococcus, 23–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_2.
Full textHernández, Martín A., Héctor M. Alvarez, Mariana P. Lanfranconi, Roxana A. Silva, O. Marisa Herrero, and María Soledad Villalba. "Central Metabolism of Species of the Genus Rhodococcus." In Biology of Rhodococcus, 61–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_3.
Full textYoshida, Nobuyuki. "Oligotrophic Growth of Rhodococcus." In Biology of Rhodococcus, 87–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11461-9_4.
Full textConference papers on the topic "Rhodococcu"
Лучникова, Наталья Алексеевна, Ксения Михайловна Иванова (Кудымова), Екатерина Владимировна Тарасова, Виктория Викторовна Гришко, and Ирина Борисовна Ившина. "БИОКОНВЕРСИЯ ТРИТЕРПЕНОИДОВ ОЛЕАНАНОВОГО ТИПА АКТИНОБАКТЕРИЯМИ." In IX ИНФОРМАЦИОННАЯ ШКОЛА МОЛОДОГО УЧЕНОГО. Центральная научная библиотека УрО РАН, 2021. http://dx.doi.org/10.32460/ishmu-2021-9-0002.
Full textSvanova, Pavla. "METAL-RESISTANCE IN RHODOCOCCUS BACTERIAL STRAIN." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2015. http://dx.doi.org/10.5593/sgem2015/b61/s25.066.
Full textKruglova, M. N., Y. A. Chugunova, A. A. Samkov, N. N. Volchenko, and A. A. Khudokormov. "Correlation between the diversity of xenobiotic catabolism genes in Rhodococcus and phytotoxicity of imidazolinone and organophosphate herbicide biotransformation products." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.131.
Full textMarkova, Yu A., L. A. Belovezhets, M. S. Tretyakova, A. M. Cheremnykh, and A. A. Levchuk. "The nature of the carbon source as a modulator of the response of bacteria to biologically active compounds (for example, colchicine and protatranes)." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.163.
Full textTishchenko, A. V., L. V. Litvinenko, and I. B. Ivshina. "Reduction of heavy metal phytotoxicity using Rhodococcus-biosurfactants." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.248.
Full textKreit, Joseph, Rajae Elamrani, Marouane Melloul, and Aziz Elalami. "Taxonomy of sterol-degrading species of the genus, Rhodococcus." In MICROBES IN APPLIED RESEARCH - Current Advances and Challenges. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814405041_0131.
Full textSricoth, Theeta, Prayad Pokethitiyook, Toemthip Poolpak, and Maleeya Kruatrachue. "Desulfurization of Oil by Recombinant Rhodococcus Gordoniae Strain R3." In 2015 International Conference on Environmental Science and Sustainable Development (ICESSD 2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814723039_0053.
Full textTurskaya, A. L., Yu A. Markova, S. N. Adamovich, I. A. Ushakov, E. N. Oborina, M. S. Tretyakova, and L. A. Belovezhets. "PROTATHRANES – SYNTHETIC GROWTH BIOSTIMULATORS OF MICROORGANISM-OIL DЕSTRUCTOR RHODOCOCCUS ERYTHROPOLIS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1397-1400.
Full textDELLA ROCCA, D. G., D. TODESCATO, D. MAASS, D. OLIVEIRA, S. M. A. G. U. de SOUZA, and A. A. U. de SOUZA. "Estudo das condições de crescimento do Rhodococcus erythropolis ATCC 1277." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-1199-20513-145136.
Full textRastimesina, Inna, Olga Postolachi, Valentina Josan, Alina Cotoman, and Vera Mamaliga. "Screening of low density polyethylene degrading microorganisms." In National Scientific Symposium With International Participation: Modern Biotechnologies – Solutions to the Challenges of the Contemporary World. Institute of Microbiology and Biotechnology, Republic of Moldova, 2021. http://dx.doi.org/10.52757/imb21.003.
Full textReports on the topic "Rhodococcu"
Litchfield, J. H., D. T. Palmer, T. J. Zupancic, and H. N. Conkle. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus]. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5065946.
Full textLitchfield, J. H., I. Fry, R. E. Wyza, D. T. Palmer, T. J. Zupancic, and H. N. Conkle. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus]. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/5065953.
Full textLitchfield, J. H., I. Fry, R. E. Wyza, D. T. Palmer, T. J. Zupancic, and H. N. Conkle. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus, thiobacillus]. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/5065961.
Full textKilbane, J. J., and B. A. Bielaga. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous]. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6089976.
Full textHo, N. W. Y. Characterization of the organic-sulfur-degrading enzymes. [Rhodococcus rhodochorous]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6848406.
Full textKilbane, J. J. II. Microbial strain improvement for organosulfur removal from coal. [Rhodococcus rhodochrous]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5792238.
Full textSaraiva, Aline, Lana Fonseca, and Rafael Valadares. Categorização funcional de proteínas de um cultivo biológico da bactéria Rhodococcus opacus. ITV, August 2019. http://dx.doi.org/10.29223/prod.tec.itv.ds.2019.9.saraiva.
Full textHo, N. W. Y. Characterization of the organic-sulfur-degrading enzymes. [IGTS8: a derivative of Rhodococcus rhodochrous]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5792251.
Full textSrivastava, V. J. The effect of moderate coal cleaning on microbial removal of organic sulfur. [Rhodococcus rhodochrous]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5986967.
Full textJohn J. Kilbane II. Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/809375.
Full text