Academic literature on the topic 'Reynolds's equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reynolds's equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reynolds's equation"
Wang, Guo Ping, Hua Ling Chen, She Miao Qi, and Lie Yu. "Key Problem of Solving Nonlinear Reynolds Equation." Applied Mechanics and Materials 241-244 (December 2012): 2751–57. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.2751.
Full textPereira, Bruno M. M., Gonçalo A. S. Dias, Filipe S. Cal, Kumbakonam R. Rajagopal, and Juha H. Videman. "Lubrication Approximation for Fluids with Shear-Dependent Viscosity." Fluids 4, no. 2 (May 28, 2019): 98. http://dx.doi.org/10.3390/fluids4020098.
Full textBair, S., and M. M. Khonsari. "Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 220, no. 4 (April 2006): 365–74. http://dx.doi.org/10.1243/13506501jet79.
Full textLai, Y. G., and R. M. C. So. "On near-wall turbulent flow modelling." Journal of Fluid Mechanics 221 (December 1990): 641–73. http://dx.doi.org/10.1017/s0022112090003718.
Full textLee, Seungsoo, and Dong Whan Choi. "On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations." International Journal for Numerical Methods in Fluids 50, no. 2 (2005): 165–97. http://dx.doi.org/10.1002/fld.1049.
Full textZigrang, D. J., and N. D. Sylvester. "A Review of Explicit Friction Factor Equations." Journal of Energy Resources Technology 107, no. 2 (June 1, 1985): 280–83. http://dx.doi.org/10.1115/1.3231190.
Full textWen, Chengwei, Xianghui Meng, and Wenxiang Li. "Numerical analysis of textured piston compression ring conjunction using two-dimensional-computational fluid dynamics and Reynolds methods." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232, no. 11 (January 31, 2018): 1467–85. http://dx.doi.org/10.1177/1350650118755248.
Full textWang, Fei Han, Guo Xin Yan, and Shi Jiang Zhu. "Applying Upwind Difference and Central Difference to Discrete N-S Equation Described by Stream Function." Advanced Materials Research 950 (June 2014): 205–8. http://dx.doi.org/10.4028/www.scientific.net/amr.950.205.
Full textLiu, Jing Yuan, and Chun Hian Lee. "Development of A Two-Equation Turbulence Model for Hypersonic Shock Wave and Turbulent Boundary Layer Interaction." Applied Mechanics and Materials 66-68 (July 2011): 1868–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1868.
Full textYin, Zegao, Zhenlu Wang, Bingchen Liang, and Li Zhang. "Initial Velocity Effect on Acceleration Fall of a Spherical Particle through Still Fluid." Mathematical Problems in Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/9795286.
Full textDissertations / Theses on the topic "Reynolds's equation"
Essel, Emmanuel Kwame. "Homogenization of Reynolds equations." Licentiate thesis, Luleå : Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1757/2007/30/.
Full textРоговий, Андрій Сергійович. "Розробка теорії та методів розрахунку вихорокамерних нагнітачів." Thesis, Харківський національний автомобільно-дорожній університет, 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29275.
Full textThesis for degree of Doctor of Science in Technique for speciality 05.05.17 – hydraulic machines and hydropneumatic units. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2017. In dissertational work the scientifically-practical problem of technical and economic efficiency increase of the hydraulic and pneumatic superchargers which are pumping over liquids in adverse service conditions or heterogeneous environments, at the expense of designing and use of essentially new type of jet superchargers of centrifugal action is solved. Their design does not contain mobile mechanical parts, and also sealing due to the fact that they have high indicators of reliability and durability inherent in jet technics. Conception of superchargers is based on a principle new to jet superchargers – unification of processes properties in centrifugal and jet superchargers and hydrodynamics features of the limited rotating streams. Use of vortex chamber superchargers allows to raise power efficiency of hydraulic and pneumatic systems, to increase volume of moved cargoes in hydraulic and pneumatic pipeline transport, to raise productivity of work and quality of production, to lower its cost price, to improve working conditions. The developed superchargers are more power effective, owing to transmission of energy in the field of centrifugal force. Thus, scientific bases of designing jet vortex chamber superchargers for transportation environments of different aggregation states are created.
Роговий, Андрій Сергійович. "Розробка теорії та методів розрахунку вихорокамерних нагнітачів." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29269.
Full textThesis for degree of Doctor of Science in Technique for speciality 05.05.17 – hydraulic machines and hydropneumatic units. – National Technical University "Kharkiv Polytechnical Institute", Kharkiv, 2017. In dissertational work the scientifically-practical problem of technical and economic efficiency increase of the hydraulic and pneumatic superchargers which are pumping over liquids in adverse service conditions or heterogeneous environments, at the expense of designing and use of essentially new type of jet superchargers of centrifugal action is solved. Their design does not contain mobile mechanical parts, and also sealing due to the fact that they have high indicators of reliability and durability inherent in jet technics. Conception of superchargers is based on a principle new to jet superchargers – unification of processes properties in centrifugal and jet superchargers and hydrodynamics features of the limited rotating streams. Use of vortex chamber superchargers allows to raise power efficiency of hydraulic and pneumatic systems, to increase volume of moved cargoes in hydraulic and pneumatic pipeline transport, to raise productivity of work and quality of production, to lower its cost price, to improve working conditions. The developed superchargers are more power effective, owing to transmission of energy in the field of centrifugal force. Thus, scientific bases of designing jet vortex chamber superchargers for transportation environments of different aggregation states are created.
Abell, Martha Louise. "Symmetry reduction of Reynold's equation and applications to film lubrication." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/28669.
Full textZhang, Yunzh. "Contribution à la résolution des équations de Navier-Stokes par la méthode des équations intégrales." Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0006.
Full textTobias, Brännvall. "Source Term Estimation in the Atmospheric Boundary Layer : Using the adjoint of the Reynolds Averaged Scalar Transport equation." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-103671.
Full textDetta arbete utvärderar hurvida Reynolds medelvärdesmodellering inom flödessimuleringar kan användas till att finna källan till en viss gas baserat på verkliga mätningar ute i fält. Metoden går ut på att använda den adjungerade ekvationen till Reynolds tidsmedlade skalära transportekvationen, beskriven och härledd häri. Då bakåtmodellen bygger på framåtmodellen, måste såleds framåtmodellen utvärderas först. Navier-Stokes ekvationer med en turbulensmodell löses i en domän, innehållandes 4 kuber i en 2x2 orientering, för vilken en hastighetsprofil erhålles. Turbulensmodellen som användes är en union av två olika k-ε modeller, där den ena fångar turbulens runt tröga objekt och den andra som modellerar atmosfäriska gränsskiktet. Detta fält används sedan i framåtmodellen av skalära transportekvationen, som sedan jämförs med körningar från EnFlo windtunneln i Surrey. Slutligen testkörs även den adjungerade ekvationen, både för syntetiskt data genererat i framåtkörningen men även för data från EnFlo tunneln. Då det visade sig att det turbulenta Schmidttalet spelar stor roll inom spridning i det atmosfäriska gränsskiktet, gjordes testkörningar med tre olika Schmidttal, det normala 0.7, det väldigt låga talet 0.3 samt ett höjdberoende Schmidttal. Det visade sig att det vanligtvis använda talet 0.7 inte alls lyckas fånga spridningen tillfredställande och gav ett stort modellfel. Därför löstes den adjungerade ekvationen för 0.3 samt för ett höjdberoende Schmidttal. Interaktionen mellan mätningar, den riktiga källstyrkan (som är okänd i den adjungerade ekvationen) samt källpositionen är onekligen intrikat. Över- samt underestimationer av framåtmodellen kan ta ut varandra i bakåtmodellen för att finna rätt källa, med rätt källstyrka. Det ter sig som Reynolds turbulensmodellering mycket möjligt kan användas inom källtermsuppskattning.
Yeo, In-Wook. "Anisotropic hydraulic properties of a rock fracture under normal and shear loading." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286893.
Full textChang, Huakang. "The steady Navier-Stokes problem for low Reynolds' number viscous jets." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30968.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Essel, Emmanuel Kwame. "Homogenization of Reynolds equations and of some parabolic problems via Rothe's method /." Luleå : Luleå University of Technology, 2008. http://epubl.luth.se/1402-1544/2008/40.
Full textWaywell, M. N. "Predictions of wave and tidally induced oscillatory flows with Reynolds stress turbulence models." Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308264.
Full textBooks on the topic "Reynolds's equation"
Lamarre, Francois. One-equation turbulence models for the solution of the Reynolds-averaged equations. Princeton, N. J: Princeton University, School of Engineering and Applied Science, Dept. of Mechanical and Aerospace Engineering, 1992.
Find full textHyeongsik, Kang, ed. Reynolds stress modeling of turbulent open-channel flows. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textMarvin, Joseph G. Turbulence modeling: Progress and future outlook. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1996.
Find full textMavriplis, Dimitri J. A three dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1994.
Find full textBarth, Timothy J. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.
Find full textBaldwin, Barrett S. A one-equation turbulence model for high Reynolds number wall-bonded flows. Moffett Field, Calif: Ames Research Center, 1990.
Find full textBenocci, C. Solution of the steady state incompressible Navier-Stokes equations at high Reynolds numbers. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1989.
Find full textMorrison, Joseph H. A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models. Hampton, Va: Langley Research Center, 1992.
Find full textHirose, Naoki. Comparison of transonic airfoil characteristics by Navier-Stokes computation and by wind tunnel test at high Reynolds number. Tokyo: National Aerospace Laboratory, 1986.
Find full textRistorcelli, J. R. Carrying the mass flux terms exactly in the first and second moment equations of compressible turbulence. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Find full textBook chapters on the topic "Reynolds's equation"
Khonsari, M. M. "Reynolds Equation." In Encyclopedia of Tribology, 2769–72. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_146.
Full textWang, Q. Jane, and H. S. Cheng. "Average Reynolds Equation." In Encyclopedia of Tribology, 154–59. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_154.
Full textAlmqvist, Andreas, and Peter Wall. "Homogenization of the Reynolds Equation." In Encyclopedia of Tribology, 1685–90. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_1209.
Full textChipot, Michel, and Mitchell Luskin. "The Compressible Reynolds Lubrication Equation." In Metastability and Incompletely Posed Problems, 61–75. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4613-8704-6_5.
Full textKajishima, Takeo, and Kunihiko Taira. "Reynolds-Averaged Navier–Stokes Equations." In Computational Fluid Dynamics, 237–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45304-0_7.
Full textWang, Q. Jane, and H. S. Cheng. "Flow Factors for Average Reynolds Equation." In Encyclopedia of Tribology, 1194–200. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_155.
Full textBonneau, Dominique, Aurelian Fatu, and Dominique Souchet. "Numerical Resolution of the Reynolds Equation." In Hydrodynamic Bearings, 63–157. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004769.ch3.
Full textChen, Q. Y., and H. G. Kang. "A New Constitutive Equation of Reynolds Stress." In New Trends in Fluid Mechanics Research, 385. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_124.
Full textDewan, Anupam. "Reynolds-Averaged Governing Equations and Closure Problem." In Tackling Turbulent Flows in Engineering, 43–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14767-8_4.
Full textBryant, Michael D. "Reynolds Equation for Compressible Fluid or Gas Film." In Encyclopedia of Tribology, 2773–75. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_223.
Full textConference papers on the topic "Reynolds's equation"
Bair, Scott, and M. M. Khonsari. "Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63345.
Full textLeighton, Richard, David T. Walker, Todd Stephens, and Gordon Garwood. "Reynolds Stress Modeling for Drag Reducing Viscoelastic Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45655.
Full textLee, Jung Gu, and Alan Palazzolo. "Two Dimensional Modified Reynolds Equation Including Pressure Dependent Viscosity Effect." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61174.
Full textMondal, Subrata Kumar, Hari K. Voruganti, and Syed Ismail. "Isogeometric analysis of Reynolds equation for hydrodynamic lubrication." In 2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS). IEEE, 2017. http://dx.doi.org/10.1109/amiams.2017.8069233.
Full textQiu, Mingfeng, Brian Bailey, Rob Stoll, and Bart Raeymaekers. "The Validity of the Compressible Reynolds Equation for Gas Lubricated Textured Parallel Slider Bearings." In ASME/STLE 2012 International Joint Tribology Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ijtc2012-61051.
Full textHong, S. H., S. I. Son, and K. W. Kim. "A Comparative Study of Navier-Stokes Equation and Reynolds Equation in Simulating Spool Valve." In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61076.
Full textDeng, D., and M. J. Braun. "Coefficients Used in a New Transition Reynolds Equation Model." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71243.
Full textGao, Lei, Hongxin Zhang, Wei Xu, and Pei Shu. "The Reynolds Equation Method for Crankshaft’s oil Film Stiffness." In 3rd International Conference on Mechatronics, Robotics and Automation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmra-15.2015.273.
Full textSong, Yin, and Chun-wei Gu. "Application of a Novel Gaseous Cavitation Model for Hydrodynamic Bearings in Both 2D Reynolds and 3D Navier-Stokes Equations." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42806.
Full textBeschorner, K. E., C. F. Higgs, and M. R. Lovell. "Derivation of Reynolds Equation in Cylindrical Coordinates Applicable to Pin-on-Disk and CMP." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71245.
Full textReports on the topic "Reynolds's equation"
Linn, Rodman Ray. Effects of modeled terms in the Reynolds-stress transport equations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/374160.
Full textUlitsky, M. A General Realizability Method for the Reynolds Stress for 2-Equation RANS Models. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/1113388.
Full textGorski, Joseph J., and Gregory M. Buley. Force and Moment Calculations of an Appendage Using the Reynolds Averaged Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada360510.
Full textPatel, V. C., H. C. Chen, and S. Ju. Ship Stern and Wake Flows: Solutions of the Fully-Elliptic Reynolds-Averaged Navier-Stokes Equations and Comparisons with Experiments. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada199377.
Full text