Academic literature on the topic 'Resection des extrémités non homologues'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resection des extrémités non homologues.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Resection des extrémités non homologues"

1

MULSANT, P. "Glossaire général." INRAE Productions Animales 24, no. 4 (September 8, 2011): 405–8. http://dx.doi.org/10.20870/productions-animales.2011.24.4.3273.

Full text
Abstract:
Allèle : une des formes alternatives d'un locus. Dans une cellule diploïde, il y a deux allèles pour chaque locus (un allèle transmis par chaque parent), qui peuvent être identiques. Dans une population, on peut avoir plusieurs allèles pour un locus.Annotation structurale : repérage des coordonnées des diverses structures dans le génome, telles que les gènes.Annotation fonctionnelle : renseignements sur les fonctions des séquences, le plus souvent pour les gènes.BAC : Bacterial Artificial Chromosome. Vecteur de clonage permettant l’obtention de clones bactériens contenant un grand fragment d’ADN génomique (taille > 100 kb*). Les BAC assemblés en contigs* sont à la base des cartes physiques du génome.Carte cytogénétique : carte des chromosomes. Réalisée par localisation visuelle (FISH*) au microscope de fragments d’ADN sur les chromosomes au stade métaphase de la mitose.Carte d’hybrides irradiés : réalisée en testant par PCR la présence ou l’absence de fragments d’ADN dans une collection de clones d’hybrides irradiés (RH*). Deux fragments d’ADN sont proches sur le génome s’ils sont trouvés fréquemment dans les mêmes clones.Carte génétique : obtenue par l’étude de la ségrégation dans des familles ou des populations, de marqueurs polymorphes, soit moléculaires, soit phénotypiques, deux séquences étant d’autant plus proches qu’elles sont souvent transmises ensemble lors de la méiose.Clonage positionnel : stratégie visant à identifier un gène responsable de l’expression d’un phénotype en utilisant des informations de position sur le génome.Contig : ensemble de clones (le plus souvent des BAC*) ou de lectures de séquence ordonnés grâce à des informations sur leur parties chevauchantes.Cosmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragments d’ADN génomique de taille avoisinant les 50 kb*.CNV : Copy Number Variation ; polymorphisme du génome correspondant à la variation du nombre de copies d’une séquence, pouvant dans certains cas contenir un ou plusieurs gènes.Déséquilibre gamétique : pour deux loci quelconques, c'est le fait que la fréquence des haplotypes* estimée pour tous les gamètes est différente de celle attendue à partir du produit des fréquences alléliques de chaque locus. Synonyme : déséquilibre de liaison. Contraire de : équilibre gamétique.Dominance : qualificatif de l’effet d'un allèle, dont une copie suffit à l'expression du phénotype* approprié. L’allèle A est dominant sur l’allèle a si l’hétérozygote* Aa a le même phénotype* que l’homozygote AA.EST : Expressed Sequence Tag : séquences étiquettes (partielles) de transcrit, obtenues par séquençage aléatoire d’ARN.Evaluation génomique : évaluation de la valeur génétique d’individus d’après leurs génotypes pour un ensemble de loci distribués sur le génome, d’après des équations établies à partir des performances d’individus de référencephénotypés et génotypés.Expression génique : études visant à estimer le niveau de production (expression) des gènes en fonction d’états physiologiques ou de tissus différents.Exon : fraction de la partie codante d’un gène eucaryote. Les gènes des organismes eucaryotes sont le plus souvent fractionnés en plusieurs séquences d’ADN dans le génome, les exons, séparés entre eux par d’autres séquences (introns*).FISH : Fluorescent In Situ Hybridisation. Hybridation de sondes d’ADN marquées à l’aide d’un fluorochrome, sur des chromosomes au stade métaphase de la mitose. Permet la réalisation de la carte cytogénétique.Fingerprinting : technique permettant d’estimer très grossièrement la similarité entre des séquences d’ADN sans les séquencer, par la comparaison des longueurs de bandes produites par des enzymes de restriction coupant l’ADN à des sites précis.Fosmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragment d’ADN génomique de taille déterminée et égale à 40 kb*.FPC : FingerPrint Contig* ; contig* de clones (généralement des BAC*) ordonnés par la technique du fingerprinting, afin d’obtenir une carte physique du génome.Génotype 1 : constitution génétique d'un individu. 2. Combinaison allélique* à un locus particulier, ex: Aa ou aa.Haplotype : combinaison allélique spécifique pour des loci appartenant à un fragment de chromosome défini.Héritabilité au sens strict : proportion de la variance phénotypique due à la variabilité des valeurs génétiques = proportion de la variance phénotypique due à la variance génétique additive.Hétérozygote : individu ayant des allèles non identiques pour un locus* particulier ou pour plusieurs loci. Cette condition définit l’ «hétérozygotie». Contraire de: homozygote.Homologues : séquences similaires en raison d’une origine évolutive commune.Hybride irradié : cellule hybride obtenue par fusion entre cellules hôte d’une espèce et donneuse d’une autre espèce, contenant une fraction aléatoire du génome de l’espèce donneuse, après cassures par irradiation, reconstitution aléatoire de chromosomes ou insertion dans des chromosomes de la cellule hôte et rétention partielle. Deux séquences proches sur le génome sont en probabilité dans les mêmes clones RH*, tandis que deux séquences distantes ont une probabilité faible d’être conservées ensemble.IBD : pour identity by descent. Identité entre deux chromosomes (ou parties de chromosomes), liée à leur descendance d’un même chromosome ancestral.Indel : Insertion – deletion ; polymorphisme de présence ou absence d’un ou plusieurs nucléotides.Intron : séquence non-codante dans les gènes, séparant les exons, qui codent pour une protéine.Kb : kilobase ; séquence de mille paires de bases (pb*).Locus (pl. : loci) : Site sur un chromosome. Par extension, emplacement d’un gène ou d’un marqueur génétique sur un chromosome.Marqueur génétique : séquence d'ADN dont le polymorphisme est employé pour identifier un emplacement particulier (locus) sur un chromosome particulier.Mate-pair : séquences appariées (1 à 10 kb* de distance), produites en circularisant les fragments d’ADN, puis par séquençage à travers le point de jointure.Mb : mégabase ; séquence d’un million de paires de bases (pb*) de longueur.Orthologues : séquences homologues* entre deux espèces.Paired-end : séquences appariées produites par la lecture des deux extrémités de courts fragments d’ADN (moins de 500 pb*) dans le cas des nouvelles technologies de séquençage.Paralogues : séquences homologues* résultat de la duplication d’une séquence ancestrale dans le génome. Il s’agit de deux (ou plus) séquences similaires par homologie dans un même génome.Pb : paire de base ; unité de séquence d’ADN, représentée par une base et sa complémentaire-inverse sur l’autre brin.Phénotype : caractère observable d'un individu résultant des effets conjugués du génotype et du milieu.Phylogénomique : utilise les méthodes de la génomique et de la phylogénie. Par la comparaison de génomes entiers, permet de mettre en évidence des pertes et gains de gènes dans les génomes, ainsi que leur variabilité moléculaire, afin (entre autres buts) d’aider à prédire leur fonctions.Plasmide : vecteur de clonage permettant l’obtention de clones bactériens contenant des fragment d’ADN génomique de taille allant de 500 pb* à 10 kb* environ.Polymorphisme d'ADN : existence de deux ou de plusieurs allèles* alternatifs à un locus.Puce à ADN ou puce pangénomique : Système permettant pour un individu le génotypage simultané de très nombreux marqueurs génétiques (de quelques milliers à quelques centaines de milliers).QTL : abréviation de locus à effets quantitatifs (de l’anglais Quantitative Trait Locus).Récessivité : qualificatif de l’effet d'un allèle, où l'homozygotie* est nécessaire pour l'expression du phénotype* approprié. opposé de : dominance*.RH : Radiation Hybrid (hybride irradié*)Sanger (méthode de) : méthode de séquençage publiée en 1977 (Sanger et al 1977) et encore utilisée de nos jours avec les séquenceurs à électrophorèse capillaire.Scaffold : ensemble de contigs* de séquence reliés entre eux par des informations apportées par des lectures appariées (mate-pairs* ou paired-ends*).Sélection assistée par marqueurs (abréviation : SAM) : utilisation d’un jeu restreint de marqueurs de l'ADN pour améliorer la réponse à la sélection dans une population : les marqueurs sont choisis comme étroitement liés à un ou plusieurs loci cibles, qui sont souvent des loci à effets quantitatifs ou QTL*.SNP : polymorphisme d'un seul nucléotide à une position particulière de la séquence d’ADN (abréviation de l’anglais Single Nucleotide Polymorphism).Supercontig : nom alternatif pour les scaffolds*.WGS : Whole Genome Shotgun ; production de lectures de séquence d’un génome entier de manière aléatoire.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Resection des extrémités non homologues"

