Academic literature on the topic 'Resistance to therapies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resistance to therapies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Resistance to therapies"
Gupta, P. D. "Reducing drug resistance should be the aim of therapies." Clinical Research and Clinical Trials 3, no. 4 (April 30, 2021): 01–05. http://dx.doi.org/10.31579/2693-4779/028.
Full textBartolotti, Marco, Enrico Franceschi, Rosalba Poggi, Alicia Tosoni, Monica Di Battista, and Alba A. Brandes. "Resistance to antiangiogenic therapies." Future Oncology 10, no. 8 (June 2014): 1417–25. http://dx.doi.org/10.2217/fon.14.57.
Full textPrasad, Rajendra, Atanu Banerjee, and Abdul Haseeb Shah. "Resistance to antifungal therapies." Essays in Biochemistry 61, no. 1 (February 28, 2017): 157–66. http://dx.doi.org/10.1042/ebc20160067.
Full textTejpar, Sabine, Hans Prenen, and Massimiliano Mazzone. "Overcoming Resistance to Antiangiogenic Therapies." Oncologist 17, no. 8 (July 6, 2012): 1039–50. http://dx.doi.org/10.1634/theoncologist.2012-0068.
Full textSledge, George W. "Resistance to Anti-HER2 Therapies." Breast 20 (October 2011): S16. http://dx.doi.org/10.1016/j.breast.2011.08.014.
Full textLawrence Drew, W. "Cytomegalovirus resistance to antiviral therapies." American Journal of Health-System Pharmacy 53, suppl_2 (April 1, 1996): S17—S23. http://dx.doi.org/10.1093/ajhp/53.8_suppl_2.s17.
Full textThangavadivel, Shanmugapriya, and Jennifer A. Woyach. "Genomics of Resistance to Targeted Therapies." Hematology/Oncology Clinics of North America 35, no. 4 (August 2021): 715–24. http://dx.doi.org/10.1016/j.hoc.2021.03.004.
Full textGuièze, Romain. "Mechanisms of resistance to targeted therapies." Hématologie 26, S3 (September 2020): 20–26. http://dx.doi.org/10.1684/hma.2020.1564.
Full textFong, Chun Yew, Omer Gilan, Enid Lam, Alan Rubin, Jessica Morison, George Giotopoulos, Kym Stanley, et al. "Modelling Resistance to Emerging Epigenetic Therapies." Blood 124, no. 21 (December 6, 2014): 3546. http://dx.doi.org/10.1182/blood.v124.21.3546.3546.
Full textSmith, Sinéad M., Colm O’Morain, and Deirdre McNamara. "Helicobacter pylori resistance to current therapies." Current Opinion in Gastroenterology 35, no. 1 (January 2019): 6–13. http://dx.doi.org/10.1097/mog.0000000000000497.
Full textDissertations / Theses on the topic "Resistance to therapies"
Hewlett, Mark. "The evolution of resistance to multidrug antibiotic therapies." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/21596.
Full textGuix, Arnau Marta 1974. "Mechanisms of acquired resistance to anti-EGFR therapies in squamous cell carcinoma." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565440.
Full textEls tractaments dirigits contra el receptor del factor de creixement epidèrmic (EGFR) són útils en diversos càncers en l’home, com el càncer de pulmó de cèl·lula no petita, el càncer colorrectal o els tumors de cap i coll. Però l’eficàcia d’aquests tractaments sempre està limitada per l’aparició de resistències. Aquesta tesi doctoral s’ha centrat en investigar els mecanismes de resistència adquirida a tractaments dirigits contra l’EGFR (com els inhibidors tirosina quinasa gefitinib i erlotinib o l’anticòs monoclonal cetuximab) en carcinomes escamosos. En la primera part de la tesi s’han desenvolupat estudis preclínics amb models cel·lulars i xenoinjerts per desxifrar els mecanismes moleculars de resistència; la segona part de la tesi ha inclòs estudis en mostres de carcinomes escatosos de cap i coll de pacients amb tumors avançats. La troballa principal dels estudis preclínics ha estat que l’activació del sistema del receptor del factor de creixement semblant a la insulina, principalment a través de la disminució dels nivells de les proteïnes d’unió als factors de creixement semblants a la insulina, és la responsable de l’aparició de resistència adquirida als tractaments anti-EGFR. Posteriorment, però, aquests resultats no han estat validats en una petita cohort de pacients amb tumors avançats de cap i coll.
McGivern, Niamh. "Activation of MAPK signalling results in resistance to therapies for ovarian cancer." Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.695671.
Full textSun, Xiaowen. "An integrin-based mechanism for sensitizing melanomas to therapies." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/6506.
Full textNeto, João Manuel Fernandes. "Improvement of antiangiogenic therapies in colorectal cancer." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15349.
Full textAngiogenesis is essential for tumor progression. Antiangiogenic therapies block angiogenesis and cause vessel regression, which leads to an increase of tumor hypoxia. Hypoxia is responsible for many effects in tumor biology, among which, the selection of cells that are more aggressive and more resistant to cancer therapies. In this project we aim to get some molecular insight on the mechanism(s) underlying the resistance to the combination of bevacizumab and cetuximab and to find synthetic lethal interactions with hypoxia. Our results show that: hypoxia induces resistance to EGFR inhibition in WT4 CRC cell; HIF1α is not driving the resistance phenotype; hypoxia activates RAS in WT4 CRC cells; MEK inhibitors increase the sensitivity to EGFR inhibitors in hypoxia and cytokines seem to be involved in the activation of RAS in hypoxia. We also identified four genes as potential candidates to be synthetic lethal with hypoxia. Our findings are of great clinical and biological significance and may lead to better combination therapies, improving current treatments for CRC patients and may also lead to the discovery of biomarkers of response to antiangiogenic therapies.
A angiogénese é essencial à progressão tumoral. As terapias antiangiogénicas bloqueiam a angiogénese e causam regressão dos vasos sanguíneos, o que leva a um aumento da hipóxia nos tumores. A hipóxia é responsável por diversos efeitos na biologia tumoral, entre os quais, a seleção de células cancerígenas mais agressivas e mais resistentes às terapias. Com este projeto pretendemos descobrir o mecanismo molecular envolvido na resistência à combinação de bevacizumab e cetuximab e também encontrar interações de letalidade sintética com hipóxia. Os nossos resultados mostram que: a hipóxia induz resistência à inibição de EGFR em células WT4 de cancro coloretal; o HIF1α não é responsável pelo fenótipo de resistência; a hipóxia ativa RAS em células WT4 de cancro coloretal; os inibidores de MEK aumentam a sensibilidade aos inibidores de EGFR em hipóxia e as citoquinas parecem estar envolvidas na ativação de RAS em hipóxia. Identificámos ainda quatro genes que são potenciais candidatos a terem letalidade sintética com hipóxia. Estes resultados têm uma grande importância clínica e biológica e podem conduzir a melhores terapias combinatórias, contribuindo para melhorar os atuais tratamentos de pacientes com cancro coloretal e podem ainda levar à descoberta de biomarcadores de resposta a terapias antiangiogénicas.
Phee, Lynette. "Unorthodox antimicrobial combination therapies for the treatment of multi-drug resistant Gram-negative infections." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/44695.
Full textCerqueira, Vera. "Role of intracellular signalling pathways in conferring resistance to endocrine therapies in breast cancer." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4511.
Full textYeoman, Kathryn (Kate) Charlotte. "Working the System: Doing Postmodern Therapies in Aotearoa New Zealand." Thesis, University of Canterbury. Humanities, 2012. http://hdl.handle.net/10092/7274.
Full textSöderhäll, Thomas. "Antibiotic combination therapies against carbapenamse producing Klebsiella pneumoniae." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-452424.
Full textSalazar, Marcela d'Alincourt. "Genomic Effects of Hormonal Adjuvant Therapies that Could Support the Emergence of Drug Resistance in Breast Cancer." University of Toledo Health Science Campus / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=mco1280929084.
Full textBooks on the topic "Resistance to therapies"
Xavier, Ana C., and Mitchell S. Cairo, eds. Resistance to Targeted Therapies in Lymphomas. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24424-8.
Full textLing, Silvia CW, and Steven Trieu, eds. Resistance to Targeted Therapies in Multiple Myeloma. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73440-4.
Full textVillanueva, Augusto, ed. Resistance to Molecular Therapies for Hepatocellular Carcinoma. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56197-4.
Full textProsperi, Jenifer R., ed. Resistance to Targeted Therapies in Breast Cancer. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70142-4.
Full textTivnan, Amanda, ed. Resistance to Targeted Therapies Against Adult Brain Cancers. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46505-0.
Full textSzewczuk, Myron R., Bessi Qorri, and Manpreet Sambi, eds. Current Applications for Overcoming Resistance to Targeted Therapies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21477-7.
Full textFerreri, Andrés J. M., ed. Resistance of Targeted Therapies Excluding Antibodies for Lymphomas. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75184-9.
Full textCappuzzo, Federico. Guide to Targeted Therapies: Treatment Resistance in Lung Cancer. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20741-4.
Full textScardino, Peter T. Targeted Therapies for Castration-Resistant Prostate Cancer. Unitec House, 2 Albert Place, London N3 1QB, UK: Future Medicine Ltd, 2011. http://dx.doi.org/10.2217/9781780840109.
Full textMichael, Neenan, ed. Working with resistance in rational emotive behaviour therapy: A practitioner's guide. London: Routledge, 2012.
Find full textBook chapters on the topic "Resistance to therapies"
Weber, Georg F. "Drug Resistance." In Molecular Therapies of Cancer, 407–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13278-5_16.
Full textMcEwan, Ashley, and Silvia CW Ling. "Bone Targeted Therapies." In Resistance to Targeted Anti-Cancer Therapeutics, 105–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73440-4_8.
Full textPepper, John W. "Somatic Evolution of Acquired Drug Resistance in Cancer." In Targeted Therapies, 127–34. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_7.
Full textKroll, David S. "Treatment Resistance and Advanced Therapies." In Caring for Patients with Depression in Primary Care, 61–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08495-9_6.
Full textQadri, Hafsa, Manzoor Ahmad Mir, and Abdul Haseeb Shah. "Antifungal Therapies and Drug Resistance." In Human Fungal Diseases, 130–45. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032642864-10.
Full textDai, Yun, and Steven Grant. "Rational Combination of Targeted Agents to Overcome Cancer Cell Resistance." In Targeted Therapies, 171–95. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_10.
Full textLage, Hermann, and Carsten Denkert. "Resistance to Chemotherapy in Ovarian Carcinoma." In Targeted Therapies in Cancer, 51–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46091-6_6.
Full textLyons, Anna T., and Jenifer R. Prosperi. "Targeted Therapies in Breast Cancer." In Resistance to Targeted Anti-Cancer Therapeutics, 139–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70142-4_6.
Full textGunther, Edward. "Interrogating Resistance to Targeted Therapy Using Genetically Engineered Mouse Models of Cancer." In Targeted Therapies, 135–53. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-478-4_8.
Full textSrivastava, Rupali, Ananya Padmakumar, Paloma Patra, Sushma V. Mudigunda, and Aravind Kumar Rengan. "Phytonanotechnologies for Addressing Antimicrobial Resistance." In Medicinal Plants and Antimicrobial Therapies, 191–225. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7261-6_9.
Full textConference papers on the topic "Resistance to therapies"
Brugge, JS, T. Muranen, J. Zoeller, D. Worster, M. Iwanicki, L. Selfors, and G. Mills. "DL1-1: Adaptive Resistance to Targeted Therapies." In Abstracts: Thirty-Fourth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 6‐10, 2011; San Antonio, TX. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/0008-5472.sabcs11-dl1-1.
Full textLi, Zhenghong, Carrie Qi Sun, Rebecca Arnold, John A. Petros, and Carlos S. Moreno. "Abstract 284: Combination therapies to prevent resistance to androgen deprivation therapies in prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-284.
Full textLi, Zhenghong, Carrie Qi Sun, Rebecca Arnold, John A. Petros, and Carlos S. Moreno. "Abstract 284: Combination therapies to prevent resistance to androgen deprivation therapies in prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-284.
Full textZhang, Baolin, Junjie Chen, Xu Di, and Yaqin Zhang. "Abstract B246: Overcoming cancer resistance to death receptor targeted therapies." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-b246.
Full textBrown, Wells S., and Michael Wendt. "Abstract B49: Epithelial-mesenchymal plasticity primes inherent resistance to targeted therapies." In Abstracts: AACR Special Conference on Tumor Metastasis; November 30-December 3, 2015; Austin, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tummet15-b49.
Full textLuna, Augustin, Özgün Babur, Gonghong Yan, Emek Demir, Chris Sander, and Anil Korkut. "Abstract 2838: Discovery of adaptive resistance pathways and anti-resistance combination therapies in cancer from phosphoproteomic data." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2838.
Full textMontero, Joan, Cecile Gstalder, Daniel J. Kim, Dorota Sadowicz, Wayne Miles, Michael Manos, Justin R. Cidado, et al. "Abstract 62: Destabilization ofNOXAmRNA as a common resistance mechanism to targeted therapies." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-62.
Full textZamanian, Roham T., Mehdi Skhiri, Andrew Hsi, vinicio de Jesus Perez, and Francois Haddad. "Impact Of PAH Specific Therapies On Insulin Resistance In Pulmonary Arterial Hypertension." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5919.
Full textPoliti, Katerina A. "Abstract IA10: Modeling sensitivity and resistance to systemic therapies in lung cancer." In Abstracts: AACR Special Conference on the Evolving Landscape of Cancer Modeling; March 2-5, 2020; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.camodels2020-ia10.
Full textLuna, Augustin, Heping Wang, Ozgun Babur, Chris Sander, and Anil Korkut. "Abstract 3820: Discovery of adaptive resistance pathways and anti-resistance combination therapies from phosphoproteomic data using graphical models." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3820.
Full textReports on the topic "Resistance to therapies"
Li, wanlin, jie Yun, siying He, ziqi Zhou, and ling He. Effect of different exercise therapies on fatigue in maintenance hemodialysis patients:A Bayesian Network Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0144.
Full text