Academic literature on the topic 'Reverse osmosis process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reverse osmosis process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reverse osmosis process"
Mann, J. "Reverse osmosis/ultrafiltration process principles." Chemical Engineering Journal 36, no. 3 (November 1987): 196. http://dx.doi.org/10.1016/0300-9467(87)80029-1.
Full textOhya, H., K. Yajima, and R. Miyashita. "Design of reverse osmosis process." Desalination 63 (January 1987): 119–33. http://dx.doi.org/10.1016/0011-9164(87)90045-2.
Full textSalahudeen, Nurudeen. "Process simulation of modelled reverse osmosis for desalination of seawater." Water Practice and Technology 17, no. 1 (December 21, 2021): 175–90. http://dx.doi.org/10.2166/wpt.2021.127.
Full textTanaka, Yuji, Yohito Ito, Shigehisa Hanada, and Tamotsu Kitade. "Environmental Friendly Seawater Reverse Osmosis Process." membrane 40, no. 2 (2015): 86–90. http://dx.doi.org/10.5360/membrane.40.86.
Full textKimura, Shoji. "Transport Phenomena in Reverse Osmosis Process." membrane 21, no. 1 (1996): 2–8. http://dx.doi.org/10.5360/membrane.21.2.
Full textChong, Tzyy Haur, Siew-Leng Loo, and William B. Krantz. "Energy-efficient reverse osmosis desalination process." Journal of Membrane Science 473 (January 2015): 177–88. http://dx.doi.org/10.1016/j.memsci.2014.09.005.
Full textMeares, P. "Reverse osmosis/ultra filtration process principles." Chemical Engineering Science 41, no. 9 (1986): 2453–54. http://dx.doi.org/10.1016/0009-2509(86)85104-1.
Full textAbdella, Dana L. "Reverse Osmosis Desalination." Marine Technology and SNAME News 31, no. 03 (July 1, 1994): 195–200. http://dx.doi.org/10.5957/mt1.1994.31.3.195.
Full textMohammed, Hiba A., Dawood E. Sachit, and Mustafa Al-Furaiji. "APPLICATIONS AND CHALLENGES OF THE REVERSE OSMOSIS MEMBRANE PROCESS: A REVIEW." Journal of Engineering and Sustainable Development 27, no. 5 (September 1, 2023): 630–46. http://dx.doi.org/10.31272/jeasd.27.5.6.
Full textSaavedra, A., G. Bertoni, D. Fajner, and G. C. Sarti. "Reverse osmosis treatment of process water streams." Desalination 82, no. 1-3 (August 1991): 249–66. http://dx.doi.org/10.1016/0011-9164(91)85192-w.
Full textDissertations / Theses on the topic "Reverse osmosis process"
Al, Shaalan Hakem. "Artifical neural network modelling of reverse osmosis process." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9516.
Full textMane, Pranay P. "RO Process Optimization Based on Deterministic Process Model Coupled with Stochastic Cost Model." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14486.
Full textChong, Brian S. H. "The removal of pesticides and heavy metals by reverse osmosis." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42126.
Full textMiyashita, Yu. "Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis Membranes." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14490.
Full textSchutte, Christiaan Frederik. "The feasibility of reverse osmosis as a water reclamation process with special reference to the rejection of organic compounds." Doctoral thesis, University of Cape Town, 1986. http://hdl.handle.net/11427/22470.
Full textOtto, Dietmar Norman. "The effect of forward flushing, with permeate, on gypsum scale formation during reverse osmosis treatment of CaSO4-rich water in the absence of anti-scalant." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95887.
