Academic literature on the topic 'Reverse osmosis networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reverse osmosis networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reverse osmosis networks"
Maskan, Fazilet, Dianne E. Wiley, Lloyd P. M. Johnston, and David J. Clements. "Optimal design of reverse osmosis module networks." AIChE Journal 46, no. 5 (May 2000): 946–54. http://dx.doi.org/10.1002/aic.690460509.
Full textEl-Halwagi, Mahmoud M. "Synthesis of reverse-osmosis networks for waste reduction." AIChE Journal 38, no. 8 (August 1992): 1185–98. http://dx.doi.org/10.1002/aic.690380806.
Full textVoros, N., Z. B. Maroulis, and D. Marinos-Kouris. "Optimization of reverse osmosis networks for seawater desalination." Computers & Chemical Engineering 20 (January 1996): S345—S350. http://dx.doi.org/10.1016/0098-1354(96)00068-3.
Full textZhu, M. "Optimal design and scheduling of flexible reverse osmosis networks." Journal of Membrane Science 129, no. 2 (July 9, 1997): 161–74. http://dx.doi.org/10.1016/s0376-7388(96)00310-9.
Full textJiang, Aipeng, Lorenz T. Biegler, Jian Wang, Wen Cheng, Qiang Ding, and Shu Jiangzhou. "Optimal operations for large-scale seawater reverse osmosis networks." Journal of Membrane Science 476 (February 2015): 508–24. http://dx.doi.org/10.1016/j.memsci.2014.12.005.
Full textDu, Yawei, Lixin Xie, Yuxin Wang, Yingjun Xu, and Shichang Wang. "Optimization of Reverse Osmosis Networks with Spiral-Wound Modules." Industrial & Engineering Chemistry Research 51, no. 36 (August 29, 2012): 11764–77. http://dx.doi.org/10.1021/ie300650b.
Full textLu, Yanyue, Anping Liao, and Yangdong Hu. "Design of reverse osmosis networks for multiple freshwater production." Korean Journal of Chemical Engineering 30, no. 5 (February 27, 2013): 988–96. http://dx.doi.org/10.1007/s11814-013-0009-8.
Full textSaif, Y., A. Elkamel, and M. Pritzker. "Optimal design of reverse-osmosis networks for wastewater treatment." Chemical Engineering and Processing: Process Intensification 47, no. 12 (November 2008): 2163–74. http://dx.doi.org/10.1016/j.cep.2007.11.007.
Full textSee, H. J., D. I. Wilson, V. S. Vassiliadis, and G. T. Parks. "Design of reverse osmosis (RO) water treatment networks subject to fouling." Water Science and Technology 49, no. 2 (January 1, 2004): 263–70. http://dx.doi.org/10.2166/wst.2004.0139.
Full textDu, Yawei, Lixin Xie, Yan Liu, Shaofeng Zhang, and Yingjun Xu. "Optimization of reverse osmosis networks with split partial second pass design." Desalination 365 (June 2015): 365–80. http://dx.doi.org/10.1016/j.desal.2015.03.019.
Full textDissertations / Theses on the topic "Reverse osmosis networks"
Maskan, Fazilet Chemical Engineering & Industrial Chemistry UNSW. "Optimization of reverse osmosis membrane networks." Awarded by:University of New South Wales. Chemical Engineering and Industrial Chemistry, 2000. http://handle.unsw.edu.au/1959.4/18790.
Full textLibotean, Dan Mihai. "Modeling the reserve osmosis processes performance using artificial neural networks." Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/8555.
Full textPara reducir el coste de la producción y mejorar la robustez y eficacia de estos procesos es imprescindible disponer de modelos capaces de representar y predecir la eficiencia y el comportamiento de las membranas durante la operación. Una alternativa viable a los modelos teóricos, que presentan varias particularidades que dificultan su postulado, la constituyen los modelos basados en el análisis de los datos experimentales, entre cuales destaca el uso de las redes neuronales. Dos metodologías han sido evaluadas e investigadas, una constando en la caracterización de las interacciones entre las membranas y los compuestos orgánicos presentes en el agua de alimentación, y la segunda basada en el modelado de la dinámica de operación de las plantas de desalinización por ósmosis inversa.
Relaciones cuantitativas estructura‐propiedad se han derivado usando redes neuronales de tipo back‐propagation, para establecer correlaciones entre los descriptores moleculares de 50 compuestos orgánicos de preocupación para la salud pública y su comportamiento frente a 5 membranas comerciales de ósmosis inversa, en términos de permeación, absorción y rechazo. Para reducir la dimensión del espacio de entrada, y para evitar el uso de la información redundante en el entrenamiento de los modelos, se han usado tres métodos para seleccionar el menor número de los descriptores moleculares relevantes entre un total de 45 que caracterizan cada molécula. Los modelos obtenidos se han validado utilizando un método basado en el balance de materia, aplicado no solo a los 50 compuestos utilizados para el desarrollo de los modelos, sino que también a un conjunto de 143 compuestos orgánicos nuevos. La calidad de los modelos obtenidos es prometedora para la extensión de la presente metodología para disponer de una herramienta comprensiva para entender, determinar y evaluar el comportamiento de los solutos orgánicos en el proceso de ósmosis inversa. Esto serviría también para el diseño de nuevas y más eficaces membranas que se usan en este tipo de procesos.
En la segunda parte, se ha desarrollado una metodología para modelar la dinámica de los procesos de ósmosis inversa, usando redes neuronales de tipo backpropagation y Fuzzy ARTMAP y datos experimentales que proceden de una planta de desalinización de agua salobre Los modelos desarrollados son capaces de evaluar los efectos de los parámetros de proceso, la calidad del agua de alimentación y la aparición de los fenómenos de ensuciamiento sobre la dinámica de operación de las plantas de desalinización por osmosis inversa. Se ha demostrado que estos modelos se pueden usar para predecir el funcionamiento del proceso a corto tiempo, permitiendo de esta manera la identificación de posibles problemas de operación debidas a los fenómenos de ensuciamiento y envejecimiento de las membranas. Los resultados obtenidos son prometedores para el desarrollo de estrategias de optimización, monitorización y control de plantas de desalinización de agua salobre. Asimismo, pueden constituir la base del diseño de sistemas de supervisón capaces de predecir y advertir etapas de operación incorrecta del proceso por fallos en el mismo, y actuar en consecuencia para evitar estos inconvenientes.
One of the more serious problems encountered in reverse osmosis (RO) water treatment processes is the occurrence of membrane fouling, which limits both operation efficiency (separation performances, water permeate flux, salt rejection) and membrane life‐time. The development of general deterministic models for studying and predicting the development of fouling in full‐scale reverse osmosis plants is burden due to the complexity and temporal variability of feed composition, diurnal variations, inability to realistically quantify the real‐time variability of feed fouling propensity, lack of understanding of both membrane‐foulants interactions and of the interplay of various fouling mechanisms. A viable alternative to the theoretical approaches is constituted by models developed based on direct analysis of experimental data for predicting process operation performance. In this regard, the use of artificial neural networks (ANN) seems to be a reliable option. Two approaches were considered; one based on characterizing the organic compounds passage through RO membranes, and a second one based on modeling the dynamics of permeate flow and separation performances for a full‐scale RO desalination plant.
Organic solute sorption, permeation and rejection by RO membranes from aqueous solutions were studied via artificial neural network based quantitative structure‐property relationships (QSPR) for a set of 50 organic compounds for polyamide and cellulose acetate membranes. The separation performance for the organic molecules was modeled based on available experimental data achieved by radioactivity measurements to determine the solute quantity in feed, permeate and sorbed by the membrane. Solute rejection was determined from a mass balance on the permeated solution volume. ANN based QSPR models were developed for the measured organic sorbed (M) and permeated (P) fractions with the most appropriate set of molecular descriptors and membrane properties selected using three different feature selection methods. Principal component analysis and self‐organizing maps pre‐screening of all 50 organic compounds defined by 45 considered chemical descriptors were used to identify the models applicability domain and chemical similarities between the organic molecules. The ANN‐based QSPRs were validated by means of a mass balance test applied not only to the 50 organic compounds used to develop the models, but also to a set of 143 new compounds. The quality of the QSPR/NN models developed suggests that there is merit in extending the present compound database and extending the present approach to develop a comprehensive tool for assessing organic solute behavior in RO water treatment processes. This would allow also the design and manufacture of new and more performing membranes used in such processes.
The dynamics of permeate flow rate and salt passage for a RO brackish water desalination pilot plant were captured by ANN based models. The effects of operating parameters, feed water quality and fouling occurrence over the time evolution of the process performance were successfully modeled by a back‐propagation neural network. In an alternative approach, the prediction of process performance parameters based on previous values was achieved using a Fuzzy ARTMAP analysis. The neural network models built are able to capture changes in RO process performance and can successfully be used for interpolation, as well as for extrapolation prediction, fact that can allow reasonable short time forecasting of the process time evolution. It was shown that using real‐time measurements for various process and feed water quality variables, it is possible to build neural network models that allow better understanding of the onset of fouling. This is very encouraging for further development of optimization and control strategies. The present methodology can be the basis of development of soft sensors able to anticipate process upsets.
Sassi, Kamal M. "Optimal scheduling, design, operation and control of reverse osmosis desalination : prediction of RO membrane performance under different design and operating conditions, synthesis of RO networks using MINLP optimization framework involving fouling, boron removal, variable seawater temperature and variable fresh water demand." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5671.
Full textAl, Shaalan Hakem. "Artifical neural network modelling of reverse osmosis process." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9516.
Full textAl-Shayji, Khawla Abdul Mohsen. "Modeling, Simulation, and Optimization of large-Scale Commercial Desalination Plants." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30462.
Full textPh. D.
Maskan, Fazilet. "Optimization of reverse osmosis membrane networks /." 2000. http://www.library.unsw.edu.au/~thesis/adt-NUN/public/adt-NUN20030513.131808/index.html.
Full textAlnouri, Sabla. "The Development of a Synthesis Approach for Optimal Design of Seawater Reverse Osmosis Desalination Networks." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11887.
Full textSassi, Kamal M., and Iqbal M. Mujtaba. "MINLP based superstructure optimization for boron removal during desalination by reverse osmosis." Thesis, 2013. http://hdl.handle.net/10454/9722.
Full textIn this work, a model based MINLP (mixed integer nonlinear programming) optimisation framework is developed for evaluating boron rejection in a reverse osmosis (RO) desalination process. A mathematical model (for the RU process) based on solution diffusion model and thin film theory is incorporated in the optimisation framework. A superstructure of the RU network is developed which includes two passes: (a) seawater pass containing normal two-stage RU system housing seawater membrane modules and (b) the brackish water pass (BW) accommodating brackish water membrane modules. For fixed freshwater demand, the objective of this work is to demonstrate the effectiveness of the MINLP approach for analyzing and optimizing the design and operation of RU network while attaining desired limit on boron concentration in the freshwater produced. The effect of seasonal variation in seawater temperature and pH on boron removal efficiency is also discussed.
Barello, M., D. Manca, and Iqbal M. Mujtaba. "Neural network based correlation for estimating water permeability constant in RO desalination process under fouling." 2014. http://hdl.handle.net/10454/7942.
Full textThe water permeability constant, (Kw) is one of many important parameters that affect optimal design and operation of RO processes. In model based studies, e.g.within the RO process model, estimation of Kw is therefore important. There are only two available literature correlations for calculating the dynamic Kw values. However, each of them are only applicable for a given membrane type, given feed salinity over a certain operating pressure range. In this work, we develop a time dependent neural network (NN) based correlation to predict Kw in RO desalination processes under fouling conditions. It is found that the NN based correlation can predict the Kw values very closely to those obtained by the existing correlations for the same membrane type, operating pressure range and feed salinity. However, the novel feature of this correlation is that it is able to predict Kw values for any of the two membrane types and for any operating pressure and any feed salinity within a wide range. In addition, for the first time the effect of feed salinity on Kw values at low pressure operation is reported. While developing the correlation, the effect of numbers of hidden layers and neurons in each layer and the transfer functions is also investigated.
Al-Obaidi, M. A., Chakib Kara-Zaitri, and Iqbal M. Mujtaba. "Performance evaluation of multi-stage and multi-pass reverse osmosis networks for the removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater using model-based techniques." 2018. http://hdl.handle.net/10454/16303.
Full textThe removal of pollutants such as N-nitrosamine present in drinking and reuse water resources is of significant interest for health and safety professionals. Reverse osmosis (RO) is one of the most promising and efficient methodologies for removing such harmful organic compounds from wastewater. Having said this, the literature confirms that the multi-stage RO process with retentate reprocessing design has not yet achieved an effective removal of N-nitrosodimethylamine-D6 (NDMA) from wastewater. This research emphasizes on this particular challenge and aims to explore several conceptual designs of multi-stage RO processes for NDMA rejection considering model-based techniques and compute the total recovery rate and energy consumption for different configurations of retentate reprocessing techniques. In this research, the permeate reprocessing design methodology is proposed to increase the process efficiency. An extensive simulation analysis is carried out using high NDMA concentration to evaluate the performance of each configuration under similar operational conditions, thus providing a deep insight on the performance of the multi-stage RO permeate reprocessing predictive design. Furthermore, an optimisation analysis is carried out on the final design to optimise the process with a high NDMA rejection performance and the practical recovery rate by manipulating the operating conditions of the plant within specified constraints bounds. The results show a superior removal of NDMA from wastewater.
Book chapters on the topic "Reverse osmosis networks"
Zgalmi, A., H. Cherif, and J. Belhadj. "Smart energy management based on the artificial neural network of a reverse osmosis desalination unit powered by renewable energy sources." In Innovative and Intelligent Technology-Based Services for Smart Environments – Smart Sensing and Artificial Intelligence, 181–88. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003181545-26.
Full textJanani, E. Srie Vidhya, and A. Rehash Rushmi Pavitra. "Cost Effective Smart Farming With FARS-Based Underwater Wireless Sensor Networks." In Handbook of Research on Implementation and Deployment of IoT Projects in Smart Cities, 296–316. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9199-3.ch018.
Full textConference papers on the topic "Reverse osmosis networks"
Huang, Bao-Neng. "Study on treatment and reclamation of ammonium chloride wastewater by reverse osmosis technique." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5769442.
Full textNguyen, Ha T., and Joshua M. Pearce. "Renewable Powered Desalination in the Coastal Mekong Delta." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90224.
Full textKhoshgoftar Manesh, Mohammad Hasan, Hooman Ghalami, Sajad Khamis Abadi, Majid Amidpour, and Mohammad Hosein Hamedi. "A New Targeting Method for Combined Heat, Power and Desalinated Water Production in Total Site." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88885.
Full text