Academic literature on the topic 'Réseaux neuronaux graphiques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Réseaux neuronaux graphiques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Réseaux neuronaux graphiques"

1

Lachaud, Guillaume. "Extensions and Applications of Graph Neural Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS434.

Full text
Abstract:
Les graphes sont utilisés partout pour représenter les interactions, qu'elles soient physiques comme entre les atomes, les molécules ou les humains, ou plus abstraites comme les villes, les amitiés, les idées, etc. Parmi toutes les méthodes d'apprentissage automatique qui peuvent être utilisées, les dernières avancées en apprentissage profond font des réseaux de neurones de graphes la référence de l'apprentissage de représentation des graphes. Cette thèse se divise en deux parties. Dans un premier temps, nous faisons un état de l'art des fondations mathématiques des réseaux de neurones de graphes les plus puissants. Dans un second temps, nous explorons les défis auxquels sont confrontés ces modèles quand ils sont entraînés sur des jeux de données réels. La puissance d'un réseau de neurones est définie par rapport à son expressivité, c'est-à-dire sa capacité à distinguer deux graphes non isomorphes ; ou, de manière équivalente, sa capacité à approximer les fonctions qui sont invariantes ou équivariantes par rapport aux permutations. Nous discernons deux grandes familles de modèles expressifs. Nous présentons leurs propriétés mathématiques ainsi que les avantages et les inconvénients de ces modèles lors d'applications pratiques. En parallèle du choix de l'architecture, la qualité de la donnée joue un rôle crucial dans la capacité d'un modèle à apprendre des représentations utiