Journal articles on the topic 'Resistive random-access memory, ReRAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Resistive random-access memory, ReRAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kim, Hyojung, Ji Su Han, Sun Gil Kim, Soo Young Kim, and Ho Won Jang. "Halide perovskites for resistive random-access memories." Journal of Materials Chemistry C 7, no. 18 (2019): 5226–34. http://dx.doi.org/10.1039/c8tc06031b.
Full textAkinaga, Hiroyuki, and Hisashi Shima. "Resistive Random Access Memory (ReRAM) Based on Metal Oxides." Proceedings of the IEEE 98, no. 12 (December 2010): 2237–51. http://dx.doi.org/10.1109/jproc.2010.2070830.
Full textShan, Yingying, Zhensheng Lyu, Xinwei Guan, Adnan Younis, Guoliang Yuan, Junling Wang, Sean Li, and Tom Wu. "Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites." Physical Chemistry Chemical Physics 20, no. 37 (2018): 23837–46. http://dx.doi.org/10.1039/c8cp03945c.
Full textChen, Yu-Li, Mon-Shu Ho, Wen-Jay Lee, Pei-Fang Chung, Babu Balraj, and Chandrasekar Sivakumar. "The mechanism underlying silicon oxide based resistive random-access memory (ReRAM)." Nanotechnology 31, no. 14 (January 16, 2020): 145709. http://dx.doi.org/10.1088/1361-6528/ab62ca.
Full textLee, Hong Sub, Kyung Mun Kang, Woo Je Han, Tae Won Lee, Chang Sun Park, Yong June Choi, and Hyung Ho Park. "A Study on the Resistive Switching of La0.7Sr0.3MnO3 Film Using Spectromicroscopy." Applied Mechanics and Materials 597 (July 2014): 184–87. http://dx.doi.org/10.4028/www.scientific.net/amm.597.184.
Full textMoriyama, Takumi, Takahiro Yamasaki, Takahisa Ohno, Satoru Kishida, and Kentaro Kinoshita. "Formation Mechanism of Conducting Path in Resistive Random Access Memory by First Principles Calculation Using Practical Model Based on Experimental Results." MRS Advances 1, no. 49 (2016): 3367–72. http://dx.doi.org/10.1557/adv.2016.461.
Full textNakamura, Hisao, and Yoshihiro Asai. "Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models." Physical Chemistry Chemical Physics 18, no. 13 (2016): 8820–26. http://dx.doi.org/10.1039/c6cp00916f.
Full textLodhi, Anil, Shalu Saini, Anurag Dwivedi, Arpit Khandelwal, and Shree Prakash Tiwari. "Bipolar resistive switching properties of TiO x /graphene oxide doped PVP based bilayer ReRAM." Journal of Micromechanics and Microengineering 32, no. 4 (February 21, 2022): 044001. http://dx.doi.org/10.1088/1361-6439/ac521f.
Full textКрасников, Г. Я., О. М. Орлов, and В. В. Макеев. "ИССЛЕДОВАНИЕ ЭФФЕКТА ПЕРЕКЛЮЧЕНИЯ И ТРАНСПОРТА ЗАРЯДА В БЕСФОРМОВОЧНОМ МЕМРИСТОРЕ НА ОСНОВЕ НИТРИДА КРЕМНИЯ С РАЗНЫМИ ТИПАМИ МЕТАЛЛА ВЕРХНЕГО ЭЛЕКТРОДА, "Электронная техника. Серия 3. Микроэлектроника"." Электронная техника. Серия 3. Микроэлектроника, no. 1 (2020): 42–46. http://dx.doi.org/10.7868/s2410993220010054.
Full textMin, Shin-Yi, and Won-Ju Cho. "Resistive Switching Characteristics of Nonvolatile Memory with HSQ Film Using Microwave Irradiation." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 4740–45. http://dx.doi.org/10.1166/jnn.2020.17805.
Full textMisawa, Naoko, Kenta Taoka, Chihiro Matsui, and Ken Takeuchi. "97.6% array area reduction, ReRAM computation-in-memory with hyperparameter optimization based on memory bit-error rate and bit precision of log-encoding simulated annealing." Japanese Journal of Applied Physics 61, SC (February 8, 2022): SC1001. http://dx.doi.org/10.35848/1347-4065/ac356f.
Full textFroehlich, Saman, Saeideh Shirinzadeh, and Rolf Drechsler. "Parallel Computing of Graph-based Functions in ReRAM." ACM Journal on Emerging Technologies in Computing Systems 18, no. 2 (April 30, 2022): 1–24. http://dx.doi.org/10.1145/3453163.
Full textElliman, R. G., M. S. Saleh, T. H. Kim, D. K. Venkatachalam, K. Belay, S. Ruffell, P. Kurunczi, and J. England. "Application of ion-implantation for improved non-volatile resistive random access memory (ReRAM)." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307 (July 2013): 98–101. http://dx.doi.org/10.1016/j.nimb.2012.11.094.
Full textKaushik, Shikha, Sujata Pandey, and Rahul Singhal. "Substrate Dependent Study of Mim Capacitors for Resistive Random-Access Memory Applications." ECS Transactions 107, no. 1 (April 24, 2022): 109–35. http://dx.doi.org/10.1149/10701.0109ecst.
Full textLee, Dong Keun, Min-Hwi Kim, Suhyun Bang, Tae-Hyeon Kim, Sungjun Kim, Seongjae Cho, and Byung-Gook Park. "Multilevel Switching Characteristics of Si3N4-Based Nano-Wedge Resistive Switching Memory and Array Simulation for In-Memory Computing Application." Electronics 9, no. 8 (July 30, 2020): 1228. http://dx.doi.org/10.3390/electronics9081228.
Full textPark, Sukhyung, Kyoungah Cho, Jungwoo Jung, and Sangsig Kim. "Annealing Effect of Al2O3 Tunnel Barriers in HfO2-Based ReRAM Devices on Nonlinear Resistive Switching Characteristics." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 7569–72. http://dx.doi.org/10.1166/jnn.2015.11138.
Full textMoriyama, Takumi, Ryosuke Koishi, Kouhei Kimura, Satoru Kishida, and Kentaro Kinoshita. "Extraction of Filament Properties in Resistive Random Access Memory (ReRAM) Consisting of Binary-Transition-Metal-Oxides." Advances in Science and Technology 95 (October 2014): 84–90. http://dx.doi.org/10.4028/www.scientific.net/ast.95.84.
Full textChin, Fun-Tat, Yu-Hsien Lin, Wen-Luh Yang, Chin-Hsuan Liao, Li-Min Lin, Yu-Ping Hsiao, and Tien-Sheng Chao. "Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)." Solid-State Electronics 103 (January 2015): 190–94. http://dx.doi.org/10.1016/j.sse.2014.07.014.
Full textYoshitake, Michiko, Michal Vaclavu, Mykhailo Chundak, Vladimir Matolin, and Toyohiro Chikyow. "Epitaxial CeO2 thin films for a mechanism study of resistive random access memory (ReRAM)." Journal of Solid State Electrochemistry 17, no. 12 (August 23, 2013): 3137–44. http://dx.doi.org/10.1007/s10008-013-2200-6.
Full textMoriyama, Takumi, Sohta Hida, Takahiro Yamasaki, Takahisa Ohno, Satoru Kishida, and Kentaro Kinoshita. "Experimental and Theoretical Studies of Resistive Switching in Grain Boundaries of Polycrystalline Transition Metal Oxide Film." MRS Advances 2, no. 4 (2017): 229–34. http://dx.doi.org/10.1557/adv.2017.7.
Full textLin, Yu-Hsuan, Dai-Ying Lee, Ming-Hsiu Lee, Po-Hao Tseng, Wei-Chen Chen, Kuang-Yeu Hsieh, Keh-Chung Wang, and Chih-Yuan Lu. "A novel 1T2R self-reference physically unclonable function suitable for advanced logic nodes for high security level applications." Japanese Journal of Applied Physics 61, SC (February 7, 2022): SC1003. http://dx.doi.org/10.35848/1347-4065/ac3a8d.
Full textSivakumar, Chandrasekar, Gang-Han Tsai, Pei-Fang Chung, Babu Balraj, Yen-Fu Lin, and Mon-Shu Ho. "High-Quality Single-Crystalline β-Ga2O3 Nanowires: Synthesis to Nonvolatile Memory Applications." Nanomaterials 11, no. 8 (August 6, 2021): 2013. http://dx.doi.org/10.3390/nano11082013.
Full textHai-yun, Peng, and Zhou Wen-gang. "Optimal Design of FPGA Switch Matrix with Ion Mobility Based Nonvolatile ReRAM." Discrete Dynamics in Nature and Society 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/586842.
Full textMittal, Sparsh. "A Survey of ReRAM-Based Architectures for Processing-In-Memory and Neural Networks." Machine Learning and Knowledge Extraction 1, no. 1 (April 30, 2018): 75–114. http://dx.doi.org/10.3390/make1010005.
Full textWon, Sang Hee, Seung Hee Go, and Jae Gab Lee. "Resistive Switching Characteristics in TiO2 ReRAM with Top Electrode of Co Selectively Formed on SAMs Printed Patterns." Solid State Phenomena 124-126 (June 2007): 603–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.603.
Full textHuang, Chenglong, Nuo Xu, Wenqing Wang, Yihong Hu, and Liang Fang. "Conductance-Aware Quantization Based on Minimum Error Substitution for Non-Linear-Conductance-State Tolerance in Neural Computing Systems." Micromachines 13, no. 5 (April 24, 2022): 667. http://dx.doi.org/10.3390/mi13050667.
Full textKinoshita, Kentaro, Ryosuke Koishi, Takumi Moriyama, Kouki Kawano, Hidetoshi Miyashita, Sang-Seok Lee, and Satoru Kishida. "Simulation Study on Reproducing Resistive Switching Effect by Soret and Fick Diffusion in Resistive Random Access Memory." MRS Advances 1, no. 49 (2016): 3373–78. http://dx.doi.org/10.1557/adv.2016.449.
Full textXi, Jun Hua, Xue Ping Chen, Hong Xia Li, Jun Zhang, and Zhen Guo Ji. "Effects of Film Thickness on Resistive Switching Characteristics of ZnO Based ReRAM." Advanced Materials Research 721 (July 2013): 194–98. http://dx.doi.org/10.4028/www.scientific.net/amr.721.194.
Full textWei, Wei-Chen, Chuan-Jia Jhang, Yi-Ren Chen, Cheng-Xin Xue, Syuan-Hao Sie, Jye-Luen Lee, Hao-Wen Kuo, Chih-Cheng Lu, Meng-Fan Chang, and Kea-Tiong Tang. "A Relaxed Quantization Training Method for Hardware Limitations of Resistive Random Access Memory (ReRAM)-Based Computing-in-Memory." IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 6, no. 1 (June 2020): 45–52. http://dx.doi.org/10.1109/jxcdc.2020.2992306.
Full textRasool, Asif, R. Amiruddin, I. Raja Mohamed, and M. C. Santhosh Kumar. "Fabrication and characterization of resistive random access memory (ReRAM) devices using molybdenum trioxide (MoO3) as switching layer." Superlattices and Microstructures 147 (November 2020): 106682. http://dx.doi.org/10.1016/j.spmi.2020.106682.
Full textMaejima, S., T. Sugie, K. Yamashita, and M. Noda. "Studies on Control of Oxygen Vacancies in MOD-made BaTiO3 Thin Film by Nitrogen Annealing to Improve Resistive Switching Behavior for ReRAM Application." MRS Advances 2, no. 4 (2017): 235–40. http://dx.doi.org/10.1557/adv.2017.10.
Full textRoy, Arijit, Min-Gyu Cho, and Pil-Ryung Cha. "Factors that control stability, variability, and reliability issues of endurance cycle in ReRAM devices: A phase field study." Journal of Applied Physics 131, no. 18 (May 14, 2022): 185106. http://dx.doi.org/10.1063/5.0087758.
Full textKinoshita, K., H. Noshiro, C. Yoshida, Y. Sato, M. Aoki, and Y. Sugiyama. "Universal understanding of direct current transport properties of ReRAM based on a parallel resistance model." Journal of Materials Research 23, no. 3 (March 2008): 812–18. http://dx.doi.org/10.1557/jmr.2008.0093.
Full textConstantoudis, Vassilios, George Papavieros, Panagiotis Karakolis, Ali Khiat, Themistoklis Prodromakis, and Panagiotis Dimitrakis. "Impact of Line Edge Roughness on ReRAM Uniformity and Scaling." Materials 12, no. 23 (November 30, 2019): 3972. http://dx.doi.org/10.3390/ma12233972.
Full textMoriyama, T., K. Kinoshita, R. Koishi, and S. Kishida. "Pulse Switching Property of Reset Process in Resistive Random Access Memory (ReRAM) Consisting of Binary-Transition-Metal-Oxides." ECS Transactions 50, no. 34 (April 1, 2013): 55–60. http://dx.doi.org/10.1149/05034.0055ecst.
Full textLi, Lei, and Guangming Li. "High-Performance Resistance-Switchable Multilayers of Graphene Oxide Blended with 1,3,4-Oxadiazole Acceptor Nanocomposite." Micromachines 10, no. 2 (February 20, 2019): 140. http://dx.doi.org/10.3390/mi10020140.
Full textBondavalli, Paolo, Marie Martin, Louiza Hamidouche, Alberto Montanaro, Aikaterini-Flora Trompeta, and Costas Charitidis. "Nano-Graphitic based Non-Volatile Memories Fabricated by the Dynamic Spray-Gun Deposition Method." Micromachines 10, no. 2 (January 29, 2019): 95. http://dx.doi.org/10.3390/mi10020095.
Full textJoardar, Biresh Kumar, Janardhan Rao Doppa, Hai Li, Krishnendu Chakrabarty, and Partha Pratim Pande. "Learning to Train CNNs on Faulty ReRAM-based Manycore Accelerators." ACM Transactions on Embedded Computing Systems 20, no. 5s (October 31, 2021): 1–23. http://dx.doi.org/10.1145/3476986.
Full textBi, J. S., B. Li, K. Xi, L. Luo, L. L. Ji, H. B. Wang, and M. Liu. "Total ionization dose and single event effects of a commercial stand-alone 4 Mb resistive random access memory (ReRAM)." Microelectronics Reliability 100-101 (September 2019): 113443. http://dx.doi.org/10.1016/j.microrel.2019.113443.
Full textZhao, Li, Ai, and Wen. "Resistive Switching Characteristics of Li-Doped ZnO Thin Films Based on Magnetron Sputtering." Materials 12, no. 8 (April 18, 2019): 1282. http://dx.doi.org/10.3390/ma12081282.
Full textCambou, Bertrand Francis, and Saloni Jain. "Key Recovery for Content Protection Using Ternary PUFs Designed with Pre-Formed ReRAM." Applied Sciences 12, no. 4 (February 9, 2022): 1785. http://dx.doi.org/10.3390/app12041785.
Full textKaushik, Shikha, Sujata Pandey, and Rahul Singhal. "Effect of Annealing on Morphological, Structural and Electrical Characteristics of Zinc Oxide Layer for RRAM Applications." ECS Journal of Solid State Science and Technology 11, no. 3 (March 1, 2022): 035003. http://dx.doi.org/10.1149/2162-8777/ac5a6e.
Full textMayahinia, Mahta, Abhairaj Singh, Christopher Bengel, Stefan Wiefels, Muath A. Lebdeh, Stephan Menzel, Dirk J. Wouters, et al. "A Voltage-Controlled, Oscillation-Based ADC Design for Computation-in-Memory Architectures Using Emerging ReRAMs." ACM Journal on Emerging Technologies in Computing Systems 18, no. 2 (April 30, 2022): 1–25. http://dx.doi.org/10.1145/3451212.
Full textLI, HONGXIA, XIAOJUN LV, JUNHUA XI, XIN WU, QINAN MAO, QINGMIN LIU, and ZHENGUO JI. "EFFECTS OF TiOx INTERLAYER ON RESISTANCE SWITCHING OF Pt/TiOx/ZnO/n+-Si STRUCTURES." Surface Review and Letters 21, no. 05 (September 29, 2014): 1450061. http://dx.doi.org/10.1142/s0218625x14500619.
Full textWu, Ernest, Franco Stellari, Leonidas Ocola, Martin Frank, Peilin Song, and Takashi Ando. "Gibbs spatial process for characterization of filament interaction in ReRAM devices via photon emission microscopy." Applied Physics Letters 120, no. 13 (March 28, 2022): 132902. http://dx.doi.org/10.1063/5.0086202.
Full textAl-Mamun, Mohammad Shah, and Marius K. Orlowski. "Performance Degradation of Nanofilament Switching Due to Joule Heat Dissipation." Electronics 9, no. 1 (January 9, 2020): 127. http://dx.doi.org/10.3390/electronics9010127.
Full textTominov, Roman V., Zakhar E. Vakulov, Vadim I. Avilov, Daniil A. Khakhulin, Aleksandr A. Fedotov, Evgeny G. Zamburg, Vladimir A. Smirnov, and Oleg A. Ageev. "Synthesis and Memristor Effect of a Forming-Free ZnO Nanocrystalline Films." Nanomaterials 10, no. 5 (May 25, 2020): 1007. http://dx.doi.org/10.3390/nano10051007.
Full textSong, Xuefen, Hao Yin, Qing Chang, Yuchi Qian, Chongguang Lyu, Huihua Min, Xinrong Zong, et al. "One-Dimensional (NH=CINH3)3PbI5 Perovskite for Ultralow Power Consumption Resistive Memory." Research 2021 (October 8, 2021): 1–9. http://dx.doi.org/10.34133/2021/9760729.
Full textAlsaiari, Mabkhoot A., Nabil A. Alhemiary, Ahmad Umar, and Brian E. Hayden. "Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application." Ceramics International 46, no. 10 (July 2020): 16310–20. http://dx.doi.org/10.1016/j.ceramint.2020.03.188.
Full textSharma, Yogesh, Pankaj Misra, Shojan P. Pavunny, and Ram S. Katiyar. "Unipolar resistive switching behavior of high-k ternary rare-earth oxide LaHoO3 thin films for non-volatile memory applications." MRS Proceedings 1729 (2015): 23–28. http://dx.doi.org/10.1557/opl.2015.92.
Full text