Academic literature on the topic 'Reynolds's equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reynolds's equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reynolds's equation"

1

Wang, Guo Ping, Hua Ling Chen, She Miao Qi, and Lie Yu. "Key Problem of Solving Nonlinear Reynolds Equation." Applied Mechanics and Materials 241-244 (December 2012): 2751–57. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.2751.

Full text
Abstract:
Finite element equation of the nonlinear dimensionless Reynolds equation, based on the Galerkin finite element method, was derived. Three key points of solving the equation was studied in detail, i.e. Boolean matrix was calculated under the nonlinear conditions, and a method of integrating discrete element equations was provided; Nonlinear algebraic equations set, resulted from integrated finite element equations, was obtained and a method how to substitute boundary conditions into the algebraic equations was presented; A method of calculating the Jacobi matrix of the equations set were described in this paper. All of them are crucial to solve the nonlinear Reynolds equation and helpful for promoting the further research on compliant foil gas bearing.
APA, Harvard, Vancouver, ISO, and other styles
2

Pereira, Bruno M. M., Gonçalo A. S. Dias, Filipe S. Cal, Kumbakonam R. Rajagopal, and Juha H. Videman. "Lubrication Approximation for Fluids with Shear-Dependent Viscosity." Fluids 4, no. 2 (May 28, 2019): 98. http://dx.doi.org/10.3390/fluids4020098.

Full text
Abstract:
We present dimensionally reduced Reynolds type equations for steady lubricating flows of incompressible non-Newtonian fluids with shear-dependent viscosity by employing a rigorous perturbation analysis on the governing equations of motion. Our analysis shows that, depending on the strength of the power-law character of the fluid, the novel equation can either present itself as a higher-order correction to the classical Reynolds equation or as a completely new nonlinear Reynolds type equation. Both equations are applied to two classic problems: the flow between a rolling rigid cylinder and a rigid plane and the flow in an eccentric journal bearing.
APA, Harvard, Vancouver, ISO, and other styles
3

Bair, S., and M. M. Khonsari. "Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 220, no. 4 (April 2006): 365–74. http://dx.doi.org/10.1243/13506501jet79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lai, Y. G., and R. M. C. So. "On near-wall turbulent flow modelling." Journal of Fluid Mechanics 221 (December 1990): 641–73. http://dx.doi.org/10.1017/s0022112090003718.

Full text
Abstract:
The characteristics of near-wall turbulence are examined and the result is used to assess the behaviour of the various terms in the Reynolds-stress transport equations. It is found that all components of the velocity-pressure-gradient correlation vanish at the wall. Conventional splitting of this second-order tensor into a pressure diffusion part and a pressure redistribution part and subsequent neglect of the pressure diffusion term in the modelled Reynolds-stress equations leads to finite near-wall values for two components of the redistribution tensor. This, therefore, suggests that, in near-wall turbulent flow modelling, the velocity-pressure-gradient correlation rather than pressure redistribution should be modelled. Based on this understanding, a methodology to derive an asymptotically correct model for the velocity-pressure-gradient correlation is proposed. A model that has the property of approaching the high-Reynolds-number model for pressure redistribution far away from the wall is derived. A similar analysis is carried out on the viscous dissipation term and asymptotically correct near-wall modifications are proposed. The near-wall closure based on the Reynolds-stress equations and a conventional low-Reynolds-number dissipation-rate equation is used to calculate fully-developed turbulent channel and pipe flows at different Reynolds numbers. A careful parametric study of the model constants introduced by the near-wall closure reveals that one constant in the dissipation-rate equation is Reynolds-number dependent, and a preliminary expression is proposed for this constant. With this modification, excellent agreement with near-wall turbulence statistics, measured and simulated, is obtained, especially the anisotropic behaviour of the normal stresses. On the other hand, it is found that the dissipation-rate equation has a significant effect on the calculated Reynolds-stress budgets. Possible improvements could be obtained by using available direct simulation data to help formulate a more realistic dissipation-rate equation. When such an equation is available, the present approach can again be used to derive a near-wall closure for the Reynolds-stress equations. The resultant closure could give improved predictions of the turbulence statistics and the Reynolds-stress budgets.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Seungsoo, and Dong Whan Choi. "On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations." International Journal for Numerical Methods in Fluids 50, no. 2 (2005): 165–97. http://dx.doi.org/10.1002/fld.1049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zigrang, D. J., and N. D. Sylvester. "A Review of Explicit Friction Factor Equations." Journal of Energy Resources Technology 107, no. 2 (June 1, 1985): 280–83. http://dx.doi.org/10.1115/1.3231190.

