Academic literature on the topic 'Retrotransposon; RNA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Retrotransposon; RNA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Retrotransposon; RNA"

1

Zagoskina, Arina, Sergei Firsov, Irina Lazebnaya, Oleg Lazebny, and Dmitry V. Mukha. "R2 and Non-Site-Specific R2-Like Retrotransposons of the German Cockroach, Blattella germanica." Genes 11, no. 10 (October 15, 2020): 1202. http://dx.doi.org/10.3390/genes11101202.

Full text
Abstract:
The structural and functional organization of the ribosomal RNA gene cluster and the full-length R2 non-LTR retrotransposon (integrated into a specific site of 28S ribosomal RNA genes) of the German cockroach, Blattella germanica, is described. A partial sequence of the R2 retrotransposon of the cockroach Rhyparobia maderae is also analyzed. The analysis of previously published next-generation sequencing data from the B. germanica genome reveals a new type of retrotransposon closely related to R2 retrotransposons but with a random distribution in the genome. Phylogenetic analysis reveals that these newly described retrotransposons form a separate clade. It is shown that proteins corresponding to the open reading frames of newly described retrotransposons exhibit unequal structural domains. Within these retrotransposons, a recombination event is described. New mechanism of transposition activity is discussed. The essential structural features of R2 retrotransposons are conserved in cockroaches and are typical of previously described R2 retrotransposons. However, the investigation of the number and frequency of 5′-truncated R2 retrotransposon insertion variants in eight B. germanica populations suggests recent mobile element activity. It is shown that the pattern of 5′-truncated R2 retrotransposon copies can be an informative molecular genetic marker for revealing genetic distances between insect populations.
APA, Harvard, Vancouver, ISO, and other styles
2

Andrzejewska, Angelika, Małgorzata Zawadzka, Julita Gumna, David J. Garfinkel, and Katarzyna Pachulska-Wieczorek. "In vivostructure of the Ty1 retrotransposon RNA genome." Nucleic Acids Research 49, no. 5 (February 23, 2021): 2878–93. http://dx.doi.org/10.1093/nar/gkab090.

Full text
Abstract:
AbstractLong terminal repeat (LTR)-retrotransposons constitute a significant part of eukaryotic genomes and influence their function and evolution. Like other RNA viruses, LTR-retrotransposons efficiently utilize their RNA genome to interact with host cell machinery during replication. Here, we provide the first genome-wide RNA secondary structure model for a LTR-retrotransposon in living cells. Using SHAPE probing, we explore the secondary structure of the yeast Ty1 retrotransposon RNA genome in its native in vivo state and under defined in vitro conditions. Comparative analyses reveal the strong impact of the cellular environment on folding of Ty1 RNA. In vivo, Ty1 genome RNA is significantly less structured and more dynamic but retains specific well-structured regions harboring functional cis-acting sequences. Ribosomes participate in the unfolding and remodeling of Ty1 RNA, and inhibition of translation initiation stabilizes Ty1 RNA structure. Together, our findings support the dual role of Ty1 genomic RNA as a template for protein synthesis and reverse transcription. This study also contributes to understanding how a complex multifunctional RNA genome folds in vivo, and strengthens the need for studying RNA structure in its natural cellular context.
APA, Harvard, Vancouver, ISO, and other styles
3

Moss, Walter N., Danna G. Eickbush, Michael J. Lopez, Thomas H. Eickbush, and Douglas H. Turner. "The R2 retrotransposon RNA families." RNA Biology 8, no. 5 (September 2011): 714–18. http://dx.doi.org/10.4161/rna.8.5.16033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghoshal, Kankana, Jane Theilmann, Ron Reade, Ajay Maghodia, and D'Ann Rochon. "Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection." Journal of Virology 89, no. 21 (August 12, 2015): 10748–61. http://dx.doi.org/10.1128/jvi.01466-15.

Full text
Abstract:
ABSTRACTNext-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution.IMPORTANCEViruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study, we show, using next-generation sequence analysis, that CNV also encapsidates host RNA species, which account for ∼0.1% of the RNA packaged in CNV particles. The encapsidated host RNAs predominantly include chloroplast RNAs, reinforcing previous observations that CNV CP enters chloroplasts during infection. Remarkably, the most abundantly encapsidated cytoplasmic mRNAs consisted of retrotransposon-like RNA sequences, similar to findings recently reported for flock house virus (A. Routh, T. Domitrovic, and J. E. Johnson, Proc Natl Acad Sci U S A 109:1907–1912, 2012). Encapsidation of retrotransposon sequences may contribute to their horizontal transmission should CNV virions carrying retrotransposons infect a new host. Such an event could lead to large-scale genomic changes in a naive plant host, thus facilitating host evolutionary novelty.
APA, Harvard, Vancouver, ISO, and other styles
5

Sabot, François, Ruslan Kalendar, Marko Jääskeläinen, Chang Wei, Jaakko Tanskanen, and Alan H. Schulman. "Retrotransposons: Metaparasites and Agents of Genome Evolution." Israel Journal of Ecology and Evolution 52, no. 3-4 (April 12, 2006): 319–30. http://dx.doi.org/10.1560/ijee_52_3-4_319.

Full text
Abstract:
Transposable elements comprise the bulk of higher plant genomes. The majority of these elements are the Class I LTR retrotransposons, which transpose via an RNA intermediate in a "Copy-and-Paste" mechanism. Because retrotransposons use cellular resources and their own enzymes to replicate independently of the genome as a whole, and have thereby become in many cases more predominant than the cellular genes, they have been considered "selfish DNA" and nuclear parasites. They are thought to share many features of the internal life cycle of retroviruses such as HIV (lentiviruses). However, whereas at least some of the retroviruses arriving in an organism during an infection must be functional in order for the infection to proceed, some LTR retrotransposon families appear to completely lack active members even though they remain mobile. Furthermore, the process of retrotransposition is inherently error-prone and mutagenic, giving rise to "pseudospecies," or clusters of imperfect copies. The non-autonomous retrotransposons are able to cis- and trans-parasitize host retrotransposons to gain mobility, much as do defective interfering particles of RNA viruses. Hence, a complex dynamic is set up, whereby the impact of retrotransposons on genomes can be under selection on the organismal level; the impact of non-autonomous retrotransposons on autonomous ones can likewise be under selection if there is selection on the autonomous elements themselves. We are exploring the retrotransposon life cycle and the causes and possible consequences of non-autonomy at each stage regarding genome evolution.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Wenwen, Karen Goossens, Mario Van Poucke, Katrien Forier, Kevin Braeckmans, Ann Van Soom, and Luc J. Peelman. "High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression." Reproduction, Fertility and Development 28, no. 7 (2016): 948. http://dx.doi.org/10.1071/rd14133.

Full text
Abstract:
Retrotransposons are transposable elements that insert extra copies of themselves throughout the genome via an RNA intermediate using a ‘copy and paste’ mechanism. They account for more than 44% of the bovine genome and have been reported to be functional, especially during preimplantation embryo development. In the present study, we tested whether high oxygen tension (20% O2) influences global DNA methylation analysed by immunofluorescence staining of developing bovine embryos and whether this has an effect on the expression of some selected retrotransposon families. High oxygen tension significantly increased global DNA methylation in 4-cell embryos and blastocysts. A significant expression difference was observed for ERV1-1-I_BT in female blastocysts, but no significant changes were observed for the other retrotransposon families tested. Therefore, the study indicates that global DNA methylation is not necessarily correlated with retrotransposon expression in bovine preimplantation embryos.
APA, Harvard, Vancouver, ISO, and other styles
7

Alzohairy, Ahmed M., Gábor Gyulai, Mohamed F. Ramadan, Sherif Edris, Jamal S. M. Sabir, Robert K. Jansen, Hala F. Eissa, and Ahmed Bahieldin. "Retrotransposon-based molecular markers for assessment of genomic diversity." Functional Plant Biology 41, no. 8 (2014): 781. http://dx.doi.org/10.1071/fp13351.

Full text
Abstract:
Retrotransposons (RTs) are major components of most eukaryotic genomes. They are ubiquitous, dispersed throughout the genome, and their abundance correlates with genome size. Their copy-and-paste lifestyle in the genome consists of three molecular steps involving transcription of an RNA copy from the genomic RT, followed by reverse transcription to generate cDNA, and finally, reintegration into a new location in the genome. This process leads to new genomic insertions without excision of the original element. The target sites of insertions are relatively random and independent for different taxa; however, some elements cluster together in ‘repeat seas’ or have a tendency to cluster around the centromeres and telomeres. The structure and copy number of retrotransposon families are strongly influenced by the evolutionary history of the host genome. Molecular markers play an essential role in all aspects of genetics and genomics, and RTs represent a powerful tool compared with other molecular and morphological markers. All features of integration activity, persistence, dispersion, conserved structure and sequence motifs, and high copy number suggest that RTs are appropriate genomic features for building molecular marker systems. To detect polymorphisms for RTs, marker systems generally rely on the amplification of sequences between the ends of the RT, such as (long-terminal repeat)-retrotransposons and the flanking genomic DNA. Here, we review the utility of some commonly used PCR retrotransposon-based molecular markers, including inter-primer binding sequence (IPBS), sequence-specific amplified polymorphism (SSAP), retrotransposon-based insertion polymorphism (RBIP), inter retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP).
APA, Harvard, Vancouver, ISO, and other styles
8