1

Nourisson, Antonin. "Étude structurale et fonctionnelle de la fidélité des ADN polymérases X spécialisées dans la réparation des cassures doubles brins programmées chez Paramecium tetraurelia." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS103.

Full text
Abstract:
L'eucaryote unicellulaire Paramecium tetraurelia est un organisme binucléé, qui a pour particularité de perdre lors de sa reproduction le noyau nécessaire à l'expression de ses gènes (somatique). Celui-ci doit donc être régénéré à partir de son autre noyau (germinal), quant à lui diploïde. Cette régénération passe par de nombreuses réplications du génome, mais surtout par des réarrangements massifs, dont certains consistent en l'introduction programmée de cassures double-brin à des milliers de sites dans le génome, afin d'éliminer des séquences d'insertion qui cassent le cadre de lecture dans de nombreux gènes. Une fois ces cassures introduites, elles sont réparées par un système qui repose sur des protéines impliquées dans la réparation non-homologue, ou NHEJ (Ku70/80, DNA-PKcs, Ligase IV, XRCC4) et sur 4 ADN polymérases. Cependant, il existe une différence majeure entre le NHEJ, qui est connu pour son fort taux d'erreurs, et le NHEJ chez la paramécie qui ne fait quasiment pas d'erreurs. L'objectif des travaux de cette thèse est d'expliquer la fidélité de ce système, en se focalisant sur les ADN polymérases impliquées dans cette réparation chez Paramecium tetraurelia.Dans un premier temps, une approche bio-informatique a été utilisée afin d'émettre des hypothèses sur les raisons de la fidélité de ces enzymes, en étudiant de façon approfondie la classification des ADN polymérases de la famille X. Après une étude enzymatique des ADN polymérases de Paramecium tetraurelia ayant permis de montrer leurs similitudes avec les ADN polymérases λ et β ainsi que leur grande fidélité, l'existence de deux mécanismes pouvant expliquer cette fidélité a été démontrée. Pour cela, l'activité enzymatique de mutants de l'ADN polymérase λ a été testée, et leur structure a été obtenue par cristallographie aux rayons X. Un premier mécanisme, similaire à celui rencontré chez l'ADN polymérase β, se base sur des changements conformationnels locaux au sein du site catalytique de l'enzyme. Le second mécanisme, jusqu'ici non caractérisé, utilise une boucle de 10 résidus pour stabiliser l'ADN au sein du site actif, uniquement en présence d'un nucléotide correct, et est retrouvé chez l'ADN polymérase λ. Ces nouvelles connaissances sur les bases moléculaires de la fidélité des ADN polymérases de la famille X apportent une meilleure compréhension de la fidélité du NHEJ de Paramecium tetraurelia, ce qui pourra permettre d'élargir les connaissances sur le NHEJ et ses implications dans le système immunitaire et dans la carcinogenèse
The unicellular eukaryote Paramecium tetraurelia is a binucleate organism, which loses the nucleus required for gene expression (somatic) during reproduction. This nucleus must therefore be regenerated from its other nucleus (germinal), which is diploid. This regeneration involves numerous replications of the genome, but above all massive rearrangements, some of which consist in the programmed introduction of double-strand breaks at thousands of sites in the genome, in order to eliminate insertion sequences that break the reading frame in many genes. Once these breaks have been introduced, they are repaired by a system that relies on proteins involved in non-homologous repair, or NHEJ (Ku70/80, DNA-PKcs, Ligase IV, XRCC4) including 4 DNA polymerases. However, there is a major difference between classical NHEJ, which is known for its high error rate, and NHEJ in paramecium, which makes virtually no errors. The aim of this thesis is to explain the fidelity of this system, focusing on the DNA polymerases involved in this repair in Paramecium tetraurelia.Initially, a bioinformatics approach was used to hypothesize the reasons for the fidelity of these enzymes, by studying in depth the classification of DNA polymerases of family X. Following an enzymatic study of Paramecium tetraurelia DNA polymerases, which demonstrated their similarities to λ and β DNA polymerases, as well as their high fidelity, the existence of two mechanisms that could explain this fidelity was demonstrated. To this end, the enzymatic activity of DNA polymerase λ mutants was tested, and their structure obtained by X-ray crystallography. A first mechanism, similar to that encountered in DNA polymerase β, is based on local conformational changes within the enzyme's catalytic site. The second mechanism, uncharacterized until now, uses a 10-residue loop to stabilize the DNA within the active site, only in the presence of a correct nucleotide, and is found in DNA polymerase λ.These new insights into the molecular basis of X-family DNA polymerase fidelity provide a better understanding of Paramecium tetraurelia NHEJ fidelity, which may lead to a broader understanding of NHEJ and its implications in the immune system and carcinogenesis
APA, Harvard, Vancouver, ISO, and other styles
2

Gelot, Camille. "Rôle du complexe de cohésion sur la ligature d'extrémités d'ADN non homologues et la stabilité du génome." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066300/document.

Full text
Abstract:
Au cours de la réplication, la réparation des cassures double brin (CDB) par recombinaison homologue (RH), basée sur la synthèse d’ADN à partir de la chromatide sœur, permet le maintien de la stabilité du génome. La religature d’extrémités (EJ) éloignées de CDB peut quant à elle générer des réarrangements menaçant son intégrité. Nous avons étudié le mécanisme de réparation par EJ en fonction de la distance séparant deux cassures double brin. En utilisant des substrats intra-chromosomiques permettant la mesure de l’efficacité et de la fidélité du EJ après ligature d’extrémités éloignées ou proximales, nous avons mis en évidence l’implication du complexe de cohésion dans l’inhibition du EJ d’extrémités distales. Le complexe de cohésion joue donc un rôle central dans l’interface réplication/réparation ; la cohésion des chromatides sœurs favorise la réparation par RH et permet l’inhibition spécifique du EJ d’extrémités éloignées, probablement en limitant la mobilité de la chromatine endommagée et la formation d’une synapse propice au rapprochement des extrémités. La religature d’extrémités éloignées est également nécessaire aux mécanismes de diversification des gènes des immunoglobulines tels que la recombinaison V(D)J et la commutation de classe. L’étude de souris Rad21+/- a également démontré une implication du complexe de cohésion dans ces mécanismes essentiels à la diversité de l’information génétique. Le complexe de cohésion étant impliqué dans ces mécanismes et dans l’inhibition des réarrangements complexes tels que les translocations et insertions il est un acteur essentiel de la diversité et de la stabilité génomique
DNA double-strand breaks (DSBs) repair is essential for genome stability/diversity, but can also generate genome rearrangements. Although non-homologous end-joining (NHEJ) is required for genome stability maintenance, the joining of distant double strand ends (DSE) should inexorably lead to genetic rearrangements. We analyzed the efficiency and accurency of close or distal EJ repair. Our data show that global end-joining is more efficient on close ends (34bp) compared to distal ends (3200bp) and that C-NHEJ is favored on close ends, resulting in more accurate outcome, compared to distal ends where more mutagenic A-EJ events takes place. In addition, the joining of distal ends favors the insertion/capture of DNA sequences. These data show only few kb distances between two DSEs are sufficient to jeopardize DSB repair efficiency and accuracy, leading to complex scars at the re-sealed junctions, and cell response is sufficiently sensitive to differently process such distal ends. We next addressed the question of the mechanisms preventing the joining of distant DSE. We show that depletion of the cohesin complex proteins specifically stimulates the end-joining of I-SceI-induced DSBs distant of 3200bp, while the joining of close DSEs (34bp) remained unaffected. Consistently, exome sequencing and cytogenetic analysis revealed that RAD21 ablation generates large chromosome rearrangements and a strong induction of replication stress-induced chromosome fusions. These data reveal a role for the cohesin complex in the protection against profound genome rearrangements arising through ligation of distant DSEs
APA, Harvard, Vancouver, ISO, and other styles
3