Full text
Abstract:
A review of the explicit friction factor equations developed to replace the Colebrook equation is presented. Explicit friction factor equations are developed which yield a very high degree of precision compared to the Colebrook equation. A new explicit equation, which offers a reasonable compromise between complexity and accuracy, is presented and recommended for the calculation of all turbulent pipe flow friction factors for all roughness ratios and Reynold’s numbers.
APA, Harvard, Vancouver, ISO, and other styles
7

Wen, Chengwei, Xianghui Meng, and Wenxiang Li. "Numerical analysis of textured piston compression ring conjunction using two-dimensional-computational fluid dynamics and Reynolds methods." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232, no. 11 (January 31, 2018): 1467–85. http://dx.doi.org/10.1177/1350650118755248.

Full text
Abstract:
The Reynolds equation, in which some items have been omitted, is a simplified form of the Navier–Stokes equations. When surface texturing exists, it may unreasonably reveal the tribological effects in some cases. In this paper, both the two-dimensional computational fluid dynamics method, which is based on the Navier–Stokes equations, and the corresponding one-dimensional Reynolds method are adopted to analyze the performance of the textured piston compression ring conjunction. To conduct a comparison between these two methods, the modified Elrod algorithm for Jakobsson–Floberg–Olsson cavitation model is chosen to solve the Reynolds equation. The results show that the Reynolds method is somewhat different from the computational fluid dynamics method in the minimum oil film thickness, pressure distribution, and cavitation at given operating conditions. Moreover, for a low ratio of texture depth to length, the Reynolds equation is still suitable to predict the overall effects of the designed groove textures. The simulation results also reveal that it is not always beneficial for the tribological performance and sometimes may increase the total friction force when the ring is textured.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Fei Han, Guo Xin Yan, and Shi Jiang Zhu. "Applying Upwind Difference and Central Difference to Discrete N-S Equation Described by Stream Function." Advanced Materials Research 950 (June 2014): 205–8. http://dx.doi.org/10.4028/www.scientific.net/amr.950.205.

Full text
Abstract:
To study sudden expansion flow, it took N-S equation described by stream function as governing equation and got discrete equations with upwind difference and central difference. The discrete equations are applied to calculate sudden expansion flow. The results showed that when the Reynolds number is lower, stream function distribution calculated with central difference is similar to with upwind difference and that when the Reynolds number is higher, the calculation with central difference becomes unstable, even not converged. It showed that for sudden expansion flow, the upwind difference can simulate well and the results are satisfied
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Jing Yuan, and Chun Hian Lee. "Development of A Two-Equation Turbulence Model for Hypersonic Shock Wave and Turbulent Boundary Layer Interaction." Applied Mechanics and Materials 66-68 (July 2011): 1868–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1868.

Full text
Abstract:
For hypersonic compressible turbulence, the correlations with respect to the density fluctuation must not be neglected. A Reynolds averaged K-ε model is proposed in the present paper to include these correlations, together with the Reynolds averaged Navier-Stokes equations to describe the mean flowfield. The K-equation is obtained from Reynolds averaged single-point second moment equations which are deduced from the instantaneous compressible Navier-Stokes equations. Under certain hypotheses and scales estimation of the compressible terms, the K-equation is simplified. The correlation terms of the fluctuation field appearing in the resulting K-equation, together with a conventional form of the ε-equation, are thus correlated with the variables in the average field. The new modeling coefficients of closure terms are optimized by computing the hypersonic turbulent flat-plate measured by Coleman and Stollery [J. Fliud Mech., Vol. 56 (1972), p. 741]. The proposed model is then applied to simulate hypersonic turbulent flows over a wedge compression corner angle of 34 degree. The predicting results compare favorably with the experimental results. Also, comparisons are made with other turbulence models. Additionally, an entropy modification function of Harten-Yee’s TVD scheme is introduced to reduce artificial diffusion near boundary layers and provide the required artificial diffusion to capture the shockwaves simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Zegao, Zhenlu Wang, Bingchen Liang, and Li Zhang. "Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid." Mathematical Problems in Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9795286.

Full text
Abstract:
A spherical particle’s acceleration fall through still fluid was investigated analytically and experimentally using the Basset-Boussinesq-Oseen equation. The relationship between drag coefficient and Reynolds number was studied, and various parameters in the drag coefficient equation were obtained with respect to the small, medium, and large Reynolds number zones. Next, some equations were used to derive the finite fall time and distance equations in terms of certain assumptions. A simple experiment was conducted to measure the fall time and distance for a spherical particle falling through still water. Sets of experimental data were used to validate the relationship between fall velocity, time, and distance. Finally, the initial velocity effect on the total fall time and distance was discussed with different terminal Reynolds numbers, and it was determined that the initial velocity plays a more important role in the falling motion for small terminal Reynolds numbers than for large terminal Reynolds number scenarios.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Reynolds's equation"

1

Essel, Emmanuel Kwame. "Homogenization of Reynolds equations." Licentiate thesis, Luleå : Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1757/2007/30/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Роговий, Андрій Сергійович. "Розробка теорії та методів розрахунку вихорокамерних нагнітачів." Thesis, Харківський національний автомобільно-дорожній університет, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29275.

Full text
Abstract:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.17 – гідравлічні машини та гідропневмоагрегати. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. У дисертаційній роботі розв'язано науково-практичну проблему підвищення техніко-економічної ефективності гідравлічних і пневматичних нагнітачів, що перекачують рідини в несприятливих умовах експлуатації або гетерогенні середовища, за рахунок розробки і використання принципово нового типу струминних нагнітачів відцентрової дії. Їх конструкція не містить рухомих механічних частин, а також ущільнень, завдяки чому вони мають високі показники надійності і довговічності притаманні струминній техніці. Концепція нагнітачів базується на новому для струминних нагнітачів принципі – поєднанні позитивних якостей процесів у відцентрових і струминних нагнітачах та особливостях гідродинаміки обмежених обертових потоків. Використання вихорокамерних нагнітачів дозволяє підвищити енергоефективність гідравлічних і пневматичних систем, збільшити обсяг переміщуваних вантажів в гідравлічному і пневматичному трубопровідному транспорті, підвищити продуктивність праці і якість продукції, знизити її собівартість, поліпшити умови роботи. Розроблені нагнітачі є більш енергоефективними, внаслідок передачі енергії в полі відцентрової сили. Таким чином, створено наукові основи проектування струминних вихорокамерних нагнітачів для перекачування середовищ різних агрегатних станів.
Thesis for degree of Doctor of Science in Technique for speciality 05.05.17 – hydraulic machines and hydropneumatic units. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2017. In dissertational work the scientifically-practical problem of technical and economic efficiency increase of the hydraulic and pneumatic superchargers which are pumping over liquids in adverse service conditions or heterogeneous environments, at the expense of designing and use of essentially new type of jet superchargers of centrifugal action is solved. Their design does not contain mobile mechanical parts, and also sealing due to the fact that they have high indicators of reliability and durability inherent in jet technics. Conception of superchargers is based on a principle new to jet superchargers – unification of processes properties in centrifugal and jet superchargers and hydrodynamics features of the limited rotating streams. Use of vortex chamber superchargers allows to raise power efficiency of hydraulic and pneumatic systems, to increase volume of moved cargoes in hydraulic and pneumatic pipeline transport, to raise productivity of work and quality of production, to lower its cost price, to improve working conditions. The developed superchargers are more power effective, owing to transmission of energy in the field of centrifugal force. Thus, scientific bases of designing jet vortex chamber superchargers for transportation environments of different aggregation states are created.
APA, Harvard, Vancouver, ISO, and other styles
3

Роговий, Андрій Сергійович. "Розробка теорії та методів розрахунку вихорокамерних нагнітачів." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29269.

Full text
Abstract:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.17 – гідравлічні машини та гідропневмоагрегати. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. У дисертаційній роботі розв'язано науково-практичну проблему підвищення техніко-економічної ефективності гідравлічних і пневматичних нагнітачів, що перекачують рідини в несприятливих умовах експлуатації або гетерогенні середовища, за рахунок розробки і використання принципово нового типу струминних нагнітачів відцентрової дії. Їх конструкція не містить рухомих механічних частин, а також ущільнень, завдяки чому вони мають високі показники надійності і довговічності притаманні струминній техніці. Концепція нагнітачів базується на новому для струминних нагнітачів принципі – поєднанні позитивних якостей процесів у відцентрових і струминних нагнітачах та особливостях гідродинаміки обмежених обертових потоків. Використання вихорокамерних нагнітачів дозволяє підвищити енергоефективність гідравлічних і пневматичних систем, збільшити обсяг переміщуваних вантажів в гідравлічному і пневматичному трубопровідному транспорті, підвищити продуктивність праці і якість продукції, знизити її собівартість, поліпшити умови роботи. Розроблені нагнітачі є більш енергоефективними, внаслідок передачі енергії в полі відцентрової сили. Таким чином, створено наукові основи проектування струминних вихорокамерних нагнітачів для перекачування середовищ різних агрегатних станів.
Thesis for degree of Doctor of Science in Technique for speciality 05.05.17 – hydraulic machines and hydropneumatic units. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2017. In dissertational work the scientifically-practical problem of technical and economic efficiency increase of the hydraulic and pneumatic superchargers which are pumping over liquids in adverse service conditions or heterogeneous environments, at the expense of designing and use of essentially new type of jet superchargers of centrifugal action is solved. Their design does not contain mobile mechanical parts, and also sealing due to the fact that they have high indicators of reliability and durability inherent in jet technics. Conception of superchargers is based on a principle new to jet superchargers – unification of processes properties in centrifugal and jet superchargers and hydrodynamics features of the limited rotating streams. Use of vortex chamber superchargers allows to raise power efficiency of hydraulic and pneumatic systems, to increase volume of moved cargoes in hydraulic and pneumatic pipeline transport, to raise productivity of work and quality of production, to lower its cost price, to improve working conditions. The developed superchargers are more power effective, owing to transmission of energy in the field of centrifugal force. Thus, scientific bases of designing jet vortex chamber superchargers for transportation environments of different aggregation states are created.
APA, Harvard, Vancouver, ISO, and other styles
4

Abell, Martha Louise. "Symmetry reduction of Reynold's equation and applications to film lubrication." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/28669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Yunzh. "Contribution à la résolution des équations de Navier-Stokes par la méthode des équations intégrales." Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tobias, Brännvall. "Source Term Estimation in the Atmospheric Boundary Layer : Using the adjoint of the Reynolds Averaged Scalar Transport equation." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-103671.

Full text
Abstract:
This work evaluates whether the branch of Reynolds Averaging in Computational Fluid Dynamics can be used to, based on real field measurements, find the source of the measured gas in question. The method to do this is via the adjoint to the Reynolds Averaged Scalar Transport equation, explained and derived herein. Since the Inverse is only as good as the main equation, forward runs are made to evaluate the turbulence model. Reynolds Averaged Navier Stokes is solved in a domain containing 4 cubes in a 2x2 grid, generating a velocity field for said domain. The turbulence model in question is a union of two modifications to the standard two equation k-ε model in order to capture blunt body turbulence but also to model the atmospheric boundary layer. This field is then inserted into the Reynolds Averaged Scalar Transport equation and the simulation is compared to data from the Environmental Flow wind tunnel in Surrey. Finally the adjoint scalar transport is solved, both for synthetic data that was generated in the forward run, but also for the data from EnFlo. It was discovered that the turbulent Schmidt number plays a major role in capturing the dispersed gas, three different Schmidt numbers were tested, the standard 0.7, the unconventional 0.3 and a height dependent Schmidt number. The widely accepted value of 0.7 did not capture the dispersion at all and gave a huge model error. As such the adjoint scalar transport was solved for 0.3 and a height dependent Schmidt number. The interaction between measurements, the real source strength (which is not used in the adjoint equation, but needed to find the source) and the location of the source is intricate indeed. Over estimation and under estimation of the forward model may cancel out in order to find the correct source, with the correct strength. It is found that Reynolds Averaged Computational fluid dynamics may prove useful in source term estimation.
Detta arbete utvärderar hurvida Reynolds medelvärdesmodellering inom flödessimuleringar kan användas till att finna källan till en viss gas baserat på verkliga mätningar ute i fält. Metoden går ut på att använda den adjungerade ekvationen till Reynolds tidsmedlade skalära transportekvationen, beskriven och härledd häri. Då bakåtmodellen bygger på framåtmodellen, måste såleds framåtmodellen utvärderas först. Navier-Stokes ekvationer med en turbulensmodell löses i en domän, innehållandes 4 kuber i en 2x2 orientering, för vilken en hastighetsprofil erhålles. Turbulensmodellen som användes är en union av två olika k-ε modeller, där den ena fångar turbulens runt tröga objekt och den andra som modellerar atmosfäriska gränsskiktet. Detta fält används sedan i framåtmodellen av skalära transportekvationen, som sedan jämförs med körningar från EnFlo windtunneln i Surrey. Slutligen testkörs även den adjungerade ekvationen, både för syntetiskt data genererat i framåtkörningen men även för data från EnFlo tunneln. Då det visade sig att det turbulenta Schmidttalet spelar stor roll inom spridning i det atmosfäriska gränsskiktet, gjordes testkörningar med tre olika Schmidttal, det normala 0.7, det väldigt låga talet 0.3 samt ett höjdberoende Schmidttal. Det visade sig att det vanligtvis använda talet 0.7 inte alls lyckas fånga spridningen tillfredställande och gav ett stort modellfel. Därför löstes den adjungerade ekvationen för 0.3 samt för ett höjdberoende Schmidttal. Interaktionen mellan mätningar, den riktiga källstyrkan (som är okänd i den adjungerade ekvationen) samt källpositionen är onekligen intrikat. Över- samt underestimationer av framåtmodellen kan ta ut varandra i bakåtmodellen för att finna rätt källa, med rätt källstyrka. Det ter sig som Reynolds turbulensmodellering mycket möjligt kan användas inom källtermsuppskattning.
APA, Harvard, Vancouver, ISO, and other styles
7

Yeo, In-Wook. "Anisotropic hydraulic properties of a rock fracture under normal and shear loading." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Huakang. "The steady Navier-Stokes problem for low Reynolds' number viscous jets." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30968.

Full text
Abstract:
The classical existence theorem for the steady Navier-Stokes equations, based on a bound for the solution's Dirichlet integral, provides little qualitative information about the solution. In particular, if a domain is unbounded, it is not evident that the solution will be unique even when the data are small. Inspired by the works of Odqvist for the interior problem and of Finn for the problem of flow past an obstacle, we give a potential theoretic construction of a solution of the steady Navier-Stokes equations in several domains with noncompact boundaries. We begin by studying a scalar quasilinear elliptic problem in a half space, which serves as a model problem for the development of some of the methods which are later applied to the Navier-Stokes equations. Then, we consider Navier-Stokes flow in a half space, modeling such phenomena as a jet emanating from a wall, with prescribed boundary values. The solution which is obtained decays like |x|⁻² at infinity and has a finite Dirichlet integral. Finally, we solve the problem of flow through an aperture in a wall between two half spaces, with a prescribed net flux through the aperture, or with a prescribed pressure drop between the two half spaces. A steady solution is constructed which decays like |x|⁻² at infinity. For small data, uniqueness is proven within the class of functions which decay like |x|⁻¹ at infinity and have finite Dirichlet integrals.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Essel, Emmanuel Kwame. "Homogenization of Reynolds equations and of some parabolic problems via Rothe's method /." Luleå : Luleå University of Technology, 2008. http://epubl.luth.se/1402-1544/2008/40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Waywell, M. N. "Predictions of wave and tidally induced oscillatory flows with Reynolds stress turbulence models." Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308264.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Reynolds's equation"

1

Lamarre, Francois. One-equation turbulence models for the solution of the Reynolds-averaged equations. Princeton, N. J: Princeton University, School of Engineering and Applied Science, Dept. of Mechanical and Aerospace Engineering, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hyeongsik, Kang, ed. Reynolds stress modeling of turbulent open-channel flows. Hauppauge, NY: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marvin, Joseph G. Turbulence modeling: Progress and future outlook. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mavriplis, Dimitri J. A three dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barth, Timothy J. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baldwin, Barrett S. A one-equation turbulence model for high Reynolds number wall-bonded flows. Moffett Field, Calif: Ames Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Benocci, C. Solution of the steady state incompressible Navier-Stokes equations at high Reynolds numbers. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morrison, Joseph H. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models. Hampton, Va: Langley Research Center, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hirose, Naoki. Comparison of transonic airfoil characteristics by Navier-Stokes computation and by wind tunnel test at high Reynolds number. Tokyo: National Aerospace Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ristorcelli, J. R. Carrying the mass flux terms exactly in the first and second moment equations of compressible turbulence. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reynolds's equation"

1

Khonsari, M. M. "Reynolds Equation." In Encyclopedia of Tribology, 2769–72. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Q. Jane, and H. S. Cheng. "Average Reynolds Equation." In Encyclopedia of Tribology, 154–59. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Almqvist, Andreas, and Peter Wall. "Homogenization of the Reynolds Equation." In Encyclopedia of Tribology, 1685–90. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_1209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chipot, Michel, and Mitchell Luskin. "The Compressible Reynolds Lubrication Equation." In Metastability and Incompletely Posed Problems, 61–75. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4613-8704-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kajishima, Takeo, and Kunihiko Taira. "Reynolds-Averaged Navier–Stokes Equations." In Computational Fluid Dynamics, 237–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45304-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Q. Jane, and H. S. Cheng. "Flow Factors for Average Reynolds Equation." In Encyclopedia of Tribology, 1194–200. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bonneau, Dominique, Aurelian Fatu, and Dominique Souchet. "Numerical Resolution of the Reynolds Equation." In Hydrodynamic Bearings, 63–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004769.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Q. Y., and H. G. Kang. "A New Constitutive Equation of Reynolds Stress." In New Trends in Fluid Mechanics Research, 385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dewan, Anupam. "Reynolds-Averaged Governing Equations and Closure Problem." In Tackling Turbulent Flows in Engineering, 43–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14767-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bryant, Michael D. "Reynolds Equation for Compressible Fluid or Gas Film." In Encyclopedia of Tribology, 2773–75. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_223.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reynolds's equation"

1

Bair, Scott, and M. M. Khonsari. "Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63345.

Full text
Abstract:
Exact, closed form one-dimensional Reynolds equations are presented for the Ostwald-DeWaele model, Ellis model, Spriggs model and the double-Newtonian Rabinowitsch and Ferry models. From numerical solutions for flow rate, an approximate Reynolds-Carreau equation is obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Leighton, Richard, David T. Walker, Todd Stephens, and Gordon Garwood. "Reynolds Stress Modeling for Drag Reducing Viscoelastic Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45655.

Full text
Abstract:
A Reynolds-stress transport equation model for turbulent drag-reducing viscoelastic flows, such as that which occurs for dilute polymer solutions, is presented. The approach relies on an extended set of Reynolds-Averaged Navier-Stokes equations which incorporate additional polymer stresses. The polymer stresses are specified in terms of the mean polymer conformation tensor using the FENE-P dumbbell model. The mean conformation tensor equation is solved in a coupled manner along with the Navier-Stokes equations. The presence of the polymer stresses in the equations of motion results in additional explicit polymer terms in the Reynolds-stress transport equations, as well as implicit polymer effects in the pressure-strain redistribution term. Models for both the explicit and implicit effects have been developed and implemented in a code suitable for boundary layer, rectangular channel and pipe-flow geometries. Calibration and validation is has been carried out using results from recent direct numerical simulation of viscoelastic turbulent flow.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Jung Gu, and Alan Palazzolo. "Two Dimensional Modified Reynolds Equation Including Pressure Dependent Viscosity Effect." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61174.

Full text
Abstract:
The Reynolds equation plays an important role for predicting pressure distributions for fluid film bearing analysis, One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. However, in elastohydrodynamic lubrication (EHL) where the lubricant is subjected to extremely high pressure, this assumption should be reconsidered. The 2D modified Reynolds equation is derived in this study including pressure-dependent viscosity, The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the ball bearing case (elastic solids). The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations.
APA, Harvard, Vancouver, ISO, and other styles
4

Mondal, Subrata Kumar, Hari K. Voruganti, and Syed Ismail. "Isogeometric analysis of Reynolds equation for hydrodynamic lubrication." In 2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS). IEEE, 2017. http://dx.doi.org/10.1109/amiams.2017.8069233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qiu, Mingfeng, Brian Bailey, Rob Stoll, and Bart Raeymaekers. "The Validity of the Compressible Reynolds Equation for Gas Lubricated Textured Parallel Slider Bearings." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61051.

Full text
Abstract:
The Navier-Stokes and compressible Reynolds equations are solved for gas lubricated textured parallel slider bearings under hydrodynamic lubrication for a range of realistic texture geometry parameters and operating conditions. The simplifying assumptions inherent in the Reynolds equation are validated by comparing simulation results to the solution of the Navier-Stokes equations. Using the Reynolds equation to describe shear driven gas flow in textured parallel slider bearings is justified for the range of parameters considered.
APA, Harvard, Vancouver, ISO, and other styles
6

Hong, S. H., S. I. Son, and K. W. Kim. "A Comparative Study of Navier-Stokes Equation and Reynolds Equation in Simulating Spool Valve." In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61076.

Full text
Abstract:
In order to maintain the accurate and precise movement of the actuator of the hydraulic systems, it is necessary to guarantee smooth function of the fluid flow control valves. Concerning hydraulic valves, the spool type directional control valve has particular lock problem. The hydraulic lock occurs when uneven pressure distribution surrounding the spool in the clearance between spool and sleeve causes the spool to move sideways out of its centered position. And the contact between spool and sleeve causes to increase friction and eventually, the spool is blocked inside the sleeve. To reduce the possibility of hydraulic lock, peripheral grooves balancing uneven pressure distribution in the radial clearance is commonly applied to spool. Reynolds equation is commonly used to investigate the lubrication characteristics of the spool valve. However, some of assumptions used in Reynolds equation are not valid when cavitation occurs or fluid inertia is significant in spool valve. So, the study on the applicability and precision of Reynolds equation for spool valve analysis is needed. In this study, the differences between the results from Navier-Stokes equation and Reynolds equation are compared when the cavitation is considered. Frictional forces, lateral forces and leakage flow rate with various aspect ratio of groove are calculated. Besides, when the number of groove is increased, the forces and leakage flow rate are compared. Based on the comparison the applicability of Reynolds equation in calculating the spool valve is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Deng, D., and M. J. Braun. "Coefficients Used in a New Transition Reynolds Equation Model." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71243.

Full text
Abstract:
This paper presents a numerical investigation of the coefficients used in the transition Reynolds equation model [1], which is applicable to the transition flow of thin films in long journal bearings. Calculations show that the overall coefficient A1(Reh) increases with the increase of Reynolds number, while the other overall coefficient A2(Reh) decreases with the increase of Reynolds number. A1(Reh) is always positive and A2(Reh) is always negative. The magnitude of both A1(Reh) and A2(Reh) is larger for the larger clearance ratio C/R at the same Reynolds number. The curves of A1(Reh) or A2(Reh) for different clearance ratios tend to collapse to one when Taylor number is used as the abscissa, particularly when Taylor number is less than 70. With these coefficients determined the model presented in [1] is fully usable.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Lei, Hongxin Zhang, Wei Xu, and Pei Shu. "The Reynolds Equation Method for Crankshaft’s oil Film Stiffness." In 3rd International Conference on Mechatronics, Robotics and Automation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmra-15.2015.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Yin, and Chun-wei Gu. "Application of a Novel Gaseous Cavitation Model for Hydrodynamic Bearings in Both 2D Reynolds and 3D Navier-Stokes Equations." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42806.

Full text
Abstract:
The 2D Reynolds equation is the traditional method used for solving hydrodynamic lubrication problems, whereas the full 3D Navier-Stokes (NS) equation has been a new and attractive approach in recent years. Unfortunately, the conventional cavitation models which were successful in Reynolds equation have encountered difficulties when they are implemented in NS equation, thus the proper modeling of cavitation has been a fundamental and important issue for the application of NS equation in bearing problems. A novel cavitation model was derived by the authors, which is based on the mechanism of the gaseous cavitation in submerged bearings. In this paper, this cavitation model is implemented in both 2D Reynolds and 3D NS equations. Different governing equations with various cavitation models are then used to analyze two typical oil-film bearings, i.e. a plain journal bearing and a pocketed thrust washer, so as to illustrate the advantage of the presented gaseous cavitation model. It is found that the gaseous model shows accurate prediction of the bearing overall performance as well as the cavitation region for different bearings, no matter which governing equation it is applied with. Especially, when used with the NS equation, the gaseous cavitation model has distinct advantages in accuracy and robustness compared with the commonly used Half-Sommerfeld model and the Rayleigh-Plesset model. Thus it is concluded that this model provides a universal and efficient approach for modeling cavitation in both 2D Reynolds and 3D NS equations, and it will help to prompt the future application of NS equation in more complex bearing problems.
APA, Harvard, Vancouver, ISO, and other styles
10

Beschorner, K. E., C. F. Higgs, and M. R. Lovell. "Derivation of Reynolds Equation in Cylindrical Coordinates Applicable to Pin-on-Disk and CMP." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71245.

Full text
Abstract:
Traditional tribology references typically provide the cylindrical (or polar) Reynolds equation, which may not be applicable when entrainment velocities vary with radius and/or angle. However, entrainment velocities are known to vary with angle for some cases of pin-on-disk contact and chemical mechanical polishing (CMP). A form of Reynolds equation is derived in this manuscript from the Navier-Stokes equations without entrainment velocity assumptions. Two case studies, related to pin-on-disk and CMP, are presented and results from the derived form of Reynolds equation are compared with results from the traditionally used form. Pressure distributions obtained from the two forms of Reynolds equation varied greatly in magnitude and in pressure shape. Therefore, a new form of the cylindrical Reynolds equation derived in this manuscript is used when entrainment velocities are known to vary with radius or angle.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Reynolds's equation"

1

Linn, Rodman Ray. Effects of modeled terms in the Reynolds-stress transport equations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/374160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulitsky, M. A General Realizability Method for the Reynolds Stress for 2-Equation RANS Models. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/1113388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gorski, Joseph J., and Gregory M. Buley. Force and Moment Calculations of an Appendage Using the Reynolds Averaged Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada360510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patel, V. C., H. C. Chen, and S. Ju. Ship Stern and Wake Flows: Solutions of the Fully-Elliptic Reynolds-Averaged Navier-Stokes Equations and Comparisons with Experiments. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada199377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography