Academic literature on the topic 'Residential water demand'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Residential water demand.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Residential water demand"
Tricarico, C., G. de Marinis, R. Gargano, and A. Leopardi. "Peak residential water demand." Proceedings of the Institution of Civil Engineers - Water Management 160, no. 2 (June 2007): 115–21. http://dx.doi.org/10.1680/wama.2007.160.2.115.
Full textBao, Keyu, Rushikesh Padsala, Daniela Thrän, and Bastian Schröter. "Urban Water Demand Simulation in Residential and Non-Residential Buildings Based on a CityGML Data Model." ISPRS International Journal of Geo-Information 9, no. 11 (October 28, 2020): 642. http://dx.doi.org/10.3390/ijgi9110642.
Full textPalencia, Lamberto C. "RESIDENTIAL WATER DEMAND IN METRO MANILA." Journal of the American Water Resources Association 24, no. 2 (April 1988): 275–79. http://dx.doi.org/10.1111/j.1752-1688.1988.tb02984.x.
Full textLopez-Mayan, Cristina. "Microeconometric Analysis of Residential Water Demand." Environmental and Resource Economics 59, no. 1 (September 5, 2013): 137–66. http://dx.doi.org/10.1007/s10640-013-9721-4.
Full textGato, Shirley, Niranjali Jayasuriya, and Peter Roberts. "Forecasting Residential Water Demand: Case Study." Journal of Water Resources Planning and Management 133, no. 4 (July 2007): 309–19. http://dx.doi.org/10.1061/(asce)0733-9496(2007)133:4(309).
Full textHung, Ming-Feng, Bin-Tzong Chie, and Tai-Hsin Huang. "Residential water demand and water waste in Taiwan." Environmental Economics and Policy Studies 19, no. 2 (April 13, 2016): 249–68. http://dx.doi.org/10.1007/s10018-016-0154-5.
Full textMetaxas, S., and E. Charalambous. "Residential price elasticity of demand for water." Water Supply 5, no. 6 (December 1, 2005): 183–88. http://dx.doi.org/10.2166/ws.2005.0063.
Full textLyman, R. Ashley. "Peak and off-peak residential water demand." Water Resources Research 28, no. 9 (September 1992): 2159–67. http://dx.doi.org/10.1029/92wr01082.
Full textSchleich, Joachim, and Thomas Hillenbrand. "Determinants of residential water demand in Germany." Ecological Economics 68, no. 6 (April 2009): 1756–69. http://dx.doi.org/10.1016/j.ecolecon.2008.11.012.
Full textGargano, Rudy, Carla Tricarico, Giuseppe del Giudice, and Francesco Granata. "A stochastic model for daily residential water demand." Water Supply 16, no. 6 (June 20, 2016): 1753–67. http://dx.doi.org/10.2166/ws.2016.102.
Full textDissertations / Theses on the topic "Residential water demand"
Gato, Shirley, and s3024038@rmit edu au. "Forecasting Urban Residential Water Demand." RMIT University. Civil, Environmental and Chemical Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070202.113452.
Full textDzisiak, Richard N. "The role of price in determining residential water demand, water pricing and residential water demand in municipalities in the Western Prairies." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0005/MQ41695.pdf.
Full textGardner, Kerry. "Residential water demand modelling and behavioural economics." Thesis, University of East Anglia, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539372.
Full textDu, Plessis Jacobus Lodewikus. "Estimating domestic outdoor water demand for residential estates." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86695.
Full textENGLISH ABSTRACT: The outdoor water consumption of residential properties is a major contributor to the seasonal fluctuation of the overall water consumption of these properties. The estimation of the relating outdoor water demand has become valuable to property developers and planners alike. This could enable designers to optimise designs of water distribution networks and assist in water resource planning and gaining legislative approvals. For the purposes of this study the outdoor water-use components were mathematically defined and combined to develop an outdoor water-demand model. In order to evaluate the results of an outdoor water demand model on a monthly temporal scale it was necessary to develop a proxy outdoor water consumption evaluation method based on the metered monthly consumption of residential properties. The method entailed verifying that the generally non-seasonal indoor water consumption as a function of the winter water consumption. This entailed analysis of the total monthly, indoor and outdoor water consumption data adopted from a noteworthy North American water end-use project. The indoor water consumption estimated in this manner could then be subtracted from the overall monthly water consumption to obtain estimated monthly outdoor water consumption data. The estimated outdoor consumption could be compared with the simulated outdoor water demand, as described by the model. The parameters that formed part of the mathematical outdoor water demand model were formulated from data available for residential estates, where conditions such as types of vegetation, irrigated area and size of pool could be prescribed in a constitution, usually instituted by a home owners association. The data was derived from one estate located in the Western Cape Province of South Africa. The mathematical model was simulated using the Monte Carlo method and the @Risk software. Three residential estates located in South Africa were subsequently modelled. Additionally, the model was employed to estimate outdoor water demand for houses located in Northern America for verification purposes. The Monte Carlo simulations of the outdoor water demand model presented in this study yielded realistic results when compared with the proxy outdoor consumption figures as well as the metered actual outdoor water consumption data analysed. The peak monthly outdoor water demand estimation results were particularly close to the consumption data. This study serves as a baseline for further research into outdoor water demand. Research into the effects of water restriction and conservation potential could follow from this work, especially in today’s environmentally conscious society.
AFRIKAANSE OPSOMMING: Die buite waterverbruik van residensiëel eiendomme dra grootliks by tot die seisoenale fluktuasie van die algehele water verbruik van hierdie eiendomme. Die beraming van die dienooreenkomstige buite wateraanvraag kan waarde toevoeg vir eiendomsontwikkelaars and beplanners, indien dit ontwerpers kan instaat stel om water verspreindingsnetwerke te optimeer en te help met water hulpbron beplanning en wetlikke goedkeurings. Vir die doeleindes van hierdie studie is die buite waterverbruik komponente wiskundig gedefinieër en gekombineer om ‘n buite wateraanvraag model te ontwikkel. Ten einde die resultate van ‘n buite water aanvraag model op ‘n maandelikse tydskaal te evalueer, was dit nodig om ‘n benaderingsmetode te ontwikkel, gebaseer of die gemeterde maandelikse water verbruike gebruik. Die metode behels dat die data, verkry van ‘n bekende Noord-Amerikaanse water eindverbruikprojek, van die algmeen nie-seisoenale binneshuise water verbruik vergelyk word met die maandelikse winter water verbruik. Derhalwe kon die binneshuise waterverbruik wat op hierdie manier beraam is afgetrek word van die algehel maandelikse waterverbruik om die maandelikse buitewater verbruik te beraam. Die beraamde buitewater verbruik kon sodoende vergelyk kan word met ‘n gesimuleerde buite wateraanvraag soos beskryf deur die gesimuleerde model. Die parameters wat deel uitgemaak het van die wiskundige buite waterverbuik model was gedefinieër uit data wat beskikbaar was vir residensiële ontwikkelings, waar voorwaardes soos plantegroei, besproeiingsarea of swembad grote dikwels voorgeskryf kan word in ‘n grondwet ingestel deur ‘n huiseienaarsvereniging. Die data wat in hierdie model gebuik word is hoofsaaklik afskomstig van ‘n landgoed geleë in die Weskaap provinsie, Suid-Afrika. Die wiskundige model was gesimuleer met behulp van die Monte Carlo metode en die @Risk sagteware. Drie residensiële landgoede geleë in Suid-Afrika was daaropvolgend gemodelleer. Daarbenewens is die model gebruik die buite watergebruik van groepe huise geleë in Noord-Amerika te beraam vir verifikasie doeleindes. Die Monte Carlo simulasies van die buite water aanvraag model van hierdie studie het realistiese resultate in vergelyking met die beraamde buite verbruike sowel as die werklike gemeterde buite water verbruiksdata opgelewer. Die piek maandelikse buite water aanvraag beramings resultate was veral vergelykbaar met die piek maandeliks waterverbruik data. Hierdie studie dien as 'n basis vir verdere navorsing in buite waterverbruik. Navorsing gefokus op die gevolge van water beperkings en bewaring potensiaal kan as aanvullende voordele van hierdie studie ontstaan, veral in vandag se omgewingsbewuste samelewing.
Regli, Philip Warner. "Residential demand for water in the Phoenix metropolitan area." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_160_sip1_w.pdf&type=application/pdf.
Full textBoyce, Daniel J. B. "Micro-component water demand scenario modelling for catchment scale residential water use." Thesis, Cranfield University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443748.
Full textAndrÃ, Diego de Maria. "Space and economic determinants of demand for residential water in fortaleza, cearÃ." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=7425.
Full textThis paper aims to estimate a residential water demand function for the city of Fortaleza (CearÃ), considering the potential impact of the spatial effects on water consumption. The analysis is developed from the investigation of presence of spatial autocorrelation in residential water consumption. For this, the tools of exploratory spatial data analysis (ESDA) were utilized. Subsequently, specific tests are performed to determine the sources of spatial autocorrelation, i.e., if the autocorrelation is caused by the spatial distribution of water consumption or by effects not modeled. Identified the sources of spatial autocorrelation, four water demand functions were estimated, which had as explanatory variables the average price, the difference, income, number of residents and the number of rooms, under different specifications. At first, we estimated a model without special effects; in the second, we estimated the specification of the spatial error model (SEM), which incorporates the spatial autocorrelation in the form of autocorrelation in the error terms; in the third, we estimated the spatial autoregressive model (SAR), where the spatial autocorrelation is incorporated through the spatial lag of the dependent variable; and finally, we estimated the spatial model autoregressive moving average (SARMA), which is the union of the two previous models. The results show that spatial autocorrelation exists in two forms (error and lag), indicating that the SARMA model is the most indicated to model the residential water demand in the city of Fortaleza, in contrast to suggested by Chang et al.(2010), House-Peters et al. (2010), Franczyk e Chang (2008), Ramachandran e Johnston (2011), which used the SEM model. It is concluded that it is important to consider the possibility of spatial effects in the estimation of a residential water demand function, once that not incorporate spatial effects in the analysis underestimate the effect of the variables average price and number of residents on residential water demand, while overestimating the effect of the variables income and number of rooms.
Esta dissertaÃÃo tem como objetivo estimar uma funÃÃo de demanda residencial por Ãgua para a cidade de Fortaleza (CearÃ), considerando o provÃvel impacto do efeito espacial no consumo de Ãgua. A anÃlise se desenvolve a partir da investigaÃÃo a respeito da presenÃa de autocorrelaÃÃo espacial no consumo residencial de Ãgua. Para tal, foram utilizadas as tÃcnicas de anÃlise exploratÃria espacial de dados (ESDA). Posteriormente, sÃo realizados testes especÃficos para determinar as fontes da autocorrelaÃÃo espacial, ou seja, identificar se a autocorrelaÃÃo à causada pela distribuiÃÃo espacial do consumo de Ãgua ou pelos efeitos nÃo modelados. Identificadas as fontes de autocorrelaÃÃo espacial, foram estimadas quatro funÃÃes de demanda de Ãgua, que tinham como variÃveis explicativas o preÃo mÃdio, a diferenÃa, a renda, o nÃmero de residentes e o nÃmero de cÃmodos, sob diferentes especificaÃÃes. Na primeira, utilizou-se um modelo sem efeitos espaciais; na segunda, utilizou-se a especificaÃÃo do modelo de erros espaciais (SEM), que incorpora a autocorrelaÃÃo espacial na forma de autocorrelaÃÃo nos termos de erro; na terceira, utilizou-se o modelo espacial autorregressivo (SAR), onde a autocorrelaÃÃo espacial à incorporada atravÃs da defasagem espacial da variÃvel dependente; e por Ãltimo, utilizou-se o modelo espacial autorregressivo de mÃdias mÃveis (SARMA), que à a uniÃo dos dois modelos anteriores. Os resultados mostram que existe autocorrelaÃÃo espacial nas duas formas (erro e defasagem), indicando que o modelo SARMA à o mais adequado para modelar a demanda residencial por Ãgua na cidade de Fortaleza, ao contrÃrio do proposto por Chang et al. (2010), House-Peters et al. (2010), Franczyk e Chang (2008), Ramachandran e Johnston (2011), que utilizaram o modelo SEM. Conclui-se, portanto, que à importante levar em consideraÃÃo a possibilidade de efeitos espaciais na estimaÃÃo de uma funÃÃo de demanda residencial por Ãgua, na medida que a nÃo incorporaÃÃo dos efeitos espaciais subestima o efeito das variÃveis preÃo mÃdio e nÃmero de residentes sobre a quantidade consumida de Ãgua, enquanto superestima o efeito das variÃveis renda e nÃmero de cÃmodos.
Urban, Graeme John. "Probabalistic load modelling of electrical demand of residential water heating." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20071.
Full textENGLISH ABSTRACT: Energy efficiency and the move to renewable energy resources are of vital importance in growing profitable and sustainable economies. In recent years, greater emphasis has been placed on institutions, companies and individuals to reduce their electrical energy demand through energy management. In an attempt to reduce the demand, the electrical power utility in South Africa, Eskom, has introduced Demand Side Management programs and substantial increases in electricity tariffs. In addition to these, tax incentives have been offered to help off-set the capital costs associated with the investments made in replacing old electrical equipment with new electrically efficient equipment. Thus the need for accurate Measurement and Verification of electrical energy demand reduction, to substantiate fiscal claims, has become imperative. The main purpose of Measurement and Verification is to investigate the actual monetary performance of an energy savings project. Energy savings assessments, based on purely deterministic baseline demand, do not adequately represent the statistical nature of the savings impacts of many practical load systems, as disclosed in a reporting period. This thesis presents the development of a generic probabilistic methodology to determine the demand profiles of preand post-Energy Conservation Measures (ECMs) for practical load systems. The difference between the simulated demand of the pre- and post-ECMs for a particular set of variables represent the electrical demand impact. The electrical demand of the pre- and post-ECMs is defined in terms of Probability Density Functions, and derived using a multivariate kernel density estimation algorithm. The approach is tested using a simulation model of a waterheating geyser implemented in MATLAB. Three different ECMs are simulated using the geyser model and demand density estimation. The results of the demand impacts of the ECMs are presented and evaluated. With regards to possible future research this methodology could be applied to the evaluation of the demand impacts of heat pump technologies and solar water heaters.
AFRIKAANSE OPSOMMING: en die skuif na hernubare energiebronne is van deurslaggewende belang vir die ontwikkeling van winsgewende en volhoubare ekonomieë. Onlangs is meer klem geplaas op instansies, maatskappye en individue om hul aanvraag na energie te verminder met behulp van energiebestuur. In ‘n poging om die aanvraag te verlaag, het Eskom, Suid-Afrika se elektrisiteitsverskaffer, aansienlike elektrisiteitstariefverhogings ingelyf en Aanvraagbestuursprogramme van stapel gestuur. Bykomend hiertoe is belastingaansporings ook aangebied, waarteen kapitale kostes, geassosieer met die vervanging van ou elektriese toerusting met nuwe elektries doeltreffende toerusting, afgeset kan word. Derhalwe het die behoefte aan akkurate Meting en Verifikasie van elektriese energie aanvraagvermindering, om finansiële eise te staaf, noodsaaklik geword. Die hoofdoel van Meting en Verifikasie is om die werklike finansiële prestasie van energiebesparingsprojek te ondersoek soos bekend gemaak word tydens ’n verslagdoeningstydperk. Energiebesparingassesserings wat slegs gebaseer word op die suiwer deterministiese basislyn aanvraag na elektrisiteit, verteenwoordig nie die werklike statistiese aard van die besparingsimpakte van baie praktiese lasstelsels nie. Hierdie tesis stel die ontwikkeling van generiese waarskynlikheids-metodologie voor, om die voor- en na- Energiebesparings-maatreëls se aanvraagprofiele vir sulke praktiese lasstelsels, vas te stel. Die verskil tussen die gesimuleerde aanvraag van die voor- en na- Energiebesparings-maatreëls vir spesifieke stel veranderlikes verteenwoordig die elektriese aanvraag impak. Die voor- en na- Energiebesparings-maatreëls van die energieverbruik profieldata word gedefinieer in terme van Waarskynlikheidsdigtheidsfunksies en afgelei deur gebruik te maak van meerveranderlike kerndigtheidafskattingsalgoritme. Die benadering is getoets deur gebruik te maak van simuleringsmodel van warmwaterstelsel geïmplimenteer in MATLAB. Drie verskillende voor- en na- Energiebesparings-maatreëls is gesimuleer met behulp van die warmwaterstelselmodel en aanvraag digtheidafskatting. Die resultate van die elektriese aanvraag impakte van die voor- en na- Energiebesparings-maatreëls word vervolgens bespreek en geëvalueer. Met betrekking tot moontlike toekomstige navorsing kan hierdie metodologie toegepas word om die aanvraag impakte van hittepomp- en sonwaterverwarmingstegnologieë te evalueer.
Sawangchareon, Dumrongchai. "The Analysis of the Demand for Residential Water in the City of Denton." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc500727/.
Full textSadek, Eran Sadek Said Md. "Modellng residential water demand in Leeds using microsimulation incorporating behavioural data." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581978.
Full textBooks on the topic "Residential water demand"
Walters, Laurie L. Economic factors affecting residential water demand in Colorado. Fort Collins, Colo: Colorado Water Resources Research Institute, Colorado State University, 1994.
Find full textMunian, A. Dynamics of residential water demand and supply in India: A case study of Chennai City. New Delhi: Gyan Pub. House, 2010.
Find full textDale, Larry L. Price impact on the demand for water and energy in California residences: Final paper. Sacramento, Calif.]: California Energy Commission, 2009.
Find full textGrima, Angelo P. Residential Water Demand: Alternative Choices for Management. University of Toronto Press, 2019.
Find full textMcDonald, A. D. Residential Water Demand: A Case Study in the Lower Hunter Valley (Agricultural Economics Bulletin). University of New England, 1995.
Find full textBook chapters on the topic "Residential water demand"
Koundouri, P., M. Stithou, and P. Melissourgos. "Simulating Residential Water Demand and Water Pricing Issues." In Water Resources Management Sustaining Socio-Economic Welfare, 71–86. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7636-4_4.
Full textDi Mauro, A., G. F. Santonastaso, S. Venticinque, and A. Di Nardo. "Open Datasets and IoT Sensors for Residential Water Demand Monitoring at the End-Use Level: A Pilot Study Site in Naples (Italy)." In Springer Water, 47–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95844-2_4.
Full textGarcia-Valiñas, Maria A., Roberto Martínez-Espiñeira, and Hang To. "The Use of Non-pricing Instruments to Manage Residential Water Demand: What Have We Learned?" In Understanding and Managing Urban Water in Transition, 269–81. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9801-3_12.
Full textVongtanaboon, Sukanya. "Water Resource Assessment and Management in Phuket, Thailand." In Interlocal Adaptations to Climate Change in East and Southeast Asia, 153–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81207-2_17.
Full textRenzetti, Steven. "Residential Water Demands." In The Economics of Water Demands, 17–34. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0865-6_3.
Full textKlassert, Christian, Erik Gawel, Katja Sigel, and Bernd Klauer. "Sustainable Transformation of Urban Water Infrastructure in Amman, Jordan – Meeting Residential Water Demand in the Face of Deficient Public Supply and Alternative Private Water Markets." In Future City, 93–115. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59324-1_6.
Full textTsimpo, Clarence, and Quentin Wodon. "Demand and Supply Constraints to Piped Water Coverage." In Residential Piped Water in Uganda, 27–46. The World Bank, 2018. http://dx.doi.org/10.1596/978-1-4648-0708-4_ch3.
Full textWard, Michael, and Chris White. "Managing residential water demand in the OECD." In Global Water: Issues and Insights. ANU Press, 2014. http://dx.doi.org/10.22459/gw.05.2014.03.
Full textRenwick, Mary E., and Sandra O. Archibald. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?" In Economics of Water Resources, 373–89. Routledge, 2018. http://dx.doi.org/10.4324/9781351159289-24.
Full textNieswiadomy, Michael L., and David J. Molina. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data." In Economics of Water Resources, 363–72. Routledge, 2018. http://dx.doi.org/10.4324/9781351159289-23.
Full textConference papers on the topic "Residential water demand"
Gato-Trinidad, S., and K. Gan. "Characterizing maximum residential water demand." In Urban Water 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/uw120021.
Full textAlcocer, Y. V. H., V. G. Tzatchkov, S. G. Buchberger, F. I. Arreguin, and D. Feliciano. "Stochastic Residential Water Demand Characterization." In World Water and Environmental Resources Congress 2004. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40737(2004)459.
Full textGargano, R., C. Tricarico, and G. de Marinis. "Residential Water Demand-Daily Trends." In 12th Annual Conference on Water Distribution Systems Analysis (WDSA). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41203(425)118.
Full textTanverakul, Stephanie A., and Juneseok Lee. "Historical Review of U.S. Residential Water Demand." In World Environmental And Water Resources Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412312.313.
Full textPieterse-Quirijns, E. J., E. J. M. Blokker, J. H. G. Vreeburg, and E. v.d. Blom. "Modelling Characteristic Values for Non-Residential Water Demand." In 12th Annual Conference on Water Distribution Systems Analysis (WDSA). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41203(425)111.
Full textTanverakul, Stephanie A., and Juneseok Lee. "Residential Water Demand Analysis Due to Water Meter Installation in California." In World Environmental and Water Resources Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412947.090.
Full textBlokker, E. J. M., and J. H. G. Vreeburg. "Monte Carlo Simulation of Residential Water Demand: A Stochastic End-Use Model." In World Water and Environmental Resources Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40792(173)34.
Full textFilion, Y. R., Z. Li, and S. G. Buchberger. "Temporal and Spatial Scaling of Instantaneous Residential Water Demand for Network Analysis." In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)512.
Full textFilion, Y. R., B. W. Karney, L. Moughton, S. G. Buchberger, and B. J. Adams. "Cross Correlation Analysis of Residential Demand in the City of Milford, Ohio." In Eighth Annual Water Distribution Systems Analysis Symposium (WDSA). Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40941(247)43.
Full textYanhui, Dong, and Zhou Weibo. "Urban Residential Water Demand Forecasting in Xi'an Based on RBF Model." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.456.
Full textReports on the topic "Residential water demand"
Klaiber, H. Allen, V. Kerry Smith, Michael Kaminsky, and Aaron Strong. Measuring Price Elasticities for Residential Water Demand with Limited Information. Cambridge, MA: National Bureau of Economic Research, August 2012. http://dx.doi.org/10.3386/w18293.
Full textFrandsen, Martin, Jakob Vind Madsen, Rasmus Lund Jensen, and Michal Zbigniew Pomianowski. Domestic water measurement in two Danish office and educational buildings - Data set description. Aalborg University, August 2022. http://dx.doi.org/10.54337/aau481810642.
Full textAlly, M. R. Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/885864.
Full text