Contents
Academic literature on the topic 'Résonance de plasmon de surface localisé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Résonance de plasmon de surface localisé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Résonance de plasmon de surface localisé"
Khadir, Samira, Mahmoud Chakaroun, and Azzedine Boudrioua. "Effet du plasmon de surface localisé sur les propriétés des sources organiques (OLED)." Photoniques, no. 90 (January 2018): 26–27. http://dx.doi.org/10.1051/photon/20189026.
Full textDissertations / Theses on the topic "Résonance de plasmon de surface localisé"
Fevrier, Mickaël. "Couplage entre un guide d’onde diélectrique et un guide à plasmon de surface localisé : conception, fabrication et caractérisation." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112040/document.
Full textThis PhD work presents a theoretical, numerical and experimental study of the integration of a gold nanoparticle chain supporting "localized surface plasmon resonances" on a dielectric waveguide. The localized surface plasmon allows a sub-wavelength confinement of light which could lead to the achievement of ultra-compact optical components. However, the high level of optical losses restricts their application to short propagating distances unlike dielectric waveguides. A judicious combination of both types of guides should therefore allow taking profit of their respective advantages. Firstly, we have theoretically studied the properties of nanoparticles chains using an analytical model that we have developed following the coupled dipoles approximation. This has helped us to determine the shape and size of nanoparticles, which have been further used in a FDTD software, to simulate the coupling between the chain and the dielectric waveguide (SOI or Si3N4). Using this numerical study, we have deduced the geometries of structures to be fabricated. The realized structures have been characterized using a spectrally resolved transmission set-up, built during this thesis, and an optical near field measurement set-up (collaboration LNIO Troyes). For the first time, we have experimentally shown the properties of short nanoparticle chains integrated on a SOI waveguide as well as the existence of a coupled waveguide phenomenon between long nanoparticle chains and SOI waveguides. A record value has been obtained for the coupling constant at telecom wavelengths (near infrared). The light energy carried by the TE mode of the SOI waveguide can be completely transferred into the plasmonic waveguide via the first 4 or 5 nanoparticles of the chain, which means a distance of less than 600 nm. We have also studied the properties of Bragg gratings based on localized surface plasmon. Experimental results from spectrally resolved transmission measurements have been compared to theoretical results obtained from an analytical model based on the point dipole approximation in quasi-static regime, on one hand, and using the coupled mode theory, on the other hand. This work opens the way for applications to optical tweezers, sensors or spasers, which will benefit from the integration of metal nanoparticles in photonic circuits
Goffard, Julie. "Etude du couplage entre des nanocristaux de silicium et des plasmons de surface localisés." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0012/document.
Full textThe discovery of photoluminescence of nanometric silicon paves the way to use silicon in optoelectronic devices. However this photoluminescence remains low and a lot of works aim at improving silicon optical properties. In this dissertation we study localized surface plasmons to improve optical properties of silicon nanocrystals. Thanks to the control of all geometrical parameters of silicon nanocrystals and metallic nanoparticles during the fabrication process, the coupling process between these two objects has been studied. The modification of silicon nanocrystals emission as a function of the distance, the size and the nature of metallic nanoparticles has been investigated. Thanks to the development of experimental optical characterization techniques we showed that silicon nanocrystals photoluminescence is modified both spectrally and spatially by localized surface plasmons. This work shows that it’s possible to enhance silicon’s optical properties and thus to devise optoelectronic devices with silicon and plasmons
Fan, Yulong. "Applications des métamatériaux en optique guidée." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS092/document.
Full textMetamaterials (MMs) are artificial components with electromagnetic properties that do not exist in conventional natural materials. Despite tremendous developments achieved since the 2000s in radiofrequency and also in optics, mainly in the radiative mode, the applications of MMs in guided optics, in order to miniaturize the conventional optoelectronic components still remain nearly blank. Following the studies on plasmonic MM in waveguided optics initiated by Mr. Kanté, Mrs. Ghasemi and Mrs. Dubrovina, this thesis work constitutes an original contribution to the design and realization of optoelectronic components based on MMs, including their simulation and characterization methods. During this thesis, 3 components have been proposed, of which 2 have been realized and characterized. These are literally the first demonstrations of MM applications to compact components in waveguided optics and it can be concluded that a new family of infrared components is proposed here. This approach is generic and compatible with conventional integrated circuit platforms: Si, InGaAsP / InP, doped silica, etc. Moreover, it is shown that the control of both the variation of the effective index of the guide associated with the MM, and the resonance frequency of the MM with which these components work, is accessible simply by modifying the dimensions of the nanowires. This will allow these components to operate at other frequencies
Chamtouri, Maha. "Etude exhaustive de la sensibilité des Biopuces plasmoniques structurées intégrant un réseau rectangulaire 1D : effet de la transition des plasmons localisés vers les plasmons propagatifs." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112060/document.
Full textSurface plasmons resonance imaging with continuous thin metallic films have become a central tool for the study of biomolecular interactions. However, in order to extend the field of applications of surface plasmons resonance systems to the trace detection of biomolecules having low molecular weight, a change in the plasmonic sensing methodology is needed. In this study, we investigate theoretically and experimentally the sensing potential of 2D nano- and micro- ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance biosensors when they are used for detection of biomolecular binding events. Numerical simulations were carried out by employing a fast and novel model based on the hybridization of two classical methods, the Fourier Modal Method and the Finite Element Method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro- scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement, and associated figures of merit, compared with the response of the conventional surface plasmon resonance biosensor based on a flat surface, but it also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the nano- and micro- structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions. New figures of merit are introduced to evaluate the performance of the structured biosensors. The structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic fields. New opportunities for further improving the bio-sensitivity are offered if localization of biomolecules can be carried out in these regions of high electromagnetic fields enhancement and confined
Watkins, William L. "Study and development of localised surface plasmon resonance based sensors using anisotropic spectroscopy." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS505.pdf.
Full textLocalised surface plasmon resonance (LSPR) is defined as the collective oscillation of the conduction electron cloud induced by an external electric field. In the case of nanoparticles composed of noble metals such as gold, silver, or copper, the resonance is located in the visible or near UV range. The polarisability of a nanoparticle is directly proportional to four key parameters: its volume, its composition, its shape and its surrounding environment. It is these properties that make LSPR useful for sensor applications. In the case of isotropic particles, such as spheres, the LSPR spectrum shows only one absorption peak. In the case of an anisotropic particle, such as an ellipsoid, the absorption spectrum has two or more distinct peaks. If the absorption cross-section is measured with unpolarised light, multiple maxima are obtained. The key point for these type of systems is the possibility to decouple the resonances using polarised light. In this description the anisotropic system is considered microscopic, i.e. it is only made of one or two particles. In the case of a macroscopic sample, such as a colloidal solution of ellipsoids or nanorods, the absorption spectrum will always have multiple absorption maxima, and they cannot be decoupled because the sample is not globally anisotropic.On the other hand, if the sample has a global anisotropy such as aligned nanorods, or nanosphere organised in lines, it is possible to have a plasmon spectrum dependent on the light polarisation. Being able to decouple the resonances of an anisotropic sample makes it possible to measure a differential spectrum by taking the difference of the two absorption spectra. This is experimentally possible by using anisotropic transmission spectroscopy which measures the optical anisotropy. The advantage is to obtain a relative and differential spectrum more stable and reproducible. Moreover, it is now possible to follow the evolution of the optical response of the plasmonic particles no longer by measuring a spectral shift but by measuring the change in intensity of the signal at a fixed wavelength. This method is used on two case studies which are the measurement of the interaction of dihydrogen with gold nanoparticles, as well as the detection of low partial pressure of dihydrogen in a carrier gas (argon, and air) using palladium nanoparticles, for hydrogen sensing applications
Al-Aridhee, Tahseen. "Numerical study of optical properties of single and periodic nanostructures : from nanoantennas to enhanced transmission metamaterials." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2004/document.
Full textThe release of the rst report by Faraday in 1857 set the foundation of the production of metal nanoparticlesand their unexpected optical properties (coloring). More recently, controlling and guiding light via plasmonicresonance in nanostructures enable a lot of applications affecting everyday life that involves light. Plasmonresonance of metallic structures is a key phenomenon that allows unique optical properties through the interactionof light with the free electrons of the metal. The excitation of Localized Surface Plasmon Resonance(LSPR) leads to turn-on large local enhancements of electromagnetic energy as within antennas or to routelight as waveguide to desired region with high transmission through the excitation of Propagating SurfacePlasmon (PSP). During this thesis, we have developed an existing algorithm in order to calculate the opticalresponse of NPs of any shape. We have especially determined the localized energy enhancement factor interm of optical response of nano-antenna. This anisotropic (polarization dependent) NPs type can feature, atplasmon resonance, scattering efciency factor higher than 25. Moreover, an important systematic study hasbeen performed in order to optimize design of such NPs.Concerning the PSP that are involved in the enhanced transmission through Annular Aperture Arrays (AAAs),we systematically study the properties of the excitation of the peculiar Transverse ElectroMagnetic (TEM) guidedmode inside such nano-apertures. A complete numerical study is performed to correctly design the structurebefore it is experimentally characterized. For reasons associated to fabrication constraints and efciency,a slanted AAA made in perfectly conducting metal is proposed and studied. We numerically and analyticallydemonstrate some intrinsic properties of the structure showing a transmission coefcient of at least 50%ofan un-polarized incident beam independently of the illumination configuration (polarization, angle, and planeof incidence). At the TEM peak transmission, the laminar flow of the energy through the structure can exhibitgiant deviation over very small distances ( ). The results presented in this thesis could be considered as animportant contribution to the understanding of the enhanced transmission phenomenon based on the excitationof guided modes
Gharbi, Ines. "Films cristal liquide polymérisés et auto-organisation de nanoparticules d’or." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS286.
Full textWe study composite systems liquid crystals / polymers / nanoparticles. We use liquid crystal distortions to control the induced nanoparticle organization and also the polymerization of liquid crystal matrices that ensures the stability of the composites and allows to diversify the imaging and optical characterization techniques. First of all, we are interested in nematic and cholesteric liquid crystal films, with and without polymer, in the absence and in the presence of nanoparticles, the latter being chosen as spherical gold nanoparticles of diameter 6nm. Subsequently, we were interested in the polymerization of the so-called smectic oily streaks. The comparison between the different behaviors of the nanoparticles when isolated in solution or gathered and self-organized on a PVA substrate without liquid crystal (LC) or on a substrate with nematic or cholesteric LC, allowed us to understand how the nanoparticles and the matrix interact to reach the final structure of the composite system, characterized by new optical properties of the nanoparticles. We have established how a nematic matrix allows to preserve an almost perfect hexagonal order for gold nanoparticles deposited on the surface, while bringing them closer to each other (induced compression of the monolayer formed) to decrease disorder and distortion induced in the matrix, which significantly shifts the plasmon resonance of the gold nanoparticles. We have also demonstrated that the nanoparticles induce a change of orientation of the nematic molecules towards a tilted orientation, accompanied by a dewetting phenomenon of the matrix on top of the nanoparticles. The transition from a nematic matrix to a cholesteric matrix preserves the hexagonal order of the compressed monolayer for the nanoparticles but with an enhanced disorder, locally induced by the larger elastic distortion close to the air/interface and more specifically at the bottom of the undulations of the cholesteric matrix, which was evidenced by a simulation of a frustrated cholesteric between the two anchoring, planar on PVA and homeotrope with air. The cholesteric modulation structure acts as a mold so that the nanoparticles reproduce on the mesoscopic scale the cholesteric texture at the interface by forming ribbons that perfectly mimic the cholesteric modulations. We again evidence a phenomenon of dewetting, but smaller than for the nematic, in relation with the localization of the nanoparticles in the cholesteric tilted areas above the region of strong cholesteric splay distortion. Within the same cholesteric matrix, the increase of the concentration of nanoparticles causes a profound change in the optical properties of the nanoparticles. We show that it is related to the establishment of new structures for the nanoparticles, always induced by the modulated structure of cholesteric, which, in return is only slightly modified. As the concentration increases, one passes from a monolayer of highly disordered and compressed two-dimensional labyrinths up to 3D structures (aggregates) of controlled size and shape. The optical properties are modified in relation with a strong strengthening of the electromagnetic interaction between nanoparticles. The nanoparticles occupy the overall surface of the cholesteric modulations, which no longer play the role of mold, but are found to be truncated at the surface by the presence of nanoparticles. The fact that the modulated cholesterics is only poorly modified highlights the robustness of this cholesteric structure, but also the combined influence of the cholesteric elastic distortions and of the nanoparticle-induced anchoring on the nanoparticle organization and in return on the induced optical properties. Moreover, concerning the polymerization of smectic oily streaks, we have succeeded to preserve the smectic A texture in the nematic phase, in relation with the creation of a particularly robust polymer skeleton that mimics the initial smectic texture
Vandenhecke, Ellick. "Nanostructuration de surfaces diélectriques par pulvérisation ionique pour guider la croissance de nanoparticules métalliques." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2272/document.
Full textOn the one hand, the aim of this work is to understand and control the formation of periodic nanometric ripples produced by ion sputtering of dielectric thin films. On the other hand, these nanostructured surfaces are used to guide the growth and organization of silver nanoparticles. These anisotropic systems are characterized by a surface plasmon resonance whose spectral postion is dependent on the polarization of the incident light. We first study the influence of different ion beam sputtering parameters (the ions incidence angle and energy, temperature, energy, flux, fluence) on the ripple morphology (period, amplitude, order, ...) by AFM and GISAXS. The relevant parameters for the control of the ripple morphology are identified as well as some of the physical mechanisms involved. Then, we study the influence of the growth conditions on the structural properties of the nanoparticles (metal deposition angle, ripples pattern quality) by HAADF-STEM. We show that the preferential growth along the ripples is promoted by shadowing effects, thus leading to the formation of linear chains with period similar to the underlying ripples and with more or less elongated and aligned nanoparticles. This results in a far-field tunable optical anisotropy arising from polydisperse interparticle gaps (less than a few nanometers) as well as from more or less strong near-field coupling phenomena. These structures could offer potential for surface enhanced Raman spectroscopy (SERS) applications
Kholodtsova, Maria. "Spectral, spatial and temporal properties of multilayered epithelial tissue in vivo in presence of metal nanoparticles in multimodal spectroscopy." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0031/document.
Full textThe thesis work is devoted to spatially-, temporally- and spectrally- resolved laser and biological tissue interactions. The aim of the present thesis was to investigate the influence of colloidal nanoparticles embedded into multilayered biological tissues on their optical properties in order to provide deeper and/or more precise probing. To do so, the integral spectroscopic parameters and lifetime of fluorophore in vicinity of metal nanoparticles were analyzed theoretically and experimentally. Another part of the study was to propose new algorithmic solutions for improving the performance of the estimation process of the optical properties values from spatially resolved spectroscopic measurements. The last part of the thesis was the experimental and theoretical modelling of fluorophore’s kinetics in presence of colloidal gold nanoparticles. The ultra-short pico-second component (around 100 ps) was resolved and correlated to strong nanoparticles dipole field which is compensating the molecule’s dipole
Chamorro, Coral William. "Microstructure, chemistry and optical properties in ZnO and ZnO-Au nanocomposite thin films grown by DC-reactive magnetron co-sputtering." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0253/document.
Full textComposite materials can exhibit properties that none of the individual components show. Moreover, composites at the nanoscale can present new properties compared to the bulk state or to macro-composites due to confinement and quantum size effects. The semiconductor/metal nanocomposites are highly interesting due to their unique catalytic and optoelectronic properties and the possibility to tune them easily. This PhD work gives insight into the specific interactions and resulting physical properties occurring in ZnO and ZnO-Au nanocomposite films grown by reactive DC magnetron sputtering. The results can be summarized in two points: First, it was possible to tune the microstructural and optical properties of ZnO. Epitaxial growth of ZnO onto sapphire was achieved for the first time in O2-rich conditions without thermal assistance. Also, a study of the optical properties highlights the close relationship between the bandgap energy (E_g ) and the defect chemistry in ZnO films. A model was proposed to explain the large scatter of the E_g values reported in the literature. Second, the deep influence of the incorporation of gold into the ZnO matrix on important material properties was revealed. Moreover, the presence of donor (acceptor) defects in the matrix is found to give rise to the reduction (oxidation) of the Au nanoparticles. This research work contributes to a better understanding of semiconductor/metal nanocomposites revealing the key role of the state of the semiconductor matrix
Books on the topic "Résonance de plasmon de surface localisé"
(Editor), Mark L. Brongersma, and Pieter G. Kik (Editor), eds. Surface Plasmon Nanophotonics (Springer Series in Optical Sciences). Springer, 2007.
Find full textThe Mie Theory Basics And Applications. Springer, 2012.
Find full textNanoplasmonics. Taylor & Francis Group, 2014.
Find full textNanoplasmonics Advanced Device Applications. CRC Press, 2013.
Find full text