Academic literature on the topic 'Reusable Launchers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reusable Launchers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reusable Launchers"
Baiocco, P., and Ch Bonnal. "Technology demonstration for reusable launchers." Acta Astronautica 120 (March 2016): 43–58. http://dx.doi.org/10.1016/j.actaastro.2015.11.032.
Full textLobanovsky, Yu I. "Efficiency analysis of reusable aerospace launchers." Aerospace Science and Technology 1, no. 1 (January 1997): 37–46. http://dx.doi.org/10.1016/s1270-9638(97)90022-5.
Full textChelaru, Teodor-Viorel, Valentin Pană, and Costin Ene. "Performance Evaluation for Launcher Testing Vehicle." Aerospace 9, no. 9 (September 9, 2022): 504. http://dx.doi.org/10.3390/aerospace9090504.
Full textSimplício, Pedro, Andrés Marcos, and Samir Bennani. "Guidance of Reusable Launchers: Improving Descent and Landing Performance." Journal of Guidance, Control, and Dynamics 42, no. 10 (October 2019): 2206–19. http://dx.doi.org/10.2514/1.g004155.
Full textD’Angelo, Salvatore, Edmondo Minisci, Daniele Di Bona, and Luciano Guerra. "Optimization Methodology for Ascent Trajectories of Lifting-Body Reusable Launchers." Journal of Spacecraft and Rockets 37, no. 6 (November 2000): 761–67. http://dx.doi.org/10.2514/2.3648.
Full textMusso, Girolamo, Iara Figueiras, Héléna Goubel, Afonso Gonçalves, Ana Laura Costa, Bruna Ferreira, Lara Azeitona, et al. "A Multidisciplinary Optimization Framework for Ecodesign of Reusable Microsatellite Launchers." Aerospace 11, no. 2 (January 31, 2024): 126. http://dx.doi.org/10.3390/aerospace11020126.
Full textDuparcq, J. L., E. Hermant, and D. Scherrer. "Turbojet-type engines for the airbreathing propulsion of reusable winged launchers." Acta Astronautica 29, no. 1 (January 1993): 41–50. http://dx.doi.org/10.1016/0094-5765(93)90068-8.
Full textGulczyński, Mateusz T., Robson H. S. Hahn, Jan C. Deeken, and Michael Oschwald. "Turbopump Parametric Modelling and Reliability Assessment for Reusable Rocket Engine Applications." Aerospace 11, no. 10 (October 2, 2024): 808. http://dx.doi.org/10.3390/aerospace11100808.
Full textSimplício, Pedro, Andrés Marcos, and Samir Bennani. "Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark." Journal of Spacecraft and Rockets 57, no. 1 (January 2020): 74–89. http://dx.doi.org/10.2514/1.a34429.
Full textBonnal, Ch, and M. Caporicci. "Future reusable launch vehicles in europe: the FLTP (Future Launchers Technologies Programme)." Acta Astronautica 47, no. 2-9 (July 2000): 113–18. http://dx.doi.org/10.1016/s0094-5765(00)00050-3.
Full textDissertations / Theses on the topic "Reusable Launchers"
Berry, W. "Reusable launchers." Thesis, Cranfield University, 1993. http://hdl.handle.net/1826/3902.
Full textZaragoza, Prous Guillermo. "Guidance and Control for Launch and Vertical Descend of Reusable Launchers using Model Predictive Control and Convex Optimisation." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81354.
Full textGibart, Jules. "Non-linear stability of a liquid propelled rocket engine in closed loop regulation." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST110.
Full textWith the development of reusable rocket engines, the operating requirements of the various components in an engine have significantly increased. While a non-reusable engine was designed for a limited number of operating points, a reusable engine must meet requirements over a wide range of points to perform complex maneuvers. Consequently, rocket engine control laws have evolved similarly, with the introduction of closed-loop control laws. Although many studies have been conducted on control laws, few works focus on the stability of the engine in closed-loop control. In this context, the objective of this work is to propose a demonstration of the stability of a rocket engine model, as well as a controller that guarantees the stability of the model. First, a model of a liquid propelled rocket engine is proposed under a state-space form. Although more common, this type of modeling does not allow for an easy stability analysis due to its highly nonlinear terms. In this context, the use of a Lyapunov function proves to be cumbersome, and a reformulation of the model is considered, in the form of a Port-Hamiltonian model, more suited for stability analysis of the system. A second chapter introduces the concept of the Port-Hamiltonian model. This type of model highlights the energy transfers that occur between the various components of a system and is built with a fixed geometric structure. These characteristics allow for a direct study of the passivity of a system, a tool for stability analysis the stability. The reformulation allows for the identification of a characteristic function of a Port-Hamiltonian system, the Hamiltonian function, which can be used to prove the passivity of a system and can be formulated as a Lyapunov function. This demonstration provides stability conditions for the system as well as the controller applied in the closed-loop system. In cases where a direct demonstration of passivity is not possible, a controller can be constructed to ensure the passivity of the closed-loop system. To endow the rocket engine model with passivity properties, the third chapter presents passivity-based control (PBC) theory. The principle of such a controller is to ensure the stability of a system by making the closed-loop system passive. Coupled with Port-Hamiltonian systems theory, however, this controller also allows for modification of the Hamiltonian geometric structure to reformulate a system into Port-Hamiltonian form. This controller makes the system passive around a desired operating point, which can be changed over time. Thus, this controller enables trajectory tracking with passivity guarantees over time. The fourth chapter proposes a different approach to establish a stabilizing controller using contraction theory. The contraction property of a system indicates its ability to rapidly converge towards a reference trajectory. This property represents a form of exponential stability, which is more robust than stability through passivation. Moreover, the controller can be easily implemented by solving linear matrix inequalities. Finally, the results of this work are presented through simulations on MATLAB Simulink, allowing for conclusions on the various controllers presented. A simple proportional-integralderivative (PID) controller is constructed for comparison. The results show that the designed controllers offer stabilizing properties, while the PID controller is unstable in certain operating regions. The passivity-based controller extends the stability domain of the system, and the contraction-based controller prevents the system from leaving the stability domain of the original system
MABBOUX, ROMAIN. "Optimization of the pressurization system of the Themis reusable rocket first stage demonstrator." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301295.
Full textUtformningen av komplexa system, som till exempel en bärraket, eller delsystem som dess trycksättningssystem, är känd för att vara krävande och kostsam, särskilt inom rymdteknikområdet. Den senaste tidens uppkomst av nya aktörer på detta område har dock förändrat spelregler då dessa system tvingas uppfylla allt fler krav (billiga, effektiva, snabbt producerade, estetiska, miljövänliga etc.) kunna vara konkurrenskraftiga på marknaden. Av dessa skäl måste ingenjörer nu mer än någonsin beakta hela bilden av ett system eller delsystem för att kunna optimera det. I detta sammanhang syftar detta dokument till att presentera metoden och resultaten från optimeringen av trycksättningssystemet för en återanvändbar rakets första steg som heter Themis 3. Modelleringen av trycksättningssystemet har genomförts med hjälp av ett systemmodelleringsverktyg som kallas Geeglee. För att täcka in så många effekter av detta system som möjligt har en viktig del av raketsteget beaktats och modellerats (från trycksättningsgaserna till drivmedelstankarna, via tryck- och drivmedelsmatningsledningarna). Tre krav på hög nivå har identifierats som mycket viktiga för avvägningen vid utformningen av trycksättningssystem konstruktion: den totala masspåverkan, den totala icke-rekursiva kostnaden och den totala rekursiva kostnaden. Denna optimering har framför allt gjort det möjligt att bekräfta vissa välkända resultat, dvs. att exogena trycksättningssystem ger en mindre masspåverkan på fordonet, på bekostnad av en högre RC jämfört med autogena system.
Bulut, Jane. "Design and CFD analysis of the demonstrator aerospike engine for a small satellite launcher application." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textLantelme, Melissa. "Modélisation des grandeurs aérothermodynamiques pariétales : application à la rentrée atmosphérique des lanceurs réutilisables." Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0025.
Full textFor reusable launch vehicles critical aerothermal loads occur on the descent trajectory in the hypersonic continuum regime. Thus, for the pre-design phase of the mission preparation, it is essential to have advanced models with low response time (CPU time) at one’s disposal to predict the heat fluxes on the vehicle’s surface. This is necessary to make informed decisions on trade-offs required between system, aerothermal and trajectory optimisation aspects. The objective of this thesis is to investigate whether machine learning techniques offer additional value in the development of such a model predicting the wall heat flux distribution. For this, we propose a method which consists of two consecutive surrogate models. The first one provides a method of nondimensionalisation, to enable the prediction of heat flux independent of the flight points at different altitudes and freestream conditions. The second surrogate model maps four geometric and pressure based dimensionless input variables to the dimensionless heat flux output variable. This correlation is modelled with neural networks. In order to analyse the prediction accuracy, capabilities and limitations, we apply the proposed method to the SpaceLiner concept. For this, we build a database with Computational fluid dynamics (CFD) simulations which contains data from different flight points and orientations of the SpaceLiner orbiter stage. The nondimensionalisation model of the stagnation point heat flux is build based on the Lepage-Vérant model and Kriging and permits its prediction with an accuracy of a mean relative error of 1.9% compared to the results of CFD equations. The surrogate model based on neural networks for the prediction of the heat flux distribution at the current development state complies to our objective for the convex zones and partially for the flat zones if we disregard the very low heat flux zones and complex physical phenomena such as shock-shock interactions. These results ensure better or equivalent prediction accuracy as existing pre-design tools. The database was unsuited to developed a reliable model for the concave zones. Overall interpolation and close proximity extrapolation to different flight points for the given vehicle is possible. However further generalisation towards different vehicle shapes remain unreachable with the current setup. The proposed method has demonstrated potential to be integrated in the pre-design process
Books on the topic "Reusable Launchers"
Gibbins, Martin N. Systems integration and demonstration of advanced reusable structure for ALS. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textCenter, NASA Glenn Research, ed. Advanced electric propulsion for RLV launched geosynchronous spacecraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textAdvanced electric propulsion for RLV launched geosynchronous spacecraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textReentry: SpaceX, Elon Musk, and the Reusable Rockets that Launched a Second Space Age. BenBella Books, Inc., 2024.
Find full textBook chapters on the topic "Reusable Launchers"
van Pelt, Michel. "Reusable launchers." In Dream Missions, 45–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53941-6_3.
Full textSalt, David J. "Could a Subsonic Air-Launched Reusable Launch Vehicle (RLV) Enable a Paradigm Shift in Space Operations?" In Space Operations: Innovations, Inventions, and Discoveries, 185–217. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624101991.0185.0218.
Full textKislykh, V. V., and I. A. Reshetin. "Afterbody Effects Study on Energia Reusable Launcher Models. Selection of Jet Propulsive Masses Parameters Within Jet Streams Ejecting Model." In Separated Flows and Jets, 851–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84447-8_105.
Full textYeager, Kenneth R. "Program Evaluation: This Is Rocket Science." In Evidence-Based Practice Manual: Research and Outcome Measures in Health and Human Services, 647–53. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195165005.003.0071.
Full textKoshova, Svitlana. "Innovative Trends in the Creation of Rocket and Spacecraft Equipment for the Purpose of Enhancement of National Security." In Стратегія сучасного розвитку України: синтез правових, освітніх та економічних механізмів : колективна монографія / за загальною редакцією професора Старченка Г. В., 215–27. ГО «Науково-освітній інноваційний центр суспільних трансформацій», 2022. http://dx.doi.org/10.54929/monograph-12-2022-05-01.
Full textConference papers on the topic "Reusable Launchers"
Denaro, Angelo, Elena Brach Prever, and Marco Nebiolo. "Developments on Cryogenic Insulations for Reusable Launchers." In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3436.
Full textDenaro, A., E. Brach Prever, M. Nebiolo, and H. Ritter. "Screening Tests on Cryogenic Insulations for Reusable Launchers." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2899.
Full textDenaro, A., and H. Ritter. "Developments on Cryogenic Tank Insulation for Reusable Launchers." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-2565.
Full textLiu, Zibo, and Ran Zhang. "Actuator-constrained Trajectory Optimization for Reusable Launchers’ Landing." In 2022 13th Asian Control Conference (ASCC). IEEE, 2022. http://dx.doi.org/10.23919/ascc56756.2022.9828171.
Full textAngelino, E., D. Dosio, and G. Borriello. "Reusable launchers tank structures - Requirements definition and experimental development." In 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1592.
Full textWulz, H., U. Trabandt, H. Wulz, and U. Trabandt. "Large integral hot CMC structures designed for future reusable launchers." In 32nd Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2485.
Full textSippel, Martin, Arnin Herbertz, and Holger Burkhardt. "Reusable Booster Stages: A Potential Concept for Future European Launchers." In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3242.
Full textKostromin, S. "Cost effectiveness estimates of the partially reusable launchers family with uniform components." In 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4887.
Full textSudmeijer, Kees, Arjen Kloosterman, Benedict Lefeber, and Cyril Wentzel. "Technology Development for Metallic Hot Structures in Aerodynamic Control Surfaces of Reusable Launchers." In AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5161.
Full textIannelli, Andrea, Dimitris Gkouletsos, and Roy S. Smith. "Robust Control Design for Flexible Guidance of the Aerodynamic Descent of Reusable Launchers." In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-2171.
Full text