Academic literature on the topic 'Rgg/SHP'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rgg/SHP.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rgg/SHP"

1

Lingeswaran, Abarna, Coralie Metton, Céline Henry, Véronique Monnet, Vincent Juillard, and Rozenn Gardan. "Export of Rgg Quorum Sensing Peptides is Mediated by the PptAB ABC Transporter in Streptococcus Thermophilus Strain LMD-9." Genes 11, no. 9 (September 19, 2020): 1096. http://dx.doi.org/10.3390/genes11091096.

Full text
Abstract:
In streptococci, intracellular quorum sensing pathways are based on quorum-sensing systems that are responsible for peptide secretion, maturation, and reimport. These peptides then interact with Rgg or ComR transcriptional regulators in the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP) family, whose members are found in Gram-positive bacteria. Short hydrophobic peptides (SHP) interact with Rgg whereas ComS peptides interact with ComR regulators. To date, in Streptococcus thermophilus, peptide secretion, maturation, and extracellular fate have received little attention, even though this species has several (at least five) genes encoding Rgg regulators and one encoding a ComR regulator. We studied pheromone export in this species, focusing our attention on PptAB, which is an exporter of signaling peptides previously identified in Enterococcus faecalis, pathogenic streptococci and Staphylococcus aureus. In the S. thermophilus strain LMD-9, we showed that PptAB controlled three regulation systems, two SHP/Rgg systems (SHP/Rgg1358 and SHP/Rgg1299), and the ComS/ComR system, while using transcriptional fusions and that PptAB helped to produce and export at least three different mature SHPs (SHP1358, SHP1299, and SHP279) peptides while using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using a deep sequencing approach (RNAseq), we showed that the exporter PptAB, the membrane protease Eep, and the oligopeptide importer Ami controlled the transcription of the genes that were located downstream from the five non-truncated rgg genes as well as few distal genes. This led us to propose that the five non-truncated shp/rgg loci were functional. Only three shp genes were expressed in our experimental condition. Thus, this transcriptome analysis also highlighted the complex interconnected network that exists between SHP/Rgg systems, where a few homologous signaling peptides likely interact with different regulators.
APA, Harvard, Vancouver, ISO, and other styles
2

Capodagli, Glenn C., Kaitlyn M. Tylor, Jason T. Kaelber, Vasileios I. Petrou, Michael J. Federle, and Matthew B. Neiditch. "Structure–function studies of Rgg binding to pheromones and target promoters reveal a model of transcription factor interplay." Proceedings of the National Academy of Sciences 117, no. 39 (September 9, 2020): 24494–502. http://dx.doi.org/10.1073/pnas.2008427117.

Full text
Abstract:
Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg–SHP and Rgg–target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg–DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure–function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.
APA, Harvard, Vancouver, ISO, and other styles
3

Fleuchot, Betty, Alain Guillot, Christine Mézange, Colette Besset, Emilie Chambellon, Véronique Monnet, and Rozenn Gardan. "Rgg-Associated SHP Signaling Peptides Mediate Cross-Talk in Streptococci." PLoS ONE 8, no. 6 (June 11, 2013): e66042. http://dx.doi.org/10.1371/journal.pone.0066042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pérez-Pascual, David, Philippe Gaudu, Betty Fleuchot, Colette Besset, Isabelle Rosinski-Chupin, Alain Guillot, Véronique Monnet, and Rozenn Gardan. "RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis." mBio 6, no. 1 (January 20, 2015). http://dx.doi.org/10.1128/mbio.02306-14.

Full text
Abstract:
ABSTRACT Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. IMPORTANCE Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Junges, Roger, Gabriela Salvadori, Sudhanshu Shekhar, Heidi A. Åmdal, Jimstan N. Periselneris, Tsute Chen, Jeremy S. Brown, and Fernanda C. Petersen. "A Quorum-Sensing System That Regulates Streptococcus pneumoniae Biofilm Formation and Surface Polysaccharide Production." mSphere 2, no. 5 (September 13, 2017). http://dx.doi.org/10.1128/msphere.00324-17.

Full text
Abstract:
ABSTRACT Quorum sensing regulates bacterial social behaviors by production, secretion, and sensing of pheromones. In this study, we characterized a new quorum-sensing system of the Rgg/SHP class in S. pneumoniae D39. The system was found to directly induce the expression of a single gene cluster comprising the gene for the SHP pheromone and genes with putative functions in capsule synthesis. Capsule size, as measured by dextran exclusion, was increased by SHP exposure in R36A, an unencapsulated derivative of D39. In the encapsulated parent strain, overexpression of the gene cluster increased capsule size, supporting the role of Rgg/SHP in the synthesis of surface polysaccharides. Further, we found that biofilm formation on epithelial cells was reduced by overexpression of the system and increased in a mutant with an rgg deletion. Placing surface polysaccharide expression under quorum-sensing regulation may enable S. pneumoniae to tune interactions with the host and other bacteria in accordance with environmental and cell density conditions. Despite vaccines, Streptococcus pneumoniae kills more than a million people yearly. Thus, understanding how pneumococci transition from commensals to pathogens is particularly relevant. Quorum sensing regulates collective behaviors and thus represents a potential driver of commensal-to-pathogen transitions. Rgg/small hydrophobic peptide (SHP) quorum-sensing systems are widespread in streptococci, yet they remain largely uncharacterized in S. pneumoniae. Using directional transcriptome sequencing, we show that the S. pneumoniae D39 Rgg0939/SHP system induces the transcription of a single gene cluster including shp and capsule gene homologs. Capsule size measurements determined by fluorescein isothiocyanate-dextran exclusion allowed assignment of the system to the regulation of surface polysaccharide expression. We found that the SHP pheromone induced exopolysaccharide expression in R36A, an unencapsulated derivative of D39. In the encapsulated parent strain, overexpression of the Rgg system resulted in a mutant with increased capsule size. In line with previous studies showing that capsule expression is inversely associated with biofilm formation, we found that biofilm formed on lung epithelial cells was decreased in the overexpression strain and increased in an rgg deletion mutant. Although no significant differences were observed between D39 and the rgg deletion mutant in a mouse model of lung infection, in competitive assays, overexpression reduced fitness. This is the first study to reveal a quorum-sensing system in streptococci that regulates exopolysaccharide synthesis from a site distinct from the original capsule locus. IMPORTANCE Quorum sensing regulates bacterial social behaviors by production, secretion, and sensing of pheromones. In this study, we characterized a new quorum-sensing system of the Rgg/SHP class in S. pneumoniae D39. The system was found to directly induce the expression of a single gene cluster comprising the gene for the SHP pheromone and genes with putative functions in capsule synthesis. Capsule size, as measured by dextran exclusion, was increased by SHP exposure in R36A, an unencapsulated derivative of D39. In the encapsulated parent strain, overexpression of the gene cluster increased capsule size, supporting the role of Rgg/SHP in the synthesis of surface polysaccharides. Further, we found that biofilm formation on epithelial cells was reduced by overexpression of the system and increased in a mutant with an rgg deletion. Placing surface polysaccharide expression under quorum-sensing regulation may enable S. pneumoniae to tune interactions with the host and other bacteria in accordance with environmental and cell density conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

Junges, R., K. Sturød, G. Salvadori, H. A. Åmdal, T. Chen, and F. C. Petersen. "Characterization of a Signaling System inStreptococcus mitisThat Mediates Interspecies Communication withStreptococcus pneumoniae." Applied and Environmental Microbiology 85, no. 2 (November 2, 2018). http://dx.doi.org/10.1128/aem.02297-18.

Full text
Abstract:
ABSTRACTStreptococcus mitisis found in the oral cavity and nasopharynx and forms a significant portion of the human microbiome. In this study,in silicoanalyses indicated the presence of an Rgg regulator and short hydrophobic peptide (Rgg/SHP) cell-to-cell communication system inS. mitis. Although Rgg presented greater similarity to a repressor inStreptococcus pyogenes, autoinducing assays and genetic mutation analysis revealed that inS. mitisRgg acts as an activator. Transcriptome analysis showed that in addition toshp, the system regulates two other downstream genes, comprising a segment of a putative lantibiotic gene cluster that is in a conjugative element locus in different members of the mitis group. Close comparison to a similar lantibiotic gene cluster inStreptococcus pneumoniaeindicated thatS. mitislacked the full set of genes. Despite the potential of SHP to trigger a futile cycle of autoinduction, growth was not significantly affected for therggmutant under normal or antibiotic stress conditions. TheS. mitisSHP was, however, fully functional in promoting cross-species communication and increasingS. pneumoniaesurface polysaccharide production, which in this species is regulated by Rgg/SHP. The activity of SHPs produced by both species was detected in cocultures using aS. mitisreporter strain. In competitive assays, a slight advantage was observed for therggmutants. We conclude that the Rgg/SHP system inS. mitisregulates the expression of its ownshpand activates an Rgg/SHP system inS. pneumoniaethat regulates surface polysaccharide synthesis. Fundamentally, cross-communication of such systems may have a role during multispecies interactions.IMPORTANCEBacteria secrete signal molecules into the environment which are sensed by other cells when the density reaches a certain threshold. In this study, we describe a communication system inStreptococcus mitis, a commensal species from the oral cavity, which we also found in several species and strains of streptococci from the mitis group. Further, we show that this system can promote cross-communication withS. pneumoniae, a closely related major human pathogen. Importantly, we show that this cross-communication can take place during coculture. While the genes regulated inS. mitisare likely part of a futile cycle of activation, the target genes inS. pneumoniaeare potentially involved in virulence. The understanding of such complex communication networks can provide important insights into the dynamics of bacterial communities.
APA, Harvard, Vancouver, ISO, and other styles
7

Aggarwal, Chaitanya, Juan Cristobal Jimenez, Hyun Lee, George E. Chlipala, Kiira Ratia, and Michael J. Federle. "Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci." mBio 6, no. 3 (May 12, 2015). http://dx.doi.org/10.1128/mbio.00393-15.

Full text
Abstract:
ABSTRACTBacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylumFirmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogenStreptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3in vitrowith submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development inS. pyogeneswithout affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species ofStreptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health.IMPORTANCEThe global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species ofStreptococcus. Treatment of cultures ofS. pyogeneswith the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth.
APA, Harvard, Vancouver, ISO, and other styles
8

LaSarre, Breah, Chaitanya Aggarwal, and Michael J. Federle. "Antagonistic Rgg Regulators Mediate Quorum Sensing via Competitive DNA Binding in Streptococcus pyogenes." mBio 3, no. 6 (November 27, 2012). http://dx.doi.org/10.1128/mbio.00333-12.

Full text
Abstract:
ABSTRACTRecent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system inStreptococcus pyogeneswhich utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence thatS. pyogenesemploys a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the −35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2in vitroby the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit.IMPORTANCERgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg function is anticipated to be of great importance for the understanding of both regulatory-network architecture and intercellular communication in Rgg-containing species. The results of this study on the Rgg2/3 QS circuit ofS. pyogenesdemonstrate that DNA binding of target promoters by the activator Rgg2 is directly inhibited by competitive binding by the repressor Rgg3, thereby preventing transcriptional activation of the target genes and premature induction of the QS circuit. This is a unique regulatory mechanism among Rgg proteins and other peptide-responsive QS regulators.
APA, Harvard, Vancouver, ISO, and other styles
9

Cook, Laura C., Breah LaSarre, and Michael J. Federle. "Interspecies Communication among Commensal and Pathogenic Streptococci." mBio 4, no. 4 (July 23, 2013). http://dx.doi.org/10.1128/mbio.00382-13.

Full text
Abstract:
ABSTRACTQuorum sensing (QS) regulates diverse and coordinated behaviors in bacteria, including the production of virulence factors, biofilm formation, sporulation, and competence development. It is now established that some streptococci utilize Rgg-type proteins in concert with short hydrophobic peptides (SHPs) to mediate QS, and sequence analysis reveals that several streptococcal species contain highly homologous Rgg/SHP pairs. In group A streptococcus (GAS), two SHPs (SHP2 and SHP3 [SHP2/3]) were previously identified to be important in GAS biofilm formation. SHP2/3 are detected by two antagonistic regulators, Rgg2 and Rgg3, which control expression of theshpgenes. In group B streptococcus (GBS), RovS is a known virulence gene regulator and ortholog of Rgg2, whereas no apparent Rgg3 homolog exists. Adjacent torovSis a gene (shp1520) encoding a peptide nearly identical to SHP2. Using isogenic mutant strains and transcriptional reporters, we confirmed that RovS/SHP1520 comprise a QS circuit in GBS. More important, we performed experiments demonstrating that production and secretion of SHP1520 by GBS can modulate Rgg2/3-regulated gene expression in GAS intrans; likewise, SHP2/3 production by GAS can stimulate RovS-mediated gene regulation in GBS. An isolate ofStreptococcus dysgalactiaesubsp.equisimilisalso produced a secreted factor capable of simulating the QS circuits of both GAS and GBS, and sequencing confirms the presence of an orthologous Rgg2/SHP2 pair in this species as well. To our knowledge, this is the first documented case of bidirectional signaling between streptococcal species in coculture and suggests a role for orthologous Rgg/SHP systems in interspecies communication between important human pathogens.IMPORTANCEPathogenic streptococci, such as group A (GAS) and group B (GBS) streptococcus, are able to persist in the human body without causing disease but become pathogenic under certain conditions that are not fully characterized. Environmental cues and interspecies signaling between members of the human flora likely play an important role in the transition to a disease state. Since quorum-sensing (QS) peptides have been consistently shown to regulate virulence factor production in pathogenic species, the ability of bacteria to signal via these peptides may prove to be an important link between the carrier and pathogenic states. Here we provide evidence of a bidirectional QS system between GAS, GBS, andStreptococcus dysgalactiaesubsp.equisimilis, demonstrating the possibility of evolved communication systems between human pathogens.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhi, Xiangyun, Iman Tajer Abdullah, Ozcan Gazioglu, Irfan Manzoor, Sulman Shafeeq, Oscar P. Kuipers, N. Luisa Hiller, Peter W. Andrew, and Hasan Yesilkaya. "Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis." Scientific Reports 8, no. 1 (April 23, 2018). http://dx.doi.org/10.1038/s41598-018-24910-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography