Academic literature on the topic 'RGD nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RGD nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RGD nanomaterials"
Zhao, C. H., X. P. Zhang, and L. Zhang. "RGD peptide functionalized graphene oxide: a bioactive surface for cell-material interactions." Digest Journal of Nanomaterials and Biostructures 17, no. 3 (September 25, 2022): 989–97. http://dx.doi.org/10.15251/djnb.2022.173.989.
Full textQu, Xiaochao, Xiaoxiao Li, Jingning Liang, Yanran Wang, Muhan Liu, and Jimin Liang. "Micro-CT Imaging of RGD-Conjugated Gold Nanorods Targeting TumorIn Vivo." Journal of Nanomaterials 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/8368154.
Full textLi, Jianxia, Leilei Zheng, Lin Zeng, Yan Zhang, Lin Jiang, and Jinlin Song. "RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors." Journal of Nanomaterials 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/2828512.
Full textZhang, Ru, Shang Luo, Lin-Kun Hao, Yun-Ying Jiang, Ying Gao, Ning-Ning Zhang, Xue-Cheng Zhang, and Yi-Min Song. "Preparation and Properties of Thrombus-Targeted Urokinase/Multi-Walled Carbon Nanotubes (MWCNTs)-Chitosan (CS)-RGD Drug Delivery System." Journal of Biomedical Nanotechnology 17, no. 9 (September 1, 2021): 1711–25. http://dx.doi.org/10.1166/jbn.2021.3113.
Full textWu, Xiaoxia, Yan Peng, Xiaomei Duan, Lingyan Yang, Jinze Lan, and Fu Wang. "Homologous Gold Nanoparticles and Nanoclusters Composites with Enhanced Surface Raman Scattering and Metal Fluorescence for Cancer Imaging." Nanomaterials 8, no. 10 (October 11, 2018): 819. http://dx.doi.org/10.3390/nano8100819.
Full textYin, Bohan, Hongrong Yang, and Mo Yang. "Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation." Journal of Composites Science 6, no. 1 (January 6, 2022): 19. http://dx.doi.org/10.3390/jcs6010019.
Full textAfami, Marina E., Ikhlas El Karim, Imad About, Anna D. Krasnodembskaya, Garry Laverty, and Fionnuala T. Lundy. "Multicomponent Peptide Hydrogels as an Innovative Platform for Cell-Based Tissue Engineering in the Dental Pulp." Pharmaceutics 13, no. 10 (September 28, 2021): 1575. http://dx.doi.org/10.3390/pharmaceutics13101575.
Full textCamacho, Ángela, Álvaro Duarte, Darwin Dubay, Enrique Forero, Edgar González, Franklin Jaramillo, Carlos Maldonado, et al. "Definición de nanomateriales para Colombia." Revista Colombiana de Química 45, no. 1 (August 11, 2016): 15. http://dx.doi.org/10.15446/rev.colomb.quim.v45n1.58955.
Full textYedgar, Saul, Gregory Barshtein, and Alexander Gural. "Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility." Micromachines 13, no. 12 (November 27, 2022): 2091. http://dx.doi.org/10.3390/mi13122091.
Full textAkpe, Victor, Tak H. Kim, Christopher L. Brown, and Ian E. Cock. "Circulating tumour cells: a broad perspective." Journal of The Royal Society Interface 17, no. 168 (July 2020): 20200065. http://dx.doi.org/10.1098/rsif.2020.0065.
Full textDissertations / Theses on the topic "RGD nanomaterials"
Zhu, Lin. "Biocompatibility of Carbon Nanomaterials: Materials Characterization and Cytotoxicity Evaluation." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1343744183.
Full textJi, Yu. "Characterisation of red blood cell Phagocytosis and assessment of nanoparticle uptake by Monocytic cells." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208148/1/Yu_Ji_Thesis.pdf.
Full textStevenson, Amadeus. "Interactions of nanoparticles with cells for nanomedical applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ecde4b01-e2ec-42f4-9353-72071b845775.
Full textXuedan, He. "RGD-Modified dendrimers for drug encapsulation and targeted inhibition of tumor cells." Master's thesis, 2014. http://hdl.handle.net/10400.13/1532.
Full textNeste trabalho, foram preparados dendrímeros de poli(amidoamina) (PAMAM) de geração 5 (G5) funcionalizados com o péptido cíclico RGD para o encapsulamento do fármaco anticancerígeno doxorubicina (DOX) e sua entrega em células cancerígenas que expressem elevadas quantidades de integrinas αvβ3 na sua superfície (entrega específica do fármaco em células-alvo). No processo de síntese, o péptido contendo um grupo tiol foi primeiro ligado a uma cadeia de polietilenoglicol (PEG) através de um reagente de reticulação bi-funcional. De seguida, os dendrímeros foram ligados covalentemente ao péptido PEGilado e, ainda, ao isotiocianato de fluoresceína (FI), seguindo-se a acetilação (Ac) das aminas terminais remanescentes no dendrímero para se obter o sistema final G5.NHAc-FI-PEG-RGD. Os resultados experimentais mostram que, aproximadamente, existem 6 moléculas de DOX encapsuladas por G5.NHAc-FI-PEG-RGD, sendo estes complexos solúveis e estáveis em água. Os estudos in vitro mostraram que a libertação do fármaco a partir dos dendrímeros multifuncionalizados é controlada. O trabalho envolveu, ainda, estudos de NMR mono- e bi-dimensional na investigação da interacção existente entre os dendrímeros e as moléculas de DOX, e ainda a avaliação do impacto do pH ambiental na velocidade de libertação da DOX. Realizaram-se, igualmente, estudos biológicos com células U87-MG, os quais mostraram que os sistemas G5.NHAc-FI-PEG-RGD não apresentavam toxicidade e que, quando complexados com a DOX, apresentavam uma citotoxicidade semelhante à do fármaco usado de forma isolada. Dada a afinidade do péptido RGD para as integrinas presentes em grande quantidade à superfície das células U87-MG, o sistema G5.NHAc-FI-PEG-RGD mostrou-se muito eficaz na entrega específica do fármaco e consequente eficácia terapêutica. A entrega do fármaco nas células mostrou ser, numa importante extensão, mediada pelos receptores (integrinas αvβ3) presentes à sua superfície. Este trabalho mostrou que os dendrímeros multifuncionalizados G5.NHAc-FI-PEG-RGD são RESUMO vi bastante promissores como sistemas para a entrega específica de fármacos em células cancerígenas.
Asampille, Gitanjali. "Study of a Self-assembling Polypeptide Nanotube: Structure, Dynamics and Applications in Cancer and Tissue engineering." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5385.
Full textKundu, Subhajit. "Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3686.
Full textKundu, Subhajit. "Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials." Thesis, 2015. http://etd.iisc.ernet.in/2005/3686.
Full textTomaszewski, Mariusz. "Wspomaganie procesu anammox w niskich temperaturach zredukowanym tlenkiem grafenu." Rozprawa doktorska, 2019. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=58662.
Full textTomaszewski, Mariusz. "Wspomaganie procesu anammox w niskich temperaturach zredukowanym tlenkiem grafenu." Rozprawa doktorska, 2019. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=58662.
Full textBook chapters on the topic "RGD nanomaterials"
Zhang, Yunjiao. "RGD-RE-1 Bifunctional Short Peptide Enhances the Interaction Between Rare Earth Nanomaterials and Cancer Cells and the Effect of Cell Autophagy." In Springer Theses, 143–52. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8166-0_6.
Full textLiu, Yihang, Dingzhou Cui, Mingrui Chen, Zhen Li, and Chongwu Zhou. "Synthesis of Red and Black Phosphorus Nanomaterials." In ACS Symposium Series, 1–25. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1333.ch001.
Full textBondavalli, Paolo. "New Generation of NVMs Based on Graphene-related Nanomaterials." In Rad-hard Semiconductor Memories, 341–67. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339182-9.
Full textKharlamov, A., G. Kharlamova, O. Khyzhun, and N. Kirillova. "New Substances: Red Carbon Suboxide, Red N-doped Fullerene (C50N10)O3H10 and Red Carbon." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 287–98. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_24.
Full textSrivyas, Pranav Dev, M. S. Charoo, Soundhar Arumugam, and Tanmoy Medhi. "Tribological performance of RGO and Al2O3 nanodispersions in synthetic lubricant." In Nanomaterials for Sustainable Tribology, 65–74. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003306276-4.
Full textHo, Cheuk-Lam, and Wai-Yeung Wong. "Recent Progress of Iridium(III) Red Phosphors for Phosphorescent Organic Light-Emitting Diodes." In Nanomaterials, Polymers, and Devices, 195–214. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch7.
Full textKamble, Vinayak, Soumya Biswas, V. R. Appu, and Arun Kumar. "Reduced Graphene Oxide Photodetector Devices for Infra-Red Sensing." In Carbon Nanomaterial Electronics: Devices and Applications, 349–69. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1052-3_14.
Full textBhangare, Bhagyashri, Niranjan S. Ramgir, K. R. Sinju, A. Pathak, S. Jagtap, A. K. Debnath, K. P. Muthe, and S. W. Gosavi. "Reduced Graphene Oxide (rGO)-Based Nanohybrids as Gas Sensors: State of the Art." In Materials Horizons: From Nature to Nanomaterials, 189–217. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4810-9_8.
Full textGoel, Shreya, Feng Chen, and Weibo Cai. "Red Blood Cell-Mimicking Hybrid Nanoparticles." In Hybrid Nanomaterials, 7–35. CRC Press, 2017. http://dx.doi.org/10.1201/9781315370934-2.
Full textVaishnav, Vikash Kumar, Khageshwar Prasad, Rashmi Yadav, Amitabh Aharwar, and Bhupendra Nath Tiwary. "Graphene-Based Nanomaterials and Their Sensing Application." In Recent Advances in Biosensor Technology, 45–77. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815123739123010006.
Full textConference papers on the topic "RGD nanomaterials"
Martí-Centelles, Vicente, Andrea Bernardos Bau, Maria Dolores Marcos Martínez, Susana Querol Magdalena, and Joana Oliver Talens. "Prácticas de Materiales y Nanomateriales para Estudiantes de Primer Curso de Ingeniería Física." In IN-RED 2022: VIII Congreso de Innovación Educativa y Docencia en Red. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/inred2022.2022.15908.
Full textIchkitidze, L. P., D. V. Telishev, N. A. Demidenko, E. P. Kitsyuk, and V. V. Zar. "The study of the electrical conductivity of layers of biological composite nanomaterials." In XIV RUSSIAN-GERMANY CONFERENCE ON BIOMEDICAL ENGINEERING (RGC-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5121954.
Full textRosticher, C., C. Chanéac, B. Viana, M. A. Fortin, J. Lagueux, and L. Faucher. "Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging." In SPIE OPTO, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2015. http://dx.doi.org/10.1117/12.2087319.
Full textMondal, B., S. Hungyo, C. Roychaudhury, and H. Saha. "ZnO nano-rod based hydrogen sensor." In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (ICANMEET-2013). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609323.
Full textFratilescu, Ion, and Eugenia Fagadar-Cosma. "Recovery of Waste Industrial Waters Containing Red Congo by Multifunctionalized Mesoporous Silica Nanomaterials." In Priochem 2021. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/chemproc2022007019.
Full textKotsyubynsky, Volodymyr, Volodymyra Boychuk, Myroslava Hodlevska, Bogdan Rachiy, Liliia Turovska, and Andrii Khopta. "Effect of Surfactants on the Synthesis of NiFe2O4/rGO Composites by Co-Precipitation Method." In 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934657.
Full textProkopiuk, Volodymyr, Anatolii Onishchenko, Svetlana Yefimova, Pavel Maksimchuk, Vladyslav Seminko, Oksana Nakonechna, Vladimir Klochkov, Nataliya Kavok, and Anton Tkachenko. "Size-dependent Effect of CeO2 Nanoparticles on ROS Generation in Red Blood Cells." In 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934177.
Full textSingh, Prashant, Seul-Yi Lee, and Roop L. Mahajan. "An Experimental Investigation of the Contribution of Different Carbonaceous Nanomaterials to Thermal Conductance of Thermal Interface Materials." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11553.
Full textPerekrestov, Vyacheslav, Yuliia Kosminska, and Borys Dyoshyn. "Structure and Composition of (CrCoNiWTaHfZrTi)C Coatings Obtained by Magnetron Sputtering of a Rod-Like Segmented Target." In 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.216936.
Full textPanda, Manas Ranjan, Anish Raj K., Ananta Sarkar, Qiaoliang Bao, and Sagar Mitra. "Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application." In INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS: NECSA 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035235.
Full text