Dissertations / Theses on the topic 'Réservoir à hydrures métalliques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Réservoir à hydrures métalliques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gondor, Germain. "Pour le stockage de l'hydrogène : Analyse thermodynamique de la formation d'hydrures métalliques et optimisation du remplissage d'un réservoir." Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00782271.
Full textZeaiter, Ali. "Caractérisation et modélisation du comportement des alliages TiFe dédiés au stockage solide d'hydrogène. : Application à l'amélioration des performances d'un réservoir à hydrures métalliques." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD007/document.
Full textHe environmental and economic problems caused by the use of petroleum products and the scarcity of these fossil fuels have led to the search for alternative sources of energy, which are renewable and respectful of the environment. Many of these sources are intermittent and require storage solutions. Hydrogen gas appears as a good candidate for this function. The hydrogen element, abundant in nature, has in its gaseous form a calorific value of 140 MJ / kg, i.e. 2.5 times that of gasoline. The 'hydrogen' sector is based on 3 pillars: production, storage, distribution and use. The storage of hydrogen is traditionally carried out by compression, under pressures ranging from a few bars to several hundreds, and by liquefaction at 20 K. The low density of these two types of storage (42 and 70 kgH2 / m3) associated with serious problems of safety and mechanical design, make solid storage in metal alloys particularly relevant for some applications. This solution favors the development of safe, compact design tanks with a high density of 120 kgH2/m3for TiFe alloys, for example. This type of hydride has been retained in this work because it has operating conditions of temperatures and pressures that are relatively close to ambient conditions, and also because it does not contain rare earth elements. The aim of this study is to characterize and model the hydriding/dehydriding behavior of the TiFe0.9Mn0.1 alloy, in order to improve its performance when it is integrated into a storage system. We first tried to characterize the alloy TiFe0.9Mn0.1 in powder form by describing it morphologically, chemically and thermodynamically. Then, two strategies of improvement were tested, the first one based on a mechanical treatment by planetary ball milling, the second considers a thermochemical treatment at given temperature and duration. Both strategies accelerated the process of powder activation, but the planetary ball milling significantly impaired the apparent desorption kinetics. The thermo-chemical treatment did not degrade the equilibrium domains and thus did not have an adverse effect on the reaction kinetics. The two most important parameters of this treatment, temperature and holding time, have been optimized. Other parameters remain to be refined.In addition to this experimental characterization, we have undertaken to describe the hydriding / dehydriding reaction macroscopically. The model allows to account for the thermodynamic response of the hydride within a reservoir. This work presents the results obtained on a tank containing 4 kg of TiFe0.9Mn0.1 powder when different hydrogen loading / unloading scenarios are considered: (i) loading / unloading under constant pressure, (ii) loading / unloading under an initial dose ( Method of Sievert), iii) loading / unloading under inlet or outlet flux of hydrogen. For each scenario, the effect of the coupling with a heat exchange system on the filling / emptying times is analyzed and optimal operating conditions are proposed. Finally, a sensitivity study using the Morris method is presented, and the most influential parameters of the model on the reaction rates are identified. The design of a solid hydrogen storage system requires a good understanding of the macroscopic as well as the microscopic aspects of the hydriding reaction and therefore requires further research to find new directions for improving its performance
Garrier, Sylvain. "Conception et simulation d'un réservoir d'hydrure de magnésium avec récupération de la chaleur de réaction à l'aide d'un matériau à changement de phase." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00940452.
Full textChaise, Albin. "Etude expérimentale et numérique de réservoirs d’hydrure de magnésium." Grenoble 1, 2008. http://www.theses.fr/2008GRE10257.
Full textThe target of this thesis was to study the feasibility of solid hydrogen storage in magnesium hydride (MgH2). At first, kinetic, thermodynamic and thermal properties of activated MgH2 powder have been investigated. Powders sorption kinetics are very sensitive to air exposure. The heat released by the very exothermic absorption reaction needs to be removed to load a tank with hydrogen in a reasonable time. In order to increase the thermal conductivity, a compression process of the material with expanded natural graphite (ENG) has been developed. Owing to that process, tough and drillable disks of MgH2 can be obtained with a reduced porosity and twice the volumetric storage capacity of the free powder bed. Handling those disks is easier and safer. Heat and mass transfer analysis has been carried out with a first small capacity tank (90 Nl), which is adapted to different experimental configurations. A second tank has been designed to fit disks of "MgH2 + ENG". This tank can absorbe 1200 Nl (105 g H. ) in 45 minutes, with a volumetric storage density equivalent to 480 bar compressed hydrogen. At the same time, a numerical modeling of MgH2 tanks has been achieved with Fluent® software. Numerical simulations of sorption process fit experiments and can be used for a better understanding of the storage material thermal and chemical behavior
Lavastre, Olivier. "Dérivés du tantalocène : hydrures, métallophosphines et composés bimétalliques." Dijon, 1990. http://www.theses.fr/1990DIJOS026.
Full textLin, Xiwei. "Hydrures métalliques crées par implantation à basse température." Paris 11, 1987. http://www.theses.fr/1987PA112149.
Full textSalque, Bruno. "Caractérisation mécanique de la respiration des hydrures pour uneconception optimisée des réservoirs de stockage de l’hydrogène par voie solide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI026/document.
Full textHydrogen can be used as a storage for electric energy. Hydrogen may become an energy vector, whichcould be used and transported easily. For the hydrogen sector to develop and mature, production, storageand consumption should be researched and optimized.This PhD is dedicated to hydrogen solid storage in metal hydride. This technology consists in usinga reversible and exothermic chemical reaction between an alloy and hydrogen. The hydrogen is capturedinside the metal lattice and can be released with the endothermic opposite reaction. The main factors whichimpact the performance of this technology are the choice of material, the heat flow management and thesystem used. Its main advantages lay on safety and energy compactness. Its main drawbacks come from theweight of the system. When the material absorb hydrogen, its volume increases. To contain this materialin an airtight environment, it is mandatory to know how stress develop on the container that contains thematerial. The cycles of dilatation and contraction of the material, when it is loading or unloading hydrogen,is called breathing.This research begins with a large spectrum presentation of hydrogen. Then comes a chemical and structuralcharacterization of the material : LaNiCoMnAl. Its Composition-Temperature-Pressure characteristicsare given. The material exhibits granular properties and is structurally characterize using laser grain sizing,shape measurement and X-Ray tomography. The typical length scale of LaNiCoMnAl particles is 20 micrometers.The third and fourth chapters are concerned with the experimental behavior. A sample is placed ina stress controlled environment where its density is measured during cycling. The other experiment places asample in a fixed volume. In that case, the stress exerted on the material is recorded and measured duringcycling. In the last chapter, numerical simulations using the Discrete Element Method are used. The materialis modeled by X shaped clusters and studied with different friction parameters and boundary conditions.Following other works done on other materials, these experiment showed a different behavior of LaNi-CoMnAl compared to Ti-Cr-V. During breathing, LaNiCoMnAl exhibits a decrease in density even whensubmitted to a relatively large stress. The rate at which the density decreases is lowered when the confinementpressure increases. When the material is placed in a fixed volume, the stress increases with increasingpoured mass. Numerical simulations show a decrease in density when the friction parameter is high enough.It validates the hypothesis that material parameters play a major role in the macroscopic behavior of metalhydride during breathing
Laurencelle, François. "Développement d'un compresseur d'hydrogène basé sur le cyclage thermique des hydrures métalliques." Thèse, Université du Québec à Trois-Rivières, 2007. http://depot-e.uqtr.ca/1303/1/030011310.pdf.
Full textThibault, Delphine. "Piégeage de l'hydrogène dans des hydrures métalliques en présence de mélanges de gaz." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1143.
Full textMitigation of the hydrogen risk generated by radiolysis during nuclear waste transportation is a major safety concern in the nuclear industry. Intermetallic compounds act as getters to trap hydrogen in solid state spontaneously in wide ranges of temperatures and pressures including waste transport conditions. The hydrogenation reaction proceeds through a dissociation step at the metal surface and the presence of inhibiting gas molecules such as nitrogen or carbon monoxide can strongly affect the gettering performances of the material. Therefore, an innovative system has been proposed in this work to protect alloy surfaces and optimize hydrogen gettering in the presence of gas mixtures using a hydrogen permselective membrane. Structure and chemical composition of zirconium alloys from the Zr-Fe and Zr-Ti-V systems, known to be relatively tolerant to contaminants gas, have been investigated using X-ray diffraction and electron microprobe analysis. The hydrogen sorption properties have been studied and confirmed the hindering effects of carbon monoxide on the kinetics and the absorption capacity of those hydrides. Meanwhile, microporous silica membranes and dense polyimide have been developed. Their permeation and selectivity properties to hydrogen have been characterized in temperature and pressure conditions close to the foreseen application. Embedded hydrides into a permselective polymeric matrix were finally proposed. This coupling showed benefits on the absorption kinetics in the presence of CO
Nolet, David. "Modélisation par la méthode des volumes finis des transferts de chaleur et de masse dans un hydrure métallique et exemple d'application dans un problème de fuite de réservoir." Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1830/1/000131300.pdf.
Full textChallet, Sylvain. "Stockage de l'hydrogène dans les hydrures métalliques pour l'alimentation en hydrogène de véhicules à pile à combustible." Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990002314920204611&vid=upec.
Full textHydrogen storage remains an issue for its use in mobile applications. Despite its weight, storage in metal hydrides presents advantages in term of safety and volumic capacity. In this work, several families of hydrides have been studied to answer to the working conditions of a main tank or a buffer tank for cold start. The thermodynamic properties of LaNi5 and TiFe type hydrides have been adjusted by suitable substitutions allowing to obtain potentially usable compounds for both kinds of tanks. In order to increase the weight capacity, the effect of M element on thermodynamics properties of lighter hydrides based on Ti-V-M solid solutions (M=Mn, Fe, Co, Ni) has been studied showing the best hydrogenation properties for the Fe compound. Finally, the discovery of hydrogen reactivity of the Ti3Si compound opens new routes
Camirand, Christian. "Étude de la chaleur spécifique et de la conductivité thermique des hydrures métalliques par calorimétrie différentielle." Thèse, Université du Québec à Trois-Rivières, 2000. http://depot-e.uqtr.ca/3139/1/000668315.pdf.
Full textIosub, Vasile. "Développement et optimisation d'une unité de stockage de l'ydrogène sur hydrures métalliques utilisée dans les systèmes stationnaires de pile à combustible." Paris 12, 2004. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990002109170204611&vid=upec.
Full textThe work bas started with a thorough study of tbe bibliography on the metal hydrides application as hydrogen storage materials in solid gas process. This study has made possible to determine two familles of intermetallic compounds able to reach the needs of the specific application: the AB5-type compounds with MmNi5-xSnx compositions (Mm stands for mischmetal, a mixture of La, Ce, Nd and Pr as well as tbe AB2-type compounds with Zr-pTipMn2-r-sNirVs compositions. In a second time we have tried to optimise hydrogen absorption properties by modifying the alloy composition and structure. Moreover, a study of the kinetics and ageing during cycling was made. From the experimental results, new relations composition - structure - thermodvnamic properties bave been determined in order to adapt other types of hvdrogen storage materials to the specifications
Hammioui, Mustapha El. "Lois cinétiques dans les réactions exothermiques de formation des hydrures métalliques : influence des paramètres de surface et des éléments d'addition." Dijon, 1986. http://www.theses.fr/1986DIJOS020.
Full textDelhomme, Baptiste. "Couplage d'un réservoir d'hydrure de magnésium avec une source externe de chaleur." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767941.
Full textCharbonnier, Véronique. "Optimisation de la composition en terres rares pour des hydrures métalliques utilisés comme électrodes dans les accumulateurs Ni-MH." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1147.
Full textNi-MH batteries are used in both stationary (solar panels) and mobile (hybrid vehicles) applications. The active material of negative electrodes currently on the market is an AB5-type alloy (A = rare earth, B = transition metal). The continuously increasing demand for energy requires improving the mass capacity of these batteries. For this reason, we study new type of electrode materials ABy (y Æ 3.5 or 3.8). The particular stacking structure of these alloys composed of [AB5] and [A2B4] units give them more capacity. Indeed, [A2B4] unit is able to absorb more hydrogen than [AB5] unit. However, stability in cycling is lowered. In this phD work we have, at first, conducted a study of binary compounds type ANi 3.5 and ANi3.8 (A = Gd, Sm ou Y), then we studied the evolution of the thermodynamic properties, electrochemical and corrosion after successive substitutions of the rare earth (or yttrium) with magnesium and lanthanum
Rataboul, Franck. "Synthèse d'un hydroxyde de zirconium supporté sur silice : application à la préparation de catalyseurs de la réaction de métathèse des alcanes." Lyon 1, 2002. http://www.theses.fr/2002LYO10160.
Full textOumellal, Yassine. "Réactivité électrochimique des hydrures métalliques vis-à-vis du lithium : Electrodes négatives pour batteries Li-ion : Stockage de l'hydrogène par voie solide-gaz." Amiens, 2009. http://www.theses.fr/2009AMIE0102.
Full textThe use of metal hydrides as negative electrode for lithium-ion batteries, combining the advantage of high gravimetric and volumetric capacities of hydrides with high energy density of lithium ion batteries, is proposed here for the first time as a promising opportunity to achieve in the coming decades powerful batteries. Magnesium hydride, with the largest gravimetric capacity (2038 mAh. G-1), a theoretical potential equilibrium of 0. 520 V and a low cost, was naturally chosen as a candidate to investigate this new type of application of metal hydrides. It reacts with lithium ions according to a conversion mechanism: MgH2 + 2 Li+ + 2 e- Mg0 + 2LiH, where magnesium hydride reacts with lithium ions to form at the end of the discharge, metallic magnesium and lithium hydride. The electrochemical reactivity of commercial magnesium hydride is very low (reversible capacity lower than 50 mAh. G-1). Different preparation methods of the material such as milling, carbon addition, solid-gas preparation followed by milling with carbon were needed to improve the reactivity of commercial magnesium hydride, leading to increase the reversible capacity from 50 mAh. G-1 to 1450 mAh. G-1 (75% of the theoretical capacity 2038 mAh. G-1) for an irreversible loss of 25% with an average potential of 0. 5 Volt vs. Li+/Li0. This interest for the magnesium hydride is reinforced by the polarization of the potential/capacity curves ranging between 200 mV-300 mV. The reactivity of magnesium hydride with lithium is shown to be a new way for the preparation of nanometals and nanohydrides for hydrogen storage materials by solid-gas reaction at low temperatures. Finally, this reactivity is not specific to magnesium hydride; it can be extended to some binary hydrides (NaH, TiH2) and different families of intermetallic hydrides (Mg2NiH3,7, TiNiH, LaNi4,25Mn0,75H5) thus opening new routes for preparation of materials in both fields of hydrogen storage and lithium-ion technology
Ponthieu, Marine. "Nouveaux matériaux riches en Mg pour le stockage d’hydrogène : composés Mg6Pd1-xMTx (MT = Ni, Ag, Cu) massifs et nanoconfinés et nanocomposites MgH2-TiH2." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1139/document.
Full textThis thesis is dedicated to the study of novel magnesium-rich compounds for solid state hydrogen storage. The aim is to destabilize Mg hydride and accelerate its sorption kinetics by alloying and nanostructuration. The first family of compounds concerns the Mg6Pd1-xTMx (TM = Ni, Ag, Cu) pseudo-binary phases. Their structural properties and the effects of Pd substitution have been studied by X-ray diffraction, scanning electron microscopy and electron microprobe analyses. Their thermodynamics and kinetics of hydrogenation have been determined by solid-gas reaction. Different hydrogenation mechanisms take place depending on the substituting element. The stability of the metal-hydrogen system is altered by the nature of the phases formed during hydrogenation reaction. Thus, metal to hydride transformation is characterized by at least two absorption plateau pressures. The pressure of the first plateau is similar to that of Mg/MgH2 while the second one occurs at higher pressure. The enthalpy and entropy of reaction are determined to quantify the destabilizing effect of Pd by TM substitution. Best desorption kinetics are found for the Ni containing alloy thanks to the catalytic effect of the Mg2NiH4 phase formed on hydrogenation. The second approach aims to combine alloying with nanostructuration effects. Nanoparticles of Mg6Pd as small as 3 nm are confined into nanoporous carbon matrix. By comparing their hydrogenation properties with those of the bulk alloy, we demonstrate that not only the (de)hydrogenation kinetics are much faster for the nanoparticles, but also that their hydrided state is destabilized. Finally, MgH2-TiH2 nanocomposites were synthesized by mechanical milling under reactive atmosphere. The addition of a catalyst (TiH2) and Mg nanostructuration allow strongly accelerating the sorption kinetics of hydrogen in Mg. To understand the role of the TiH2 phase on the outstanding kinetics of these nanocomposites, their structural properties have been determined by X-ray and neutron diffraction. The existence of a coherent interface between Mg and TiH2 phases is of major importance to facilitate H-mobility within the nanocomposite. Furthermore, it is shown that the TiH2 inclusions inhibit the Mg/MgH2 grain growth, thus maintaining the composites nanostructure during their cycling
Bourgeois, Natacha. "Modélisation de systèmes métal-hydrogène par couplage des méthodes DFT, CVM et Calphad." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1045/document.
Full textHydrogen absorption in the interstitial sites of metals is crucial for major issues such as alloy embrittlement or hydrogen storage for energy applications. This phenomenon modifies the physicochemical properties of the host metal and may lead to the formation of ordered MHy compounds called hydrides. Within this framework, the Calphad modeling method (CALculation of PHAse Diagrams) is a relevant tool for understanding and predicting the behavior of metals and alloys in the presence of hydrogen. However, there is no Calphad database centered on hydrogen for calculating phase equilibria in multi-constituent systems (ternary, quaternary…).The present thesis proposes to use a multi-scale modeling approach to study metal-hydrogen (M-H) binary systems, which are the first step in designing such a Calphad database. First, systematic DFT (Density Functional Theory) calculations were carried out for 31 binary M-H systems considering 30 potential crystal structures, resulting in 30 × 31 = 930 hydrides, stable or metastable. This high throughput approach allowed in particular to determine the enthalpies of formation at 0 K, which represent important input data for the Calphad method. New hydrides that have never been experimentally observed could be predicted at high pressure (TaH2, ZrH3 ...).Then, phonon calculations in the harmonic approximation were performed on the most stable hydrides. They allow, on the one hand, to correct the DFT calculated enthalpies of formation by considering the energy and entropy due to the atom vibrations, which are not negligible for the light hydrogen atom. On the other hand, a large-scale study focused on the modification of the free energy of formation due to hydrogen substitution by its isotopes, known as "isotopic effect". Predictions were made on the nature of this effect as function of temperature. Moreover, the random insertion of hydrogen atoms in solid solution was studied using statistical thermodynamic methods: CVM (Cluster Variation Method) and Monte-Carlo simulation. These methods have been implemented in calculation codes, applied to face centered cubic (fcc) and body-centered cubic (bcc) metals. The input data are the interactions energies between nearest neighbor atoms. They are provided by the CEM (Cluster Expansion Method) coupled with DFT calculations. A comparative study of the Ni-H and Pd-H systems revealed the specificities of the thermodynamic behaviors of both solid interstitial solutions. Furthermore, dihydrogen pressure is an important parameter because many hydrides form only at very high pressure. To improve the Calphad model accuracy at high pressure, the model of Lu et al. was applied to the condensed phases of the Ni-H, Rh-H and Mg-H systems. This model allows to determine the contribution to the free enthalpy due to the pressure force work. The input data may be both quasi-harmonic phonon calculation results and experimental data. Finally, a comprehensive Calphad model of the Ni-H system was carried out by integrating the model of Lu et al. The DFT enthalpy of formation and the mixing enthalpy determined by CEM were used as input data, to complement the available experimental data
Ponthieu, Marine, and Marine Ponthieu. "Nouveaux matériaux riches en Mg pour le stockage d'hydrogène : composés Mg6Pd1-xMTx (MT = Ni, Ag, Cu) massifs et nanoconfinés et nanocomposites MgH2-TiH2." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00939180.
Full textHe, Zhongli. "Complexes hétérobimétalliques : synthèse et évaluation de leurs propriétés catalytiques." Toulouse 3, 1992. http://www.theses.fr/1992TOU30013.
Full textZhang, Zhao. "Synthesis, characterization and electrochemical hydrogen storage properties of mechanicalyl alloyed Ti-Mg-Ni : application as negative electrode for Ni-MH battery." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA006/document.
Full textThe storage of hydrogen is one of the biggest technical problem that restrict the practical application of hydrogen. Metal hydrides are mainly regarded as the solution facing to this issue since it can reversibly absorb and desorb big amount of hydrogen under moderate temperature and pressure. Meanwhile, metal hydrides used as the negative electrodes of Ni-MH batteries are also the key components to the battery performance.In this thesis, the metallic composite TiMgNix, MgTi1-xNix and TiMg1-xNix were synthesized by mechanical alloying from elemental powder. The microstructure and phase transformation of prepared samples were characterized by XRD, SEM, TEM (EDS support). The hydrogenation properties were measured by hydrogen solid-gas reaction and electrochemical tests. Based on the Ti-Mg-Ni ternary phase diagram, a 3D composition-capacity diagram have been established. Two-step mill process was proposed for meliorating the electrochemical performance of Ti-Mg-Ni alloys.Additionally, TiNi1-xCux alloys had been synthesized by mechanical alloying and subsequent annealing and studied using experimental and computational approaches. The influence of Cu substitution for Ni on the phase structure and electrochemical properties are investigated. The first principle calculation was carried out to study the formation enthalpy and hydrogen adsorption energy of pseudo-binary Ti(Ni, Cu) phase. The computational results are in good agreement with experimental results
Chebab, Safa. "Elaboration et caractérisation de composés hydrurables types AB3 (A : terre rares, B : métal 3d) pour le stockage et la conversion d'hydrogène." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1054/document.
Full textThe increasing energy demand is mainly supplied by fossil sources which had environmental drawback essentially greenhouse gas emission. Considered as an energy carrier, hydrogen has the huge advantage to be clean. Its storage in intermetallic compound leads too higher hydration capacities than liquid and compressed storage. In this work, LaCaMgNi9 quaternary type alloy has been synthesized, for the first time, by mechanical alloying in order to avoid the inherent difficulties of the fusion technique. The structural and morphological characterization of the obtained alloys were performed. Their hydrogen related properties were examined (solid-gas and electrochemical reactions) in order to study their performance as negative electrode material in Ni-MH batteries
Chung, Gueendelina. "Synthèses et caractérisations des nouveaux complexes du ruthénium avec l'hydrogène moléculaire." Toulouse 3, 1992. http://www.theses.fr/1992TOU30221.
Full textPotet, Ludovic. "Synthèse, propriétés et utilisations d'hydrures métalliques (alane AlH3) comme additifs pour la propulsion spatiale." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2310.
Full textAluminium hydride or alane (AlH3) is a very important and fascinating material that draws increasing attention due to its potential uses: (i) as an energetic component in rocket propellants, (ii) as a reducing agent in alkali batteries and (iii) as a possible hydrogen source for low temperature fuel cells. It exhibits a density of 1,48 g cm-3, a volumetric hydrogen capacity of 0,148 g mL-1, that is more than twice as much as that of liquid hydrogen (0,07 g mL-1). Its hydrogen mass capacity slightly exceeds 10 wt.-%. Unfortunately, production of alane suffers from a high cost that hinders its opportunity to be an excellent candidate for propulsion. Moreover, only the α phase of alane is known to be stable enough to be stored and used. This work aims at developing cheaper methods for alane production while keeping a maximum selectivity towards the formation of α phase. Preparation using a classical organometallic synthesis in ether was implemented. An etherate complex was formed, the ether was removed under vacuum and finally an adequate thermal treatment led to pure α phase of alane as identified by powder X-ray diffraction. A toluene free synthesis method was implemented and resulted in a cost reduction of 25 %. The stability of the material was characterized through thermal analysis (DTA-TGA). The morphology and purity of the alane were characterized using TEM, SEM and ICP-OES. Alane was synthesized using doping compounds and resulted in a significant increase in the decomposition temperature from ca. 160 °C to ca. 174 °C. Syntheses without solvent were studied using a homemade reactor and following a design of experiment to identify the key parameter towards the highest yield in α-AlH3. The synthesis method in ether was transferred to our industrial partners
Li, Xianda. "Mechanical alloying Ti-Ni based metallic compounds as negative electrode materials for Ni-MH battery." Thesis, Belfort-Montbéliard, 2015. http://www.theses.fr/2015BELF0256/document.
Full textNi-MH (Nickel-Metal-Hydride) batteries have been a promising and extensively studied topic among clean and sustainable energy researches. Finding the ideal material for the negative electrode with high volumetric and gravimetric densities is the key to apply this technology on broader applications. Metal hydrides based on Ti-Ni have balanced properties between hydrogen capacity and electrochemical performances in cycling.The objective of this thesis is to study the effects of element substitution/doping and mechanical alloying on the structural and hydrogen properties of Ti-Ni alloys. In this study, a series of Ti-Ni based systems with Mg or Zr doping/substitution have been systematically investigated.The metallic compounds (TiNi)1-xMgx, (TiH2)1.5Mg0.5Ni, and Ti2-xZrxNi were synthesized by mechanically alloying from elemental powders.The milling time and effects of Mg, Zr substitution/doping were studied firstly in respect of their microstructures, using characterization techniques including XRD, SEM, TEM (EDX support), followed by the hydrogen properties measurements of the samples by hydrogen solid-gas reaction and electrochemical cycling.A first principle calculation tool based on DFT (Density Functional Theory) was carried out to further investigate the enthalpy of formation in order to compare the thermodynamical stability of the obtained compounds. In the study, we have found the alloying priorities in the ternary alloys Ti-Ni-Mg and Ti-Ni-Zr under milling conditions.A structure transformation of Ti to FCC induced by foreign elements is reported and investigated. Enthalpy of formation per atom of the compounds were obtained by DFT calculations, which helped interpreting the experimental results. PCI (Pressure Composition Isotherms) curves and discharge capacities as the function of cycling numbers revealed the hydrogen properties of the obtained compounds, including TiNi, Ti2Ni (amorphous), Ti-Mg and Ti-Zr
Planté, Damien. "Elaboration d'un alliage métallique de structure cubique centrée pour le stockage portatif de l'hydrogène." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY077/document.
Full textThis study has been carried out in the framework of solid state hydrogen storage for mobile applications withlow electrical power. It was conducted under the FUI project HyCAN. The objective was to develop andfunctionalize a bcc alloy. Such disordered solid solutions are based on vanadium, which initially has a goodreactivity in relation to hydrogen. However, the thermodynamics of V-H system does not allow applicationsbelow 40 ° C, the cost is prohibitive and its implementation in industrial environments is not straightforward.We worked on three major families of vanadium alloys. Alloys Ti-V-Cr have been studied by in operandosynchrotron radiation X-ray diffraction in order to understand the observable structural transformations that takeplace during hydrogenation and then to link them to the thermodynamics of compounds. In a second step, thespecifications of the project directed us towards vanadium composites in which we develop an intergranularstructure for a better controlled activation and destabilization of the hydride so as to reach operatingtemperatures near 0 ° C. The use of ferro-vanadium as a precursor prompted the study of alloys in the Ti-V-Feand Ti-V-Cr-Fe systems. The viability of storage solutions on the basis of these materials is discussed.Throughout the course of this work the relationship between microstructure and hydrogen sorption properties issystematically discussed and empirical models describing the hydride equilibrium are routinely faced with thebibliographic database.Finally, part of the study is devoted to the study and modeling of reservoirs in operating condition, from thepoint of view of heat exchange, compliance with safety standards and mechanical stresses generated by the bedreactive powder
Chaise, Albin. "Etude expérimentale et numérique de réservoirs d?hydrure de magnésium." Phd thesis, 2008. http://tel.archives-ouvertes.fr/tel-00351465.
Full textDans un premier temps la poudre de MgH2 activé a été caractérisée d'un point de vue cinétique, thermodynamique, et thermique. Les cinétiques d'absorption / désorption de l'hydrogène s'avèrent très sensibles à une exposition des poudres à l'air.
La réaction d'hydruration, très exothermique, nécessite d'évacuer très rapidement la chaleur pour charger un réservoir dans un temps raisonnable. Afin d'augmenter la conductivité thermique, un procédé de mise en forme du matériau avec ajout de graphite naturel expansé (GNE) a été développé. Cette mise en forme permet d'obtenir des disques solides et usinables d'MgH2 activé de porosité réduite, présentant une densité volumique de stockage deux fois plus élevée que la poudre libre, et dont la manipulation est plus facile et sûre.
L'analyse du comportement thermique et des flux gazeux a d'abord été menée avec un réservoir de faible capacité (90 Nl d'H2) mais permettant de s'adapter à des configurations expérimentales variées. Un second réservoir a été conçu pour répondre aux spécificités des composites "MgH2 + GNE". Ce réservoir permet d'absorber 1200 Nl (105 g d'H.) en 45 minutes, avec une densité volumique système équivalente à celle d'une bouteille d'hydrogène comprimé à 480 bars.
Simultanément, un modèle numérique du comportement des réservoirs de MgH2 a été développé à l'aide du logiciel Fluent®. Les simulations numériques des chargements et des déchargements concordent avec l'expérience et expliquent le comportement réactionnel du matériau.
Tong, Liang. "Simulations et optimisation de systèmes de stockage et de purification d'hydrogène en utilisant des adsorbants et des hydrures métalliques = Simulation and optimization of hydrogen storage and purification using adsorbents and metal hydrides." Thèse, 2020. http://depot-e.uqtr.ca/id/eprint/9682/1/eprint9682.pdf.
Full text