Full textENGLISH ABSTRACT: When desalinating brackish water by reverse osmosis (RO) or other techniques, high overall water recoveries are essential to minimize brine production and the associated disposal costs thereof. As the overall water recovery increases, concentrations of sparingly soluble salts (e.g. barium sulphate, calcium sulphate) reach levels above saturation, especially near the membrane surface, drastically increasing the scaling propensity. Antiscalants are typically dosed into the feed water to prevent such scaling during RO desalination. However, the carry-over of antiscalant into the concentrate stream can complicate subsequent salt precipitation processes that may be used to increase overall water recovery. These precipitation techniques are sometimes used to reduce the levels of super-saturation in the RO concentrate prior to a subsequent RO desalination step. The purpose of this study was to assess the feasibility of reducing calcium sulphate scaling on RO membranes, by using periodic permeate flushing when feeding a lab-scale RO unit with a supersaturated calcium sulphate solution in the absence of anti-scalant. The overall water recovery was increased by recycling the concentrate, after an intermediate de-supersaturation step. This simulated a multiple-stage RO system, typical of processes used in high-recovery acid mine drainage (AMD) treatment plants. De-supersaturation of the concentrate intermediate was achieved with direct seeded gypsum precipitation, in the absence of any antiscalant. On the membrane surface inside the membrane unit, calcium sulphate concentrations greatly exceeded saturation levels – a combined consequence of the normal concentration process and the well-known surface-based concentration polarisation phenomenon. Therefore, periodic forward-flushing of the supersaturated solution from the membrane unit was performed with permeate. In theory, the periodic flushing removes the highly concentrated layer at the membrane surface during every flush, before scaling can occur. Various flushing regimes were evaluated to assess the effectiveness of the process. A lab-scale desalination unit with a 0.106 m2 flat sheet polyamide RO membrane was designed and constructed. The unit could operate at a feed rate of 12-14 L/h and at permeate fluxes of 12-24 LMH. Super-saturated feed solutions were prepared by mixing sodium sulphate and calcium chloride dihydrate salts with demineralised water, with an initial salinity of ± 5300 mg/L TDS, corresponding to a gypsum saturation index (SIg) of 1.2 for most experiments. The total production time, net permeate production and flux decline were used to compare the flushing efficiency in different experimental runs. Initial tests showed that scaling could be prevented (when operating the unit in full recycle mode, i.e. where both concentrate and permeate were recycled to feed), at flushing frequencies between 12 and 2.4 h-1, when the membrane feed and concentrate were slightly under-saturated (SIg = 0.9) and slightly super-saturated (SIg = 1.1) respectively. However, when switching the same system to non-flushing mode after 24 hours of operation, membrane scaling occurred within 2-3 hours, as indicated by a strong decline in flux. However, when operating the system in concentrate recycle mode (i.e. permeate is withdrawn) with super-saturated feed solutions (e.g. SIg = 1.2), and thus a notably more super-saturated solution in the membrane concentrate, scaling could not be prevented (albeit delayed for some time) with intermittent permeate flushing. A fractional 25-1 factorial design was used to determine which factors had the most significant effect on total production time and permeate production rate, testing five factors: 1) flushing frequency, 2) flushing volume, 3) permeate soak time, 4) permeate flux and 5) instantaneous recovery. The ANOVA analysis showed that total production times were, not surprisingly, primarily affected by the permeate flux, where operation at 24 LMH resulted in a lower net permeate production between 3.0 - 4.2 L, compared to 7.6 - 9.7 L at 12 LMH. Higher permeate fluxes clearly resulted in higher levels of concentration polarisation at the membrane surface, thus increasing the propensity for membrane scaling. Flushing frequency and instantaneous recovery also affected the net permeate production, where 6 h-1 and 10 % were the optimal values respectively within the range of test conditions. The lowest permeate production rate resulted in the highest net permeate volume production (i.e. also longest total production time), confirmed by a least squares regression. In summary: This study showed that periodic permeate flushing could delay the membrane scaling process. However, it failed to prevent membrane scaling completely when operating the system with supersaturated calcium sulphate solutions in the absence of antiscalants. The flushing technique effectively delayed the onset of precipitation, but scaling eventually occurred if the lab-scale RO system was operated in concentrate recycle mode with oversaturated feed solutions (SIg = 1.2). Additional experiments at different cross-flow velocities during permeate flushing, while using an optimised RO test cell flow channel design, are recommended for future studies.
AFRIKAANSE OPSOMMING: Gedurende die ontsouting van brakwater deur tegnieke soos tru-osmose (TO), is ʼn maksimum herwinning van water noodsaaklik om die produksie, en die gepaardgaande kostes van verwydering, van die sout/brak neweproduk te minimeer. Soos die herwinning van water verhoog, so ook verhoog die konsentrasie van moeilik-oplosbare soute (soos bariumsulfaat, kalsiumsulfaat) in die sout konsentraat stroom, totdat die soute uiteindelik superversadiging bereik. Hierdie superversadiging gebeur veral naby die membraanoppervlak, waar dit lei tot ʼn verhoogde kans van presipitasie en skaalvorming. Om dit te voorkom word die voerwater na ʼn TO stelsel tipies gedoseer met antiskaalmiddels. Hierdie antiskaalmiddels verlaat die stelsel saam met die konsentraat, waar hulle gevolglike die presipitasie van soute bemoeilik. Presipitasie van soute uit die konsentraat kan tipies gebruik word om die vlak van superversadiging in die konsentraat te verlaag, waarna verdere TO behandeling gebruik word om selfs ʼn hoër algehele waterherwinning te bewerkstellig. Die doel van hierdie studie was om die vatbaarheid van die vermindering van kalsiumsulfaat (gips) skaalvorming in die afwesigheid van antiskaalmiddels op TO membrane te toets. Dit is bewerkstellig deur ʼn laboratoriumskaal TO eenheid te voer met ʼn superversadigde kalsiumsulfaat oplossing en die membraan periodies met skoon produkwater (permeaat) te was. Die algehele waterherwinning is verhoog deur met ʼn tussenstap die versadigingsvlak van gips in die konsentraat te verlaag, waarna dit hersirkuleer is na die voertenk. Sodoende is ʼn multi-stadium TO stelsel nageboots, soos dit tipies in hoë herwinningsaanlegte, soos met die herwinning van suur mynwater (E: acid mine drainage, AMD), gebruik word. ʼn Verlaging in superversadiging van die konsentraat in die tussenstap is behaal deur die konsentraat direk aan gipskristalle bloot te stel om presipitasie te bewerkstellig in die afwesigheid van enige antiskaalmiddels. Gedurende eksperimente het die soutkonsentrasie op die membraanoppervlak in die TO eenheid superversadigingsvlakke vêr oorskry, as gevolg van die natuurlike konsentrasie proses en die bekende konsentrasie polarisasie oppervlaksverskynsel. Om hierdie superversadiging teen te werk is periodiese saamstroom spoeling van die membraan met skoon produkwater uitgevoer. In teorie het die periodiese spoeling die hoogs gekonsentreerde oplossing van die membraan oppervlak verwyder voor skaalvorming kan plaasvind. Verskillende spoelpatrone is ondersoek om die doeltreffendheid van die spoeling te bepaal. Om die eksperimente uit te voer is ʼn laboratoriumskaal ontsoutingsaanleg met ʼn maklik verwyderbare 0.106 m2 plat-vel poli-amied TO membraan ontwerp en gebou. Die aanleg kan vloeistof voertempo’s tussen 12-24 L/h hanteer en skoon produkwater teen 12-24 LHM lewer. Die superversadigde voer oplossings, soos gebruik in die meerderheid van die eksperimentes is voorberei deur natriumsulfaat en kalsiumchloried-dihidraat soute te meng in gedemineraliseerde water, tot ʼn soutgehalte van ± 5300 mg/L TDS bereik is. Hierdie soutgehalte stem ooreen met ʼn gips versadigingsindeks (E: gypsum saturation index, SIg) van 1.2. Die skoon produkwater totale produksietyd en netto produksie, asook die membraan vloed afname, is gebruik as veranderlikes om die spoel doeltreffendheid tussen eksperimentele lopies te vergelyk. Aanvanklike toetse het getoon dat skalering voorkom is by effens onderversadigde (SIg = 0.9) en effens superversadigde (SIg = 1.1) voer oplossings met die onderskeie spoel frekwensies van 12 en 2.4 h-1, (terwyl die aanleg in algehele hersirkulasie bedryf is, m.a.w. wanneer beide die konsentraat en produkwater gedurig na die voertenk hersirkuleer word). ʼn Effens-superversadigde eksperiment is ook sonder spoeling uitgevoer vir 24 uur. In hierdie geval het skaalvorming binne twee tot drie uur gebeur, soos bevestig deur ʼn skerp afname in die membraan vloed. Skaalvorming kon nie verhoed word terwyl die aanleg bedryf word met superversadigde (SIg = 1.2) voeroplossings en slegs konsentraat hersirkulasie nie (m.a.w. skoon produkwater word opgevang), alhoewel skaalvorming vertraag kon word. Hierdie operasie het tot beduidend meer gekonsentreerde oplossings in die membraan gelei. Om te bepaal watter faktore die grootste invloed op totale produksietyd en netto produksie van skoon produkwater het, is ʼn fraksionele faktoriaalontwerp van 25-1 uitgelê wat vyf faktore toets, naamlik: 1) spoel frekwensie, 2) spoel volume, 3) skoon produkwater weektyd, 4) membraanvloed en 5) oombliklike herwinning. ʼn AVOVA analise het getoon dat totale produksietyd hoofsaaklik deur membraanvloed beïnvloed is, soos verwag kan word. Dit word gestaaf deurdat die aanleg, bedryf teen 24 LMH, slegs 3 - 4.2 L netto produkwater gelewer het, teenoor 7.6 - 9.7 L by 12 LMH. Hoër membraan vloedtempo’s het tot hoër vlakke van konsentrasie polarisasie op die membraanoppervlak gelei, wat ʼn groter neiging tot skaalvorming tot gevolg gehad het. Spoelfrekwensie en oombliklike herwinning het ʼn invloed op die netto produksie van skoon produkwater gehad, met 6 h-1 en 10 % as die onderskeie optimale waardes. ʼn Kleinstekwadraat regressie het aangedui dat die laagste produksietempo van skoon produkwater die hoogste netto produksie van skoon produkwater gelewer het, (asook die langste produksietyd). In opsomming: Hierdie studie het getoon dat gereelde spoeling met skoon produkwater die membraan skaalproses kan vertraag. Gedurende bedryf met superversadigde kalsiumsulfaat oplossings sonder enige antiskaalmiddels is daar gevind dat skaalvorming nie geheel en al vermy kon word nie. Die spoeltegniek, soos gebruik in hierdie studie, het die aanvang van skaalvorming in die laboratorium skaal TO eenheid vertraag, maar bedryf met konsentraat hersirkulasie en superversadigde oplossings (SIg = 1.2) het steeds skaal gevorm. Bykomende eksperimente teen verskeie kruisvloei snelhede gedurende die spoel stap word aanbeveel vir toekomstige studies.
Gorman, Craig T. "Initial measurements and test system development for evaluation of a novel, hybrid reverse osmosis-electrodialysis process." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p1428735.
Full textJeffery, Samantha. "In-Plant and Distribution System Corrosion Control for Reverse Osmosis, Nanofiltration, and Anion Exchange Process Blends." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5951.
Full textM.S.Env.E.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Environmental Engineering
Al-Obaidi, Mudhar A. A. R. "Modelling, Simulation, and Optimisation of Reverse Osmosis Process with Application in Wastewater Treatment and Food Processing." Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17345.
Full textMinistry of High Education and Scientific Research of Iraq
Takaidza, Samkeliso. "The effects of biofouling on a reverse osmosis membrane purification system at Sasol, Sasolburg." Thesis, Vaal University of Technology, 2011. http://hdl.handle.net/10352/452.
Full textReverse osmosis (RO) membranes are widely used in water purification. The presence of biofilms in water and industrial water purification systems is prevalent. As a result, biofouling which is a biofilm problem causes adverse effects on reverse osmosis process, which include flux decline, shorter membrane lifetime and an increase in energy consumption The effect of biofouling on RO membranes was investigated at a water treatment facility at Sasol, Sasolburg by investigating the quality of water purified by the RO system and the extent of fouling that is attributed to biofouling. Chemical and microbiological data was averaged based on the results obtained from water analysis and samples from a fouled membrane. Bacteriological plate counts ranged between log 1.5 to 4 cfu/ml in water samples and log 3.9 to 4.5 cfu/cm2 on biofilm from the membrane surface. Water analysis indicated a high conductivity of 121 µS/cm in the feed and 81 ppm of the TDS, whereas in the permeate conductivity was found to be around 6 µS/cm and 3.8 ppm of the TDS. This indicated that components present in the feed were retained by the membrane. This was supported by membrane autopsy which showed that the bacteria and elements found in the feedwater were also present on the membrane surface, hence contributing to fouling. An average of 33% of cellular ATP was measured on the biofilm from membrane sample, showing that the fouling bacteria are metabolically active in situ. The results clearly indicated that an important biological activity occurred at the membrane surface.
Books on the topic "Reverse osmosis process"
Center for Environmental Research Information (U.S.), ed. Reverse osmosis process. Cincinnati, OH: Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1996.
Find full textSourirajan, S. Reverse osmosis: Ultrafiltration process principles. Ottawa, [Ontario]: National Research Council Canada, 1985.
Find full text1936-, Matsuura Takeshi, and National Research Council Canada, eds. Reverse osmosis, ultrafiltration process principles. Ottawa, Canada: National Research Council Canada, 1985.
Find full textSourirajan, S. Reverse osmosis/ultrafiltration process principles. Ottawa, Canada: National Research Council Canada, 1985.
Find full textUnited States. Environmental Protection Agency. Office of Research and Development., Center for Environmental Research Information (U.S.), and National Risk Management Research Laboratory (U.S.), eds. Capsule report: Reverse osmosis process. Cincinnati, Ohio: Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1996.
Find full textBergman, Robert. Reverse osmosis and nanofiltration. 2nd ed. Denver, CO: American Water Works Association, 2007.
Find full textLtd, CH2M Hill Engineering. Reverse osmosis, pilot program at Dare Candy. [Toronto]: Queen's Printer for Ontario, 1992.
Find full text1947-, Parekh Bipin S., ed. Reverse osmosis technology: Applications for high-purity-water production. New York: M. Dekker, 1988.
Find full textLawler, Desmond F. Enhanced reverse osmosis systems: Intermediate treatment to improve recovery. Denver, Colo: Water Research Foundation, 2011.
Find full textEisenhauer, Roy J. Plugging factor monitor membrane quality acceptance: Flow rate test. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, U.S. Dept. of the Interior, Bureau of Reclamation, 1991.
Find full textBook chapters on the topic "Reverse osmosis process"
Wilf, Mark. "The Reverse Osmosis Process." In Desalination, 155–204. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118904855.ch3.
Full textLudwig, Heinz. "Reverse Osmosis Membrane System: Core Process of SWRO." In Reverse Osmosis Seawater Desalination Volume 1, 315–739. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81931-6_5.
Full textLudwig, Heinz. "Seawater Reverse Osmosis (SWRO) Plant: General System Configuration, Basic Design Parameters and Conditions, and Overall Planning Process." In Reverse Osmosis Seawater Desalination Volume 1, 205–314. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81931-6_4.
Full textRautenbach, R., and I. Janisch. "Reverse Osmosis for the Separation of Organics from Aqueous Solutions." In Process Technologies for Water Treatment, 25–41. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8556-1_3.
Full textMohammed, Moumni, and Massour El Aoud Mohamed. "Control of Reverse Osmosis Process at a Brackish Water Desalination Station." In The Proceedings of the International Conference on Electrical Systems & Automation, 143–54. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0039-6_12.
Full textHemanth Kumar, M. B., and B. Saravanan. "Compressed Air Energy Storage Driven by Wind Power Plant for Water Desalination Through Reverse Osmosis Process." In Advances in Intelligent Systems and Computing, 145–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0035-0_12.
Full textGadge, Padmanabh Arun, and Shubhangi Gurway. "Improving reverse osmosis process in zero liquid discharge using Taguchi optimization method in alcohol production industry." In Recent Advances in Material, Manufacturing, and Machine Learning, 777–84. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003450252-94.
Full textZocchi, Roberto, Gianluca Brevigliero, Federico Arlati, Alma Rodriquens, Mariachiara D’Aniello, and Khadija Ajmi. "Advanced Process for PFAS Removal from a Leachate Landfill: On-site Plant Based on Reverse Osmosis and Evaporation Technology." In Advances in Science, Technology & Innovation, 231–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00808-5_53.
Full textXue, Xingfu. "Engineering practice study on the treatment of domestic garbage leachate based on two-stage disc tube reverse osmosis combined process." In Advances in Food Safety and Environmental Engineering, 99–106. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003318514-17.
Full textWeber, B., and F. Holz. "Landfill Leachate Treatment by Reverse Osmosis." In Effective Industrial Membrane Processes: Benefits and Opportunities, 143–54. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3682-2_10.
Full textConference papers on the topic "Reverse osmosis process"
Gulied, Mona Hersi, Ahmed Al Nouss, Tasneem ElMakki, Fathima Sifani Zavahir, and Dong Suk han. "Feasibility and Cost Optimization study of Osmotic Assisted Reverse Osmosis Process for Brine Management." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0031.
Full textBartman, Alex R., Charles W. McFall, Panagiotis D. Christofides, and Yoram Cohen. "Model predictive control of feed flow reversal in a reverse osmosis desalination process." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5160150.
Full textMaure, Osniman, and Sudi Mungkasi. "On Modelling of Water Distillation in a Reverse Osmosis Process." In Proceedings of the 2nd International Conference of Science and Technology for the Internet of Things, ICSTI 2019, September 3rd 2019, Yogyakarta, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.20-9-2019.2292098.
Full textUsta, Mustafa, Ali E. Anqi, Michael Morabito, Alaa Hakim, Mohammed Alrehili, and Alparslan Oztekin. "Computational Study of Reverse Osmosis Desalination Process: Hollow Fiber Module." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70884.
Full textMcFall, Charles W., Alex Bartman, Panagiotis D. Christofides, and Yoram Cohen. "Control of a reverse osmosis desalination process at high recovery." In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586825.
Full textGolabi, Arash, Abdelkarim Erradi, Hazim Qiblawey, Ashraf Tantawy, Ahmed Bensaid, and Khaled Shaban. "Reverse osmosis desalination process modeling and simulation with membrane fouling." In INTERNATIONAL CONFERENCE ON ELECTRONICS, ENGINEERING PHYSICS, AND EARTH SCIENCE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0200360.
Full textLee, Sangho, and Richard M. Lueptow. "Space Mission Wastewater Recovery System Using Rotating Reverse Osmosis: Process Simulation." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2528.
Full textMOHAMMED, MOUMNI, and MOHAMED MASSOUR EL AOUD. "Modeling of reverse osmosis process at a brackish water desalination station." In 2021 7th International Conference on Optimization and Applications (ICOA). IEEE, 2021. http://dx.doi.org/10.1109/icoa51614.2021.9442632.
Full textNasib, Amira Mohd, Nuratiqah Baharudin, Nora Jullok, Syahmie Rasidi, and Juhana Jaafar. "Fabrication of biodegradable Polylactic Acid (PLA) membrane for reverse osmosis process." In THE PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE OF CHEMICAL SCIENCE, ENGINEERING AND TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0115854.
Full textHabib, Abdulelah, Vahraz Zamani, and Jan Kleissl. "Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49386.
Full textReports on the topic "Reverse osmosis process"
Wang, Hua. Membrane Bioreactor/Ultra Low Energy Reverse Osmosis Membrane Process for Forward Operating Base Wastewater Reuse. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada619412.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Full textHusson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Full text