Academic literature on the topic 'Retrotransposon; RNA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Retrotransposon; RNA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Retrotransposon; RNA"
Zagoskina, Arina, Sergei Firsov, Irina Lazebnaya, Oleg Lazebny, and Dmitry V. Mukha. "R2 and Non-Site-Specific R2-Like Retrotransposons of the German Cockroach, Blattella germanica." Genes 11, no. 10 (October 15, 2020): 1202. http://dx.doi.org/10.3390/genes11101202.
Full textAndrzejewska, Angelika, Małgorzata Zawadzka, Julita Gumna, David J. Garfinkel, and Katarzyna Pachulska-Wieczorek. "In vivostructure of the Ty1 retrotransposon RNA genome." Nucleic Acids Research 49, no. 5 (February 23, 2021): 2878–93. http://dx.doi.org/10.1093/nar/gkab090.
Full textMoss, Walter N., Danna G. Eickbush, Michael J. Lopez, Thomas H. Eickbush, and Douglas H. Turner. "The R2 retrotransposon RNA families." RNA Biology 8, no. 5 (September 2011): 714–18. http://dx.doi.org/10.4161/rna.8.5.16033.
Full textGhoshal, Kankana, Jane Theilmann, Ron Reade, Ajay Maghodia, and D'Ann Rochon. "Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection." Journal of Virology 89, no. 21 (August 12, 2015): 10748–61. http://dx.doi.org/10.1128/jvi.01466-15.
Full textSabot, François, Ruslan Kalendar, Marko Jääskeläinen, Chang Wei, Jaakko Tanskanen, and Alan H. Schulman. "Retrotransposons: Metaparasites and Agents of Genome Evolution." Israel Journal of Ecology and Evolution 52, no. 3-4 (April 12, 2006): 319–30. http://dx.doi.org/10.1560/ijee_52_3-4_319.
Full textLi, Wenwen, Karen Goossens, Mario Van Poucke, Katrien Forier, Kevin Braeckmans, Ann Van Soom, and Luc J. Peelman. "High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression." Reproduction, Fertility and Development 28, no. 7 (2016): 948. http://dx.doi.org/10.1071/rd14133.
Full textAlzohairy, Ahmed M., Gábor Gyulai, Mohamed F. Ramadan, Sherif Edris, Jamal S. M. Sabir, Robert K. Jansen, Hala F. Eissa, and Ahmed Bahieldin. "Retrotransposon-based molecular markers for assessment of genomic diversity." Functional Plant Biology 41, no. 8 (2014): 781. http://dx.doi.org/10.1071/fp13351.
Full textSandmeyer, Suzanne B., and Kristina A. Clemens. "Function of a retrotransposon nucleocapsid protein." RNA Biology 7, no. 6 (November 2010): 642–54. http://dx.doi.org/10.4161/rna.7.6.14117.
Full textKalendar, Ruslan, Olga Raskina, Alexander Belyayev, and Alan H. Schulman. "Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants." International Journal of Molecular Sciences 21, no. 8 (April 22, 2020): 2931. http://dx.doi.org/10.3390/ijms21082931.
Full textKojima, Kenji K., Takumi Matsumoto, and Haruhiko Fujiwara. "Eukaryotic Translational Coupling in UAAUG Stop-Start Codons for the Bicistronic RNA Translation of the Non-Long Terminal Repeat Retrotransposon SART1." Molecular and Cellular Biology 25, no. 17 (September 1, 2005): 7675–86. http://dx.doi.org/10.1128/mcb.25.17.7675-7686.2005.
Full textDissertations / Theses on the topic "Retrotransposon; RNA"
Attig, Jan. "Impact of retrotransposon-derived RNA elements and their recognition by RNA binding proteins." Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709161.
Full textRoth, Jeanne-Francoise. "Regulation and assembly of the yeast Ty1 virus like particles." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301254.
Full textSoufuku, Kozue. "Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome." Kyoto University, 2016. http://hdl.handle.net/2433/215439.
Full textLi, Wai-Lun Patrick. "Translation of the two proteins encoded by the mouse LINE1 retrotransposon /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.
Find full textTypescript. Includes bibliographical references (leaves 123-147). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Chitiprolu, Maneka. "Novel Regulatory Mechanisms of Autophagy in Human Disease: Implications for the Development of Therapeutic Strategies." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38441.
Full textRaplee, Isaac D. "Contribution of Retrotransposons to Breast Cancer Malignancy." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7900.
Full textQuintanilha, Danielle Maluf. "Tnt1 retrotransposon expression and ethylene phytohormone interplay mediates tobacco (Nicotiana tabacum) defense responses." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11151/tde-11112014-165547/.
Full textTnt1 é um retrotransposon com LTR transcricionalmente ativo, e está presente em mais de 600 cópias no genoma de Nicotiana tabacum. Em condições normais de crescimento Tnt1 é expresso em níveis basais. No entanto, sua expressão é induzida pelo estímulo de estresses bióticos e abióticos. Plantas de tabaco transgênicas (chamadas de HP) expressando um grampo da transcriptase reversa de Tnt1 foram geradas. Estas apresentaram fenótipos como: pontos de morte celular e deposição de calose nas folhas e severas anomalias de desenvolvimento severas nas porções aérea e radicular das plantas. Sequenciamento de RNA de folhas com os pontos de morte celular revelou uma reorganização de redes de regulação transcricional relacionadas a resposta a estresses. Essas novas redes surgiram exclusivamente nas plantas HP. Entre os genes modulados positivamente estavam genes de síntese e de resposta ao etileno. O presente trabalho teve como objetivo elucidar a relação observada entre Tnt1 e o fitormônio etileno gerando um modelo de atuação. Os resultados obtidos permitiram demonstrar que plântulas e plantas HP adultas tem um aumento na síntese de etileno quando comparadas à selvagem. A predição do dobramento do RNA mensageiro de Tnt1 permitiu a identificação de sequências responsivas ao etileno localizadas em posição potencial para formar grampos. Desta forma, é possível que a expressão de Tnt1 leve à produção de pequenos RNAs que tem como alvo sequências responsivas a etileno presentes tanto no próprio elemento quanto em regiões promotoras de outros genes. A quantificação da expressão de Tnt1 versus genes relacionados ao etileno revelou um padrão em \"oposição de fase\" nas HPs, o que nos levou a hipotetizar que talvez ocorra uma relação antagonista entre a expressão de Tnt1 e a expressão de genes responsivos ao etileno envolvidos em respostas de defesa vegetais. Nossos resultados sugerem que Tnt1 pode gerar pequenos RNAs que exercem controle transcricional sobre Tnt1 e outros genes endógenos. Nosso modelo estabelece um novo papel biológico para um retrotransposon: Tnt1 agiria como um modulador da indução de genes mediada por etileno nas respostas de defesa de tabaco, trazendo o sistema de volta à condição homeostática e encerrando as respostas de defesa.
Barbosa, Patrícia. "ELEMENTOS GENÔMICOS REPETITIVOS NO COMPLEXO Astyanax scabripinnis (TELEOSTEI, CHARACIDAE)." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2013. http://tede2.uepg.br/jspui/handle/prefix/982.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The most part of the eukaryote genomes is constituted for repetitive DNA or multiple copies DNA, which has already been considered as “junk”, may be associated to the heterochromatin. In this study three Astyanax scabripinnis populations from Pindamonhangaba and Guaratinguetá (SP, Brazil) rivers and stream and one population from Maringá (PR, Brazil) were analyzed about the nucleolar organizing region (NORs), As51 satellite DNA, 18S and 5S rDNA location. Moreover, repetitive sequences were isolated and mapped through Cot-1 technique, which showed homology with UnaL2, a LINE type retrotransposon. The fluorescent in situ hybridization (FISH), with the isolated built retrotransposon probe, evidenced disperse labeled and stronger in centromeric and telomeric chromosomes regions, co-located and interspersed with the 18S DNAr and As51, proven by the fiber-FISH technique. The B chromosome of those populations showed very conspicuous labeled with the LINE probe, also co-located with the As51 sequences. The NORs were actives in a single site of a homologue pair in all three populations, with no evidence that the transposable elements and repetitive DNA have influence in its regulation at the performed analyzes level.
A maior parte do genoma dos eucariotos é constituída por DNA repetitivo ou DNA de múltiplas cópias, o qual já foi considerado “lixo”, podendo estar associado à heterocromatina. Neste estudo foram analisadas três populações de Astyanax scabripinnis provenientes de rios e córregos de Pindamonhangaba e Guaratinguetá (SP, Brasil) e uma população da cidade de Maringá (PR, Brasil) quanto a localização das regiões organizadoras de nucléolo (RONs), DNA satélite As51, DNA ribossomal (DNAr) 18S e DNAr 5S. Ainda, foram isoladas e mapeadas sequências repetitivas por meio da técnica de Cot-1, que mostrou homologia com UnaL2, retrotransposon do tipo LINE. A hibridação in situ fluorescente (FISH), com sonda construída para o retrotransposon isolado, evidenciou marcações dispersas e mais concentradas em regiões centroméricas e teloméricas dos cromossomos, co-localizadas e interespaçadas com DNAr 18S e As51, comprovada pela técnica de fiber-FISH. O cromossomo B das populações mostrou marcações bastante conspícuas com a sonda LINE, também co-localizada com sequências As51. As RONs apresentaram-se ativas em sítios únicos de um par homólogo nas três populações, não havendo indícios de que elementos transponíveis e DNA repetitivo tenham influência na sua regulação ao nível das análises realizadas.
Mir, Ashfaq Ali. "Variations structurales du génome et du transcriptome humains induites par les rétrotransposons LINE-1." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4106.
Full textRetrotransposons are mobile genetics elements, which form almost half of our genome. Only the L1HS subfamily of the Long Interspersed Element-1 class (LINE-1 or L1) has retained the ability to jump autonomously in humans. Their mobilization in the germline – but also in some somatic tissues – contributes to human genetic diversity and to diseases, such as cancer. L1 reactivation can be directly mutagenic by disrupting genes or regulatory sequences. In addition, L1 sequences themselves contain many regulatory cis-elements. Thus, L1 insertions near a gene or within intronic sequences can also produce more subtle genic alterations. To explore L1-mediated genic alterations in a genome-wide manner, we have developed a dedicated RNA-seq analysis software able to identify L1 chimeric or antisense transcripts and to annotate these novel isoforms with their associated alternative splicing events. During the course of this work, it appeared that understanding the link between L1HS insertion polymorphisms and phenotype or disease requires a comprehensive view of the different L1HS copies present in a given individual or sample. To provide a comprehensive summary of L1HS insertion polymorphisms identified in healthy or pathological human samples and published in peer-reviewed journals, we developed euL1db, the European database of L1HS retrotransposon insertions in humans. This work will help understanding the overall impact of L1 insertions on gene expression, at a genome-wide scale
Cattenoz, Pierre. "Caractérisation de l'expression des éléments Alu et du phénomène d'édition de l'ARN chez l'humain et la souris." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00715812.
Full textBook chapters on the topic "Retrotransposon; RNA"
Marquet, Roland. "Importance of Modified Nucleotides in Replication of Retroviruses, Plant Pararetroviruses, and Retrotransposons." In Modification and Editing of RNA, 517–33. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818296.ch28.
Full textBoeke, Jef D. "Retrotransposons." In RNA Genetics, 59–103. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076432-4.
Full text"Endogenous Retrotransposon Sequences of the Schistosom a m an son i Intermediate Snail Host, B iom pha la ria g la bra ta." In Mobile Genetic Elements in Metazoan Parasites, 63–74. CRC Press, 2009. http://dx.doi.org/10.1201/9781498712880-9.
Full textConference papers on the topic "Retrotransposon; RNA"
Nikolaeva, Elena I. "Genetics and psychophysiology of ADHD and autism." In 2nd International Neuropsychological Summer School named after A. R. Luria “The World After the Pandemic: Challenges and Prospects for Neuroscience”. Ural University Press, 2020. http://dx.doi.org/10.15826/b978-5-7996-3073-7.12.
Full textZhou, Zhihong, Cheng Wang, and Qidong Hu. "Abstract A05: Retrotransposon-derived RNAs in regulating cancer-related alternative splicing." In Abstracts: AACR Special Conference on Noncoding RNAs and Cancer: Mechanisms to Medicines; December 4-7, 2015; Boston, MA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.nonrna15-a05.
Full text