Sandmeyer, Suzanne B., and Kristina A. Clemens. "Function of a retrotransposon nucleocapsid protein." RNA Biology 7, no. 6 (November 2010): 642–54. http://dx.doi.org/10.4161/rna.7.6.14117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalendar, Ruslan, Olga Raskina, Alexander Belyayev, and Alan H. Schulman. "Long Tandem Arrays of Cassandra Retroelements and Their Role in Genome Dynamics in Plants." International Journal of Molecular Sciences 21, no. 8 (April 22, 2020): 2931. http://dx.doi.org/10.3390/ijms21082931.

Full text
Abstract:
Retrotransposable elements are widely distributed and diverse in eukaryotes. Their copy number increases through reverse-transcription-mediated propagation, while they can be lost through recombinational processes, generating genomic rearrangements. We previously identified extensive structurally uniform retrotransposon groups in which no member contains the gag, pol, or env internal domains. Because of the lack of protein-coding capacity, these groups are non-autonomous in replication, even if transcriptionally active. The Cassandra element belongs to the non-autonomous group called terminal-repeat retrotransposons in miniature (TRIM). It carries 5S RNA sequences with conserved RNA polymerase (pol) III promoters and terminators in its long terminal repeats (LTRs). Here, we identified multiple extended tandem arrays of Cassandra retrotransposons within different plant species, including ferns. At least 12 copies of repeated LTRs (as the tandem unit) and internal domain (as a spacer), giving a pattern that resembles the cellular 5S rRNA genes, were identified. A cytogenetic analysis revealed the specific chromosomal pattern of the Cassandra retrotransposon with prominent clustering at and around 5S rDNA loci. The secondary structure of the Cassandra retroelement RNA is predicted to form super-loops, in which the two LTRs are complementary to each other and can initiate local recombination, leading to the tandem arrays of Cassandra elements. The array structures are conserved for Cassandra retroelements of different species. We speculate that recombination events similar to those of 5S rRNA genes may explain the wide variation in Cassandra copy number. Likewise, the organization of 5S rRNA gene sequences is very variable in flowering plants; part of what is taken for 5S gene copy variation may be variation in Cassandra number. The role of the Cassandra 5S sequences remains to be established.
APA, Harvard, Vancouver, ISO, and other styles
10

Kojima, Kenji K., Takumi Matsumoto, and Haruhiko Fujiwara. "Eukaryotic Translational Coupling in UAAUG Stop-Start Codons for the Bicistronic RNA Translation of the Non-Long Terminal Repeat Retrotransposon SART1." Molecular and Cellular Biology 25, no. 17 (September 1, 2005): 7675–86. http://dx.doi.org/10.1128/mcb.25.17.7675-7686.2005.

Full text
Abstract:
ABSTRACT Most eukaryotic cellular mRNAs are monocistronic; however, many retroviruses and long terminal repeat (LTR) retrotransposons encode multiple proteins on a single RNA transcript using ribosomal frameshifting. Non-long terminal repeat (non-LTR) retrotransposons are considered the ancestor of LTR retrotransposons and retroviruses, but their translational mechanism of bicistronic RNA remains unknown. We used a baculovirus expression system to produce a large amount of the bicistronic RNA of SART1, a non-LTR retrotransposon of the silkworm, and were able to detect the second open reading frame protein (ORF2) by Western blotting. The ORF2 protein was translated as an independent protein, not as an ORF1-ORF2 fusion protein. We revealed by mutagenesis that the UAAUG overlapping stop-start codon and the downstream RNA secondary structure are necessary for efficient ORF2 translation. Increasing the distance between the ORF1 stop codon and the ORF2 start codon decreased translation efficiency. These results are different from the eukaryotic translation reinitiation mechanism represented by the yeast GCN4 gene, in which the probability of reinitiation increases as the distance between the two ORFs increases. The translational mechanism of SART1 ORF2 is analogous to translational coupling observed in prokaryotes and viruses. Our results indicate that translational coupling is a general mechanism for bicistronic RNA translation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Retrotransposon; RNA"

1

Attig, Jan. "Impact of retrotransposon-derived RNA elements and their recognition by RNA binding proteins." Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roth, Jeanne-Francoise. "Regulation and assembly of the yeast Ty1 virus like particles." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soufuku, Kozue. "Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome." Kyoto University, 2016. http://hdl.handle.net/2433/215439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wai-Lun Patrick. "Translation of the two proteins encoded by the mouse LINE1 retrotransposon /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.

Find full text
Abstract:
Thesis (Ph.D. in Biophysics & Genetics, Human Medical Genetics Program) -- University of Colorado Denver, 2007.
Typescript. Includes bibliographical references (leaves 123-147). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
APA, Harvard, Vancouver, ISO, and other styles
5

Chitiprolu, Maneka. "Novel Regulatory Mechanisms of Autophagy in Human Disease: Implications for the Development of Therapeutic Strategies." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38441.

Full text
Abstract:
The dysfunction of autophagy pathways has been linked to the development and progression of numerous human diseases, in particular neurological disorders and cancer. Investigating these pathological autophagy mechanisms is essential to gain insights into the underlying disease mechanisms, identify novel biomarkers, and develop targeted therapies. In this thesis, I present three manuscripts that investigate the regulatory mechanisms of autophagy machinery in human diseases. In the first manuscript (Chitiprolu et al., 2018), we investigated the mechanism of p62-mediated selective autophagic clearance of RNA stress granules implicated in Amyotrophic Lateral Sclerosis (ALS). Repeat expansions in C9ORF72, the major cause of ALS, reduce C9ORF72 levels but how this impacts stress granules is uncertain. By employing mass spectrometry, high resolution imaging and biochemical assays, we demonstrated that the autophagy receptor p62 associates with C9ORF72 to eliminate stress granules by autophagy. This requires p62 to associate with proteins that are symmetrically methylated on arginines. Patients with C9ORF72 repeat expansions accumulate symmetric arginine dimethylated proteins which co-localize with p62. This suggests that C9ORF72 initiates a cascade of ALS-linked proteins (C9ORF72, p62, SMN, FUS) to recognize stress granules for degradation by autophagy and hallmarks of a defect in this process are observable in ALS patients. The second manuscript (Guo, Chitiprolu et al., 2014) describes the mechanism by which autophagy degrades retrotransposon RNA from both long and short interspersed elements, thereby preventing new retrotransposon insertions into the genome. By employing quantitative imaging tools, we demonstrated that retrotransposon RNA localizes to RNA granules that are selectively degraded by the autophagy receptors NDP52 and p62. Mice lacking a copy of Atg6/Beclin1, a gene critical for autophagy, also accumulate both retrotransposon RNA and genomic insertions. This suggests a mechanism for the increased tumorigenesis upon autophagy inhibition and therefore a role for autophagy in tempering evolutionary change. Finally, the third manuscript (Guo, Chitiprolu et al., 2017) examines the intersection of autophagy machinery with exosome release and function in cancer metastasis. By employing dynamic light scattering, Nanosight particle tracking, electron microscopy, super-resolution imaging and Western blotting, we robustly quantified exosome identity and purity in multiple cell lines. We demonstrated that exosome production is strongly reduced in cells lacking Atg5 and Atg16L1, but this is independent of Atg7 and canonical autophagy. The effect of Atg5 on exosome production promotes the migration and in vivo metastasis of orthotopic breast cancer cells. These findings delineate autophagy-independent pathways by which autophagy-related genes can contribute to metastasis. Taken together, data presented in the three manuscripts highlight the molecular mechanisms of autophagy core machinery proteins and selective receptors such as Atg5, p62 and NDP52, in the pathogenesis of cancer and neurodegeneration. In these diseases characterized by mutations in autophagy pathways, the mechanisms we uncover provide insights into their causes and serve as potential therapeutic targets.
APA, Harvard, Vancouver, ISO, and other styles
6

Raplee, Isaac D. "Contribution of Retrotransposons to Breast Cancer Malignancy." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7900.

Full text
Abstract:
The components contributing to cancer progression, especially the transition from early to invasive are unknown. Consequently, the biological reasons are unclear as to why some patients diagnosed with atypia and ductal carcinoma in situ (DCIS) never progress into invasive breast cancer. The “one gene at a time” approach does not sufficiently predict progression. To elucidate the early stage progression to invasive ductal cancer, expression signature of transcripts and transposable elements in micropunched samples of formalin-fixed, paraffin embedded (FFPE) tissue was conducted. A bioinformatics pipeline to analyze poor quality, short reads (>36 nts) from RNA-Seq data was created to compare the most common tools for alignment and differential expression. Most samples from patients prepared for RNA-seq analysis are acquired through archived FFPE tissue collections, which have low RNA quality. The pipeline analytics revealed that STAR alignment software outperformed others. Furthermore, our comparison revealed both DESeq2 and edgeR, with the estimateDisp function applied, both perform well when analyzing greater than 12 replicates. Transcriptome analysis revealed progressive diversification into known oncogenic pathways, a few novel biochemical pathways, in addition to antiviral and interferon activation. Furthermore, the transposable element (TE) signature during breast cancer progression at early stages indicated long terminal repeat (LTRs) as the most abundantly differentially expressed TEs. LTRs belong to endogenous retroviruses (ERV), a subclass of TEs. The retroviral and innate immune response activity in DCIS, which indirectly corroborates the increase in ERV expression in this pre-malignant stage. Finally, to demonstrate the potential role of TEs in the transition from pre-malignant to malignant breast cancer we used pharmacological approaches to alter global TE expression and inhibit retrotransposition activity in control and breast cancer cell lines. It was expected that dysregulation of TEs be associated with increased invasiveness and growth. However, our results indicated that DNA methyltransferase inhibitor 5-Azacytidine (AZA) consistently retarded cell migration and growth. While unexpected, these findings corroborate recent studies that AZA may induce an interferon response in cancer via increased ERV expression. This body of work illustrates the importance of understanding bioinformatics methods used in RNA-seq analysis of common clinical samples. These studies suggest the potential for TEs as biomarkers for disease progression and novel therapeutic approach to investigate in additional model systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Quintanilha, Danielle Maluf. "Tnt1 retrotransposon expression and ethylene phytohormone interplay mediates tobacco (Nicotiana tabacum) defense responses." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11151/tde-11112014-165547/.

Full text
Abstract:
Tnt1 is a transcriptionally active LTR-retrotransposon, present in over 600 copies in the Nicotiana tabacum genome. Under normal growth conditions, Tnt1 expression is limited to basal levels, but its expression is further induced under biotic and abiotic stresses. Transgenic tobacco plants (HP plants) expressing a Tnt1 reverse transcriptase hairpin were generated. These showed pleiotropic phenotypes such as cell death spots on the leaves and callose deposition and other severe abnormal development in aerial and underground portions. RNA sequencing of leaves with cell death spots revealed a rewiring of transcriptional regulatory networks related to stress responses exclusive to HPs. Among the positively modulated genes were ethylene synthesis and response cascade genes. The objective of the present work was to unravel the relation observed between Tnt1 and ethylene, generating a model. The results obtained suggest that HP seedlings and plants have increased ethylene synthesis when compared to the wildtype. Folding prediction of Tnt1 messenger RNA allowed the identification of ethylene-responsive sequences in putative stem loop locations. Thus it is possible that Tnt1 expression can produce small RNAs targeted to sequences present in the Tnt1 retrotransposon itself as well as at the promoter region of other ethylene responsive genes. Quantification of the expression of Tnt1 and ethylene related genes revealed \"phase opposition\" expression kinetics in the HPs, which led us to hypothesize that there might be an antagonistic relationship between the expression of Tnt1 and the expression of ethylene responsive genes involved in plant defense responses. Our findings suggest that Tnt1 could generate sRNAs that exerts transcriptional control over itself as well as other genes. Our model establishes a completely new biological role for a retrotransposon: Tnt1 would provide feedback control to ethylene-mediated gene regulation in tobacco defense responses, bringing the system back to a homeostatic condition and turning the defense responses down.
Tnt1 é um retrotransposon com LTR transcricionalmente ativo, e está presente em mais de 600 cópias no genoma de Nicotiana tabacum. Em condições normais de crescimento Tnt1 é expresso em níveis basais. No entanto, sua expressão é induzida pelo estímulo de estresses bióticos e abióticos. Plantas de tabaco transgênicas (chamadas de HP) expressando um grampo da transcriptase reversa de Tnt1 foram geradas. Estas apresentaram fenótipos como: pontos de morte celular e deposição de calose nas folhas e severas anomalias de desenvolvimento severas nas porções aérea e radicular das plantas. Sequenciamento de RNA de folhas com os pontos de morte celular revelou uma reorganização de redes de regulação transcricional relacionadas a resposta a estresses. Essas novas redes surgiram exclusivamente nas plantas HP. Entre os genes modulados positivamente estavam genes de síntese e de resposta ao etileno. O presente trabalho teve como objetivo elucidar a relação observada entre Tnt1 e o fitormônio etileno gerando um modelo de atuação. Os resultados obtidos permitiram demonstrar que plântulas e plantas HP adultas tem um aumento na síntese de etileno quando comparadas à selvagem. A predição do dobramento do RNA mensageiro de Tnt1 permitiu a identificação de sequências responsivas ao etileno localizadas em posição potencial para formar grampos. Desta forma, é possível que a expressão de Tnt1 leve à produção de pequenos RNAs que tem como alvo sequências responsivas a etileno presentes tanto no próprio elemento quanto em regiões promotoras de outros genes. A quantificação da expressão de Tnt1 versus genes relacionados ao etileno revelou um padrão em \"oposição de fase\" nas HPs, o que nos levou a hipotetizar que talvez ocorra uma relação antagonista entre a expressão de Tnt1 e a expressão de genes responsivos ao etileno envolvidos em respostas de defesa vegetais. Nossos resultados sugerem que Tnt1 pode gerar pequenos RNAs que exercem controle transcricional sobre Tnt1 e outros genes endógenos. Nosso modelo estabelece um novo papel biológico para um retrotransposon: Tnt1 agiria como um modulador da indução de genes mediada por etileno nas respostas de defesa de tabaco, trazendo o sistema de volta à condição homeostática e encerrando as respostas de defesa.
APA, Harvard, Vancouver, ISO, and other styles
8

Barbosa, Patrícia. "ELEMENTOS GENÔMICOS REPETITIVOS NO COMPLEXO Astyanax scabripinnis (TELEOSTEI, CHARACIDAE)." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2013. http://tede2.uepg.br/jspui/handle/prefix/982.

Full text
Abstract:
Made available in DSpace on 2017-07-21T20:00:01Z (GMT). No. of bitstreams: 1 Patricia Barbosa.pdf: 1571215 bytes, checksum: daac7b661ca93cbfd05ca0e7cda85213 (MD5) Previous issue date: 2013-02-08
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The most part of the eukaryote genomes is constituted for repetitive DNA or multiple copies DNA, which has already been considered as “junk”, may be associated to the heterochromatin. In this study three Astyanax scabripinnis populations from Pindamonhangaba and Guaratinguetá (SP, Brazil) rivers and stream and one population from Maringá (PR, Brazil) were analyzed about the nucleolar organizing region (NORs), As51 satellite DNA, 18S and 5S rDNA location. Moreover, repetitive sequences were isolated and mapped through Cot-1 technique, which showed homology with UnaL2, a LINE type retrotransposon. The fluorescent in situ hybridization (FISH), with the isolated built retrotransposon probe, evidenced disperse labeled and stronger in centromeric and telomeric chromosomes regions, co-located and interspersed with the 18S DNAr and As51, proven by the fiber-FISH technique. The B chromosome of those populations showed very conspicuous labeled with the LINE probe, also co-located with the As51 sequences. The NORs were actives in a single site of a homologue pair in all three populations, with no evidence that the transposable elements and repetitive DNA have influence in its regulation at the performed analyzes level.
A maior parte do genoma dos eucariotos é constituída por DNA repetitivo ou DNA de múltiplas cópias, o qual já foi considerado “lixo”, podendo estar associado à heterocromatina. Neste estudo foram analisadas três populações de Astyanax scabripinnis provenientes de rios e córregos de Pindamonhangaba e Guaratinguetá (SP, Brasil) e uma população da cidade de Maringá (PR, Brasil) quanto a localização das regiões organizadoras de nucléolo (RONs), DNA satélite As51, DNA ribossomal (DNAr) 18S e DNAr 5S. Ainda, foram isoladas e mapeadas sequências repetitivas por meio da técnica de Cot-1, que mostrou homologia com UnaL2, retrotransposon do tipo LINE. A hibridação in situ fluorescente (FISH), com sonda construída para o retrotransposon isolado, evidenciou marcações dispersas e mais concentradas em regiões centroméricas e teloméricas dos cromossomos, co-localizadas e interespaçadas com DNAr 18S e As51, comprovada pela técnica de fiber-FISH. O cromossomo B das populações mostrou marcações bastante conspícuas com a sonda LINE, também co-localizada com sequências As51. As RONs apresentaram-se ativas em sítios únicos de um par homólogo nas três populações, não havendo indícios de que elementos transponíveis e DNA repetitivo tenham influência na sua regulação ao nível das análises realizadas.
APA, Harvard, Vancouver, ISO, and other styles
9

Mir, Ashfaq Ali. "Variations structurales du génome et du transcriptome humains induites par les rétrotransposons LINE-1." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4106.

Full text
Abstract:
Les rétrotransposons sont des éléments génétiques mobiles qui constituent presque la moitié de notre génome. Seule la sous-famille L1HS appartenant à la classe des Long Interspersed Element-1(LINE-1 ou L1) a gardé une capacité de mobilité autonome chez l’Homme. Leur mobilisation dans la lignée germinale, mais Aussi dans certains tissus somatiques, contribue à la diversité du génome humain ainsi qu’à certaines maladies comme le cancer. Ainsi, de nouvelles copies de L1 peuvent directement s'intégrer dans des séquences codantes ou régulatrices, et altérer leur fonction. De plus, les séquences L1 contiennent elles-mêmes plusieurs éléments cis-régulateurs et leur insertion à proximité ou dans un gène peut produire des altérations génétiques plus subtiles. Afin d'explorer l'ensemble de ces altérations à l'échelle du génome, nous avons développé un logiciel dédié à l’analyse des données de séquençage d'ARN qui permet d'identifier des transcrits chimériques ou antisens impliquant les L1 et d'annoter ces isoformes en fonction des différents événements d’épissage alternatif subits. Au cours de ce travail, il est apparu que la compréhension du lien entre polymorphisme des insertions et phénotype nécessite une vue complète des différentes copies L1HS présentes chez un individu donné. Afin de disposer d'un catalogue aussi complet que possible de ces polymorphismes identifiés dans des échantillons humains sains ou pathologiques et publiés dans des journaux scientifiques, nous avons développé euL1db, la base de données des insertions de rétrotransposon L1HS chez l’Homme. En conclusion, ce travail aidera à comprendre l’impact des L1 sur l’expression des gènes, à l'échelle du génome
Retrotransposons are mobile genetics elements, which form almost half of our genome. Only the L1HS subfamily of the Long Interspersed Element-1 class (LINE-1 or L1) has retained the ability to jump autonomously in humans. Their mobilization in the germline – but also in some somatic tissues – contributes to human genetic diversity and to diseases, such as cancer. L1 reactivation can be directly mutagenic by disrupting genes or regulatory sequences. In addition, L1 sequences themselves contain many regulatory cis-elements. Thus, L1 insertions near a gene or within intronic sequences can also produce more subtle genic alterations. To explore L1-mediated genic alterations in a genome-wide manner, we have developed a dedicated RNA-seq analysis software able to identify L1 chimeric or antisense transcripts and to annotate these novel isoforms with their associated alternative splicing events. During the course of this work, it appeared that understanding the link between L1HS insertion polymorphisms and phenotype or disease requires a comprehensive view of the different L1HS copies present in a given individual or sample. To provide a comprehensive summary of L1HS insertion polymorphisms identified in healthy or pathological human samples and published in peer-reviewed journals, we developed euL1db, the European database of L1HS retrotransposon insertions in humans. This work will help understanding the overall impact of L1 insertions on gene expression, at a genome-wide scale
APA, Harvard, Vancouver, ISO, and other styles
10

Cattenoz, Pierre. "Caractérisation de l'expression des éléments Alu et du phénomène d'édition de l'ARN chez l'humain et la souris." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00715812.

Full text
Abstract:
Les éléments Alu sont les retrotransposons les plus prolifiques chez l'humain avec plus d'1 million de copies occupant plus de 10% du génome. Afin de contrecarrer l'expansion des rétro-éléments, les organismes ont développés différents mécanismes pour préserver l'intégrité de leurs génomes. Le plus proéminent, également utilisé pour lutter contre la réinsertion d'ADN viral dans le génome hôte, est l'édition de l'ARN. Chez les mammifères, la plus courante est la déamination de l'adénine en inosine catalysée par la famille de protéine ADAR dont Les principales cibles sont les éléments Alu chez l'humain. L'édition des éléments Alu conduit à leur séquestration dans le noyau des cellules, mute leurs promoteurs internes, cible de l'ARN polymérase III (POLIII), et leurs queues poly-A, prévenant ainsi leur future rétrotransposition. Dans la première partie de cette étude, l'analyse de données de séquençage haut-débit révèle que ~40% des éléments Alu sont reconnus par POLIII, qu'ils sont présents en tant que petits ARN dans le cytoplasme et le noyau des cellules, que certain d'entre eux sont associés à la chromatine, et que la transcription des éléments Alu est un phénomène courant dans les tissus somatiques qui concorde avec l'expression d'éléments LINE1 fonctionnels. Ceci suggère que la rétrotransposition peut être un mécanisme normal dans la plupart des tissus humains. Enfin, l'analyse de l'expression des éléments Alu et LINE1 chez la souris montre que la transcription de rétrotransposons n'est pas spécifique de l'humain. Dans la seconde partie de cette étude, une nouvelle méthode a été développée pour explorer l'impact de l'édition de l'ARN sur le transcriptome en identifiant les ARN édités par séquençage haut-débit. Dans un premier temps, un anticorps ciblant ADAR a été utilisé pour extraire les ARN associés aux protéines de l'édition. Cette méthode n'étant pas suffisamment efficace, une autre stratégie, qui extrait directement les ARN contenant de l'inosine, a été développée : dans un premier temps, l'ARN est fixé à des billes magnétiques par leurs extrémités 3', ensuite, les billes sont traitées au glyoxal/acide borique et à la RNAse T1 pour libérer la région 5' des ARN contenant une ou plusieurs inosines, et enfin, les ARN libérés sont séquencés par séquençage haut débit. En utilisant cette méthode, 1822 sites d'éditions ont été identifiés dans l'ARN de cerveau de souris, incluant 28 nouveaux sites présents dans des séquences codantes qui conduisent à des mutations non-synonymes des futures protéines. Des sites d'éditions ont aussi été observés pour la première fois dans les ARN ribosomaux, les snoRNA et les snRNA.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Retrotransposon; RNA"

1

Marquet, Roland. "Importance of Modified Nucleotides in Replication of Retroviruses, Plant Pararetroviruses, and Retrotransposons." In Modification and Editing of RNA, 517–33. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818296.ch28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boeke, Jef D. "Retrotransposons." In RNA Genetics, 59–103. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076432-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Endogenous Retrotransposon Sequences of the Schistosom a m an son i Intermediate Snail Host, B iom pha la ria g la bra ta." In Mobile Genetic Elements in Metazoan Parasites, 63–74. CRC Press, 2009. http://dx.doi.org/10.1201/9781498712880-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Retrotransposon; RNA"

1

Nikolaeva, Elena I. "Genetics and psychophysiology of ADHD and autism." In 2nd International Neuropsychological Summer School named after A. R. Luria “The World After the Pandemic: Challenges and Prospects for Neuroscience”. Ural University Press, 2020. http://dx.doi.org/10.15826/b978-5-7996-3073-7.12.

Full text
Abstract:
The paper discusses the brain mechanisms of autism and attention deficit hyperactivity disorder. It is shown that these disorders are associated with different genetic causes that create certain psychophysiological mechanisms. Nevertheless, their diagnosis is interrelated. Moreover, a child is often first diagnosed with ADHD, and then the diagnosis is changed to “autism spectrum disease”. Among the most common causes of the disease is the behavior of retrotransposons. Retrotransposons (also called transposons via intermediate RNA) are genetic elements that can amplify themselves in the genome. These DNA sequences use a “copy and paste” mechanism, whereby they are first transcribed into RNA and then converted back to identical DNA sequences via reverse transcription, and these sequences are then inserted into the genome at target sites. In humans, retro elements take up 42 % of the DNA. The conclusion is made that for the formation of an individual profile of gene expression in the neuron, the most important is the phenomenon of somatic mosaicism, due to the process of L1 retrotransposition, in addition to the classical described mechanisms of differentiation. The number of such events and their localization is significant as they are likely to contribute to the development of both autism and ADHD.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Zhihong, Cheng Wang, and Qidong Hu. "Abstract A05: Retrotransposon-derived RNAs in regulating cancer-related alternative splicing." In Abstracts: AACR Special Conference on Noncoding RNAs and Cancer: Mechanisms to Medicines; December 4-7, 2015; Boston, MA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.nonrna15-a05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography