Contents
Academic literature on the topic 'Réservoir à hydrures métalliques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réservoir à hydrures métalliques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Réservoir à hydrures métalliques"
Cova, P., R. A. Masut, R. Lacoursière, A. Bensaada, C. A. Tran, and J. F. Currie. "Élimination des hydrures métalliques des déchets gazeux d'un réacteur LP-MOVPE pour la croissance de composés (In, Ga) (As, P)." Canadian Journal of Physics 71, no. 7-8 (July 1, 1993): 307–15. http://dx.doi.org/10.1139/p93-049.
Full textSouici, Mounir, and Atika Roustila. "Rôle de l’hydrogène sur la microstructure et de la température sur les propriétés électroniques du nickel pur (Ni)." Journal of Renewable Energies 12, no. 3 (October 26, 2023). http://dx.doi.org/10.54966/jreen.v12i3.157.
Full textDissertations / Theses on the topic "Réservoir à hydrures métalliques"
Gondor, Germain. "Pour le stockage de l'hydrogène : Analyse thermodynamique de la formation d'hydrures métalliques et optimisation du remplissage d'un réservoir." Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00782271.
Full textZeaiter, Ali. "Caractérisation et modélisation du comportement des alliages TiFe dédiés au stockage solide d'hydrogène. : Application à l'amélioration des performances d'un réservoir à hydrures métalliques." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD007/document.
Full textHe environmental and economic problems caused by the use of petroleum products and the scarcity of these fossil fuels have led to the search for alternative sources of energy, which are renewable and respectful of the environment. Many of these sources are intermittent and require storage solutions. Hydrogen gas appears as a good candidate for this function. The hydrogen element, abundant in nature, has in its gaseous form a calorific value of 140 MJ / kg, i.e. 2.5 times that of gasoline. The 'hydrogen' sector is based on 3 pillars: production, storage, distribution and use. The storage of hydrogen is traditionally carried out by compression, under pressures ranging from a few bars to several hundreds, and by liquefaction at 20 K. The low density of these two types of storage (42 and 70 kgH2 / m3) associated with serious problems of safety and mechanical design, make solid storage in metal alloys particularly relevant for some applications. This solution favors the development of safe, compact design tanks with a high density of 120 kgH2/m3for TiFe alloys, for example. This type of hydride has been retained in this work because it has operating conditions of temperatures and pressures that are relatively close to ambient conditions, and also because it does not contain rare earth elements. The aim of this study is to characterize and model the hydriding/dehydriding behavior of the TiFe0.9Mn0.1 alloy, in order to improve its performance when it is integrated into a storage system. We first tried to characterize the alloy TiFe0.9Mn0.1 in powder form by describing it morphologically, chemically and thermodynamically. Then, two strategies of improvement were tested, the first one based on a mechanical treatment by planetary ball milling, the second considers a thermochemical treatment at given temperature and duration. Both strategies accelerated the process of powder activation, but the planetary ball milling significantly impaired the apparent desorption kinetics. The thermo-chemical treatment did not degrade the equilibrium domains and thus did not have an adverse effect on the reaction kinetics. The two most important parameters of this treatment, temperature and holding time, have been optimized. Other parameters remain to be refined.In addition to this experimental characterization, we have undertaken to describe the hydriding / dehydriding reaction macroscopically. The model allows to account for the thermodynamic response of the hydride within a reservoir. This work presents the results obtained on a tank containing 4 kg of TiFe0.9Mn0.1 powder when different hydrogen loading / unloading scenarios are considered: (i) loading / unloading under constant pressure, (ii) loading / unloading under an initial dose ( Method of Sievert), iii) loading / unloading under inlet or outlet flux of hydrogen. For each scenario, the effect of the coupling with a heat exchange system on the filling / emptying times is analyzed and optimal operating conditions are proposed. Finally, a sensitivity study using the Morris method is presented, and the most influential parameters of the model on the reaction rates are identified. The design of a solid hydrogen storage system requires a good understanding of the macroscopic as well as the microscopic aspects of the hydriding reaction and therefore requires further research to find new directions for improving its performance
Garrier, Sylvain. "Conception et simulation d'un réservoir d'hydrure de magnésium avec récupération de la chaleur de réaction à l'aide d'un matériau à changement de phase." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00940452.
Full textChaise, Albin. "Etude expérimentale et numérique de réservoirs d’hydrure de magnésium." Grenoble 1, 2008. http://www.theses.fr/2008GRE10257.
Full textThe target of this thesis was to study the feasibility of solid hydrogen storage in magnesium hydride (MgH2). At first, kinetic, thermodynamic and thermal properties of activated MgH2 powder have been investigated. Powders sorption kinetics are very sensitive to air exposure. The heat released by the very exothermic absorption reaction needs to be removed to load a tank with hydrogen in a reasonable time. In order to increase the thermal conductivity, a compression process of the material with expanded natural graphite (ENG) has been developed. Owing to that process, tough and drillable disks of MgH2 can be obtained with a reduced porosity and twice the volumetric storage capacity of the free powder bed. Handling those disks is easier and safer. Heat and mass transfer analysis has been carried out with a first small capacity tank (90 Nl), which is adapted to different experimental configurations. A second tank has been designed to fit disks of "MgH2 + ENG". This tank can absorbe 1200 Nl (105 g H. ) in 45 minutes, with a volumetric storage density equivalent to 480 bar compressed hydrogen. At the same time, a numerical modeling of MgH2 tanks has been achieved with Fluent® software. Numerical simulations of sorption process fit experiments and can be used for a better understanding of the storage material thermal and chemical behavior
Lavastre, Olivier. "Dérivés du tantalocène : hydrures, métallophosphines et composés bimétalliques." Dijon, 1990. http://www.theses.fr/1990DIJOS026.
Full textLin, Xiwei. "Hydrures métalliques crées par implantation à basse température." Paris 11, 1987. http://www.theses.fr/1987PA112149.
Full textSalque, Bruno. "Caractérisation mécanique de la respiration des hydrures pour uneconception optimisée des réservoirs de stockage de l’hydrogène par voie solide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI026/document.
Full textHydrogen can be used as a storage for electric energy. Hydrogen may become an energy vector, whichcould be used and transported easily. For the hydrogen sector to develop and mature, production, storageand consumption should be researched and optimized.This PhD is dedicated to hydrogen solid storage in metal hydride. This technology consists in usinga reversible and exothermic chemical reaction between an alloy and hydrogen. The hydrogen is capturedinside the metal lattice and can be released with the endothermic opposite reaction. The main factors whichimpact the performance of this technology are the choice of material, the heat flow management and thesystem used. Its main advantages lay on safety and energy compactness. Its main drawbacks come from theweight of the system. When the material absorb hydrogen, its volume increases. To contain this materialin an airtight environment, it is mandatory to know how stress develop on the container that contains thematerial. The cycles of dilatation and contraction of the material, when it is loading or unloading hydrogen,is called breathing.This research begins with a large spectrum presentation of hydrogen. Then comes a chemical and structuralcharacterization of the material : LaNiCoMnAl. Its Composition-Temperature-Pressure characteristicsare given. The material exhibits granular properties and is structurally characterize using laser grain sizing,shape measurement and X-Ray tomography. The typical length scale of LaNiCoMnAl particles is 20 micrometers.The third and fourth chapters are concerned with the experimental behavior. A sample is placed ina stress controlled environment where its density is measured during cycling. The other experiment places asample in a fixed volume. In that case, the stress exerted on the material is recorded and measured duringcycling. In the last chapter, numerical simulations using the Discrete Element Method are used. The materialis modeled by X shaped clusters and studied with different friction parameters and boundary conditions.Following other works done on other materials, these experiment showed a different behavior of LaNi-CoMnAl compared to Ti-Cr-V. During breathing, LaNiCoMnAl exhibits a decrease in density even whensubmitted to a relatively large stress. The rate at which the density decreases is lowered when the confinementpressure increases. When the material is placed in a fixed volume, the stress increases with increasingpoured mass. Numerical simulations show a decrease in density when the friction parameter is high enough.It validates the hypothesis that material parameters play a major role in the macroscopic behavior of metalhydride during breathing
Laurencelle, François. "Développement d'un compresseur d'hydrogène basé sur le cyclage thermique des hydrures métalliques." Thèse, Université du Québec à Trois-Rivières, 2007. http://depot-e.uqtr.ca/1303/1/030011310.pdf.
Full textThibault, Delphine. "Piégeage de l'hydrogène dans des hydrures métalliques en présence de mélanges de gaz." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1143.
Full textMitigation of the hydrogen risk generated by radiolysis during nuclear waste transportation is a major safety concern in the nuclear industry. Intermetallic compounds act as getters to trap hydrogen in solid state spontaneously in wide ranges of temperatures and pressures including waste transport conditions. The hydrogenation reaction proceeds through a dissociation step at the metal surface and the presence of inhibiting gas molecules such as nitrogen or carbon monoxide can strongly affect the gettering performances of the material. Therefore, an innovative system has been proposed in this work to protect alloy surfaces and optimize hydrogen gettering in the presence of gas mixtures using a hydrogen permselective membrane. Structure and chemical composition of zirconium alloys from the Zr-Fe and Zr-Ti-V systems, known to be relatively tolerant to contaminants gas, have been investigated using X-ray diffraction and electron microprobe analysis. The hydrogen sorption properties have been studied and confirmed the hindering effects of carbon monoxide on the kinetics and the absorption capacity of those hydrides. Meanwhile, microporous silica membranes and dense polyimide have been developed. Their permeation and selectivity properties to hydrogen have been characterized in temperature and pressure conditions close to the foreseen application. Embedded hydrides into a permselective polymeric matrix were finally proposed. This coupling showed benefits on the absorption kinetics in the presence of CO
Nolet, David. "Modélisation par la méthode des volumes finis des transferts de chaleur et de masse dans un hydrure métallique et exemple d'application dans un problème de fuite de réservoir." Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1830/1/000131300.pdf.
Full text