Rivera-Muñoz, Paola. "Rôle des facteurs de la voie de réparation des extrémités non homologues au cours du processus de commutation de classe des immunoglobulines." Paris 7, 2009. http://www.theses.fr/2009PA077167.

Full text
Abstract:
Chez les mammifères, les cassures double brin sont majoritairement réparées par la voie de jonction des extrémités non homologues (NHEJ). L'absence d'un des facteurs du NHEJ (Ku70, Ku80, DNA-PKcs, Artémis, XRCC4, DMA ligase IV) entraîne, chez l'homme et chez la souris, une immunodéficience combinée sévère associée à une radiosensibilite��. Ce phénotype est provoqué par un défaut sévère de la recombinaison V(D)J. Bien que la voie NHEJ soit suspectée d'intervenir pendant la commutation de classe des immunoglobulines (CSR) aucune étude n'a réussi à le démontrer avec certitude. Afin de contourner le défaut de recombinaison V(D)J et analyser l'implication de XRCC4 et Artémis dans la CSR, nous avons développé un modèle d'invalidation conditionnelle dans les cellules B matures selon deux approches initiales: le système de transgenèse lentiviral pour XRCC4 et la technique classique de recombinaison homologue pour Artémis. Le défaut partiel de XRCC4 dans la CSR a définitivement conduit au rôle de la voie NHEJ dans ce processus mais a aussi révélé l'activité d'une voie de réparation NHEJ alternative. Les données obtenues pour Artémis ont permis de conclure que la protéine est nécessaire pour la réparation d'un groupe de CDB généré pendant la CSR. Quant à Cernunnos, le développement de la souris d'invalidation classique nous a permis de constater que, en tant que facteur du NHEJ, sa fonction n'est pas indispensable pour l'accomplissement de la recombinaison V(D)J mais est nécessaire pour la CSR. Indépendamment de la voie NHEJ, Cernunnos aurait probablement une fonction liée à la survie cellulaire. Son activité protectrice contre le développement de lymphomes B matures reste à établir
The non homologous end-joining (NHEJ) is a predominant pathway for double-strand break (DSB) repair in mammalian cells. NHEJ repair factors (Ku70, Ku80, DNA-PKcs, Artemis, XRCC4 and DNA ligase IV) defect causes a defective V(D)J recombination exhibiting a severe combined immune-deficiency and usually associated with a pronounced hypersensitivity towards ionizing radiation. Although DSB are essential intermediates in CSR, NHEJ intervention has not been established unequivocally yet. To bypass the V(D)J recombination defect and analyse XRCC4 and Artemis involvement in CSR, we developed a conditional knock-out mouse model. For the XRCC4 model we used a novel lentiviral transgenic technology to abolish its synthesis in mature B cells, whereas the classical homologous recombination was employed to achieve the Artemis conditional model. The partial CSR defect obtained in the absence of XRCC4 enabled us to conclude unambiguously the involvement of the NHEJ pathway during CSR, but also revealed a new alternative NHEJ repair pathway. For Artemis the results showed its function for repairing a subset of DSB induced during CSR. Finally, the Cernunnos KO mouse model exposed a "normal" immune System development associated with a partial CSR defect. These results suggest that as a NHEJ factor, Cernunnos is not essential for the V(D)J recombination but has a role during the repair of the CSR DSB. Furthermore, the hypocellularity of every lymphoid organ analysed brings to consideration a cell viability function in a NHEJ independent pathway
APA, Harvard, Vancouver, ISO, and other styles
4

Le, Guyader Gwenaël. "Analyse du rôle joué par les protéines de la voie de réparation par jonction des extrémités non-homologues de l'ADN au cours du processus de commutation de classe des immunoglobulines." Paris 7, 2007. http://www.theses.fr/2007PA077122.

Full text
Abstract:
La réparation des cassures double brin de l'ADN (CDB) est majoritairement prise en charge chez les mammifères par la machinerie de réparation des extrémités non-homologues (NHEJ). Un défaul d'expression d'une des protéines connues du NHEJ (tel qu'Artémis ou XRCC4) aboutit chez l'Homme ou la souris à un défaut de la recombinaison V(D)J associé à une sensibilité accrue aux agents induisant des CDB, entraînant un arrêt précoce du développement des cellules B et T. La voie NHEJ est supposée intervenir spécifiquement dans le mécanisme de commutation isotypique de la chaîne lourde des immunoglobulines (CSR), sans toutefois n'avoir jamais été indubitablement mise en cause. Afin de dépasser le défaut de recombinaison V(D)J, et ainsi d'évaluer finement le rôle des facteurs Artémis et XRCC4 dans la réaction de CSR, nous avons essayé de développer quatre différentes stratégies. Une des stratégies a servi à initier l'invalidation conditionnelle du gène murin Artémis dans les cellules B matures des centres germinatifs. Ces données n'ont pas permis d'impliquer Artémis dans le processus de réparation des extrémités non-homologues de l'ADN au cours du CSR. Pour définitivement statuer sur l'implication de la voie NHEJ durant le CSR, nous nous sommes efforcés de développer une stratégie d'invalidation conditionnelle du gène XRCC4 dans ces mêmes cellules B, en mettant en place un système de transgenèse lentivirale. Les résultats de ce modèle nous ont permis de définitivement impliquer XRCC4 et la voie NHEJ dans le processus de commutation isotypique. Son rôle n'est toutefois que partiel, suggérant que d'autres voies alternatives de réparation des CDB peuvent prendre le pas au cours du CSR
The immune System is the site of intense DNA damage. Indeed, DNA double-strand breaks (DSBs) are a constant threat to ail living cells. Mammalian cells tend to utilize mainly the non-homologous end-joining pathway (NHEJ) to repair DSBs. Lack of one of the NHEJ proteins (Artemis or XRCC4) leads to a severe combined immune deficiency with radiosensitivity in mammals. Mature B cells migrate to secondary lymphoid organs, where they undergo antigen-driven immunoglobulin-gene diversification through somatic hypermutation and class-switch recombination (CSR). So far, XRCC and DNA Ligase IV are the only proteins required for ail types of NHEJ reactions that have no reported roles outside NHEJ. Therefore, although most available evidence points to a role for NHEJ factors in CSR, elucidation of the role of XRCC4 would provide the most unequivocal proof. To bypass the embryonic lethality and the V(D)J recombination defect of knockout models, we tried to develop four differents strategies to identify the role of Artemis and XRCC4 in CSR. The purpose of one of these strategies was to bring about conditional inactivation of Artemis murine gene in mature germinal center B cells. We found that Artemis-deficient B cells undergo robust CSR, indicating that NHEJ pathway functions mostly in CSR via an Artemis-independent mechanism. To formally implicate NHEJ process in CSR, we built up a strategy of conditional invalidation of XRCC4 gene in mature B cells. Our results connect XRCC4 and NHEJ pathway to CSR while reflecting the use of an alternative pathway using microhomologies in the repair of CSR DSB in the absence of XRCC4
APA, Harvard, Vancouver, ISO, and other styles
5

Grabarz, Anastazja. "Réparation des cassures double brin de l'adn chez les mammifères : rôle des protéines MRE11 et BLM dans l’initiation de la ligature d’extrémités non homologues (NHEJ )." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112172.

Full text
Abstract:
Les cassures double brin de l’ADN (CDB) sont des lésions qui peuvent conduire à des réarrangements génétiques. Deux voies sont impliquées dans la réparation de ces dommages: la recombinaison homologue (HR) et la ligature d’extrémités nonhomologues (NHEJ).Au laboratoire un substrat intrachromosomique permettant de mesurer l’efficacité et la fidélité du NHEJ à été mis en place (Guirouilh-Barbat 2004). Cette approche a permis de démontrer l’existence d’une voie alternative à KU qui utilise des microhomologies présentes de part et d’autre de la cassure - le NHEJ alternatif (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). Les travaux de ma thèse consistent à caractériser les principaux acteurs de cette voie. En absence de KU, cette voie alternative du NHEJ, s'initierait tout d’abord parla résection d'extrémités d’ADN non protégées. Nous avons montré que l’activité nucléasique de MRE11 est nécessaire à ce mécanisme. La surexpression de MRE11 conduit à une stimulation du NHEJ, contrairement à l’extinction de la protéine par siRNA, résultant en une baisse de son efficacité de deux fois. Nos résultats montrent également que les protéines RAD50 et CtIP agissent dans la même voie que MRE11. De plus, dans les cellules déficientes pour XRCC4, la MIRIN – un inhibiteur du complexe MRN - conduit à une chute de l'efficacité de la réparation, démontrant le rôle de MRE11 dans la voie alternative du NHEJ. Nous avons aussi montré que MRE11 peut agir de manière dépendante et indépendante de la kinase ATM (Rass et Grabarz, Nat Struct Mol Biol 2009). L'initiation de la résection de la cassure doit être ensuite poursuivie par une dégradation plus importante de l'ADN qui est assuré par les protéines Exo1 et Sgs1/Dna2 chez la levure. Chez les mammifères, des études in vitro suggèrent un modèle similaire à deux étapes. Nous avons choisi de nous intéresser au rôle de la protéine BLM, qui est l’un des homologues humains de la RecQ hélicase Sgs1, dans la résection. Nos expériences montrent que l’absence de BLM diminue l’efficacité du NHEJ. De plus, l’extinction de BLM conduit à une augmentation d’évènements infidèles lors de la réparation par NHEJ et l’apparition d’évènements de résection de grande taille (>200nt). Ceci suggère que BLM protège contre de longues résections lors de la mise en place du NHEJ alternatif. De manière cohérente, BLM est impliquée dans la protection contre la résection dépendante de CtIP lors des étapes précoces de la recombinaison homologue. En conclusion, nos résultats montrent un rôle prédominant de BLM dans la protection contre un excès de résection médiée par CtIP. BLM interagit avec 53BP1 aux sites de dommages de manière dépendante d’ATM afin de réguler le processus de résection, en contrecarrant l’action de BRCA1. Ceci souligne à nouveau le rôle essentiel de BLM dans la protection contre la résection et la favorisation de la conversion génique sans crossing-over, ce qui est primordial pour le maintien de la stabilité du génome
DNA double strand breaks (DSBs) are highly cytotoxic lesions, which can lead to genetic rearrangements. Two pathways are responsible for repairing these lesions : homologous recombination (HR) and non homologous end joining (NHEJ). In our laboratory, an intrachromosomal substrate has been established in order to measure the efficiency and the fidelity of NHEJ in living cells (Guirouilh-Barbat 2004). This approach led us to identify a KU-independent alternative pathway, which uses microhomologies in the proximity of the junction to accomplish repair – the alternative NHEJ (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). The goal of my thesis consisted in identifying and characterising major actors of this pathway. In the absence of KU, alternative NHEJ would be initiated by ssDNA resection of damaged ends. We showed that the nuclease activity of MRE11 is necessary for this mechanism. MRE11 overexpression leads to a two fold stimulation of NHEJ efficiency, while the extinction of MRE11 by siRNA results in a two fold decrease. Our results demonstrate that the proteins RAD50 and CtIP act in the same pathway as MRE11. Moreover, in cells deficient for XRCC4, MIRIN – an inhibitor of the MRN complex – leads to a decrease in repair efficiency, implicating MRE11 in alternative NHEJ. We also showed that MRE11 can act in an ATM-dependent and independent manner (Rass et Grabarz Nat Struct Mol Biol 2009). The initiation of break resection needs to be pursued by a more extensive degradation of DNA, which is accomplished in yeast by the proteins Exo1 and Sgs1/Dna2. In human cells, in vitro studies have recently proposed a similar model of a two-step break resection. We chose to elucidate the role of one of the human homologs of Sgs1 – the RecQ helicase BLM – in the resection process. Our experiments show, that he absence of BLM decreases the efficiency of end joining by NHEJ, accompanied by an increase in error-prone events, especially long-range deletions (>200nt). This suggests that BLM protects against extensive resection during alternative NHEJ. Furthermore, BLM is implicated in the protection against CtIP-dependent resection at the initiation of HR. In conclusion, our results show a major role of BLM in protecting against an excess of resection, mediated by the MRN cofactor – CtIP. BLM interacts with 53BP1 at sites of damage, in an ATM-dependent manner, in order to regulate the resection process and counteract BRCA1 activity. This underlines the novel role of BLM in the protection against resection and favouring gene conversion events without crossing-over, which is substantial for maintaining genomic integrity
APA, Harvard, Vancouver, ISO, and other styles
6

De, Melo Abinadabe Jackson. "Molecular basis for the structural role of human DNA ligase IV." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4040.

Full text
Abstract:
Les défauts dans la réparation des cassures double-brin de l'ADN (DSBs) peuvent avoir d'importantes conséquences pouvant entrainer une instabilité génomique et conduire à la mort cellulaire ou au développement de cancers. Dans la plupart des cellules mammifères, le mécanisme de Jonction des Extrémités Non Homologues (NHEJ) est le principal mécanisme de réparation des DSBs. L'ADN Ligase IV (LigIV) est une protéine unique dans sa capacité à promouvoir la NHEJ classique. Elle s'associe avec deux autres protéines structuralement similaires, XRCC4 et XLF (ou Cernunnos). LigIV interagit directement avec XRCC4 pour former un complexe stable, tandis que l'interaction entre XLF et ce complexe est médiée par XRCC4. XLF stimule fortement l'activité de ligation du complexe LigIV/XRCC4 par un mécanisme encore indéterminé. Récemment, un rôle structurel non catalytique a été attribué à LigIV (Cottarel et al., 2013). Dans le travail de thèse présenté ici, nous avons reconstitué l'étape de ligation de la NHEJ en utilisant des protéines recombinantes produites dans des bactéries afin d’une part, d'explorer les bases moléculaires du rôle structural de LigIV, d’autre part de comprendre le mécanisme par lequel XLF stimule le complexe de ligation, et enfin de mieux comprendre comment ces trois protéines coopèrent au cours de la NHEJ. Nos analyses biochimiques suggèrent que XLF via son interaction avec XRCC4 lié à LigIV, pourrait induire un changement conformationnel dans la LigIV. Ce réarrangement de la ligase exposerait son interface de liaison à l'ADN ce qui lui permettrait alors de ponter deux molécules indépendantes d'ADN, une capacité indépendante de l'activité catalytique de LigIV
Failure to repair DNA double-strand breaks (DSBs) may have deleterious consequences inducing genomic instability and even cell death. In most mammalian cells, Non-Homologous End Joining (NHEJ) is a prominent DSB repair pathway. DNA ligase IV (LigIV) is unique in its ability to promote classical NHEJ. It associates with two structurally related proteins called XRCC4 and XLF (aka Cernunnos). LigIV directly interacts with XRCC4 forming a stable complex while the XLF interaction with this complex is mediated by XRCC4. XLF strongly stimulates the ligation activity of the LigIV/XRCC4 complex by an unknown mechanism. Recently, a structural noncatalytic role of LigIV has been uncovered (Cottarel et al., 2013). Here, we have reconstituted the end joining ligation step using recombinant proteins produced in bacteria to explore not only the molecular basis for the structural role of LigIV, but also to understand the mechanism by which XLF stimulates the ligation complex, and how these three proteins work together during NHEJ. Our biochemical analysis suggests that XLF, through interactions with LigIV/XRCC4 complex, could induce a conformational change in LigIV. Rearrangement of the LigIV would expose its DNA binding interface that is able to bridge two independent DNA molecules. This bridging ability is fully independent of LigIV’s catalytic activity. We have mutated this interface in order to attempt to disrupt the newly identified DNA bridging ability. In vitro analysis of this LigIV mutant will be presented as well as a preliminary in vivo analysis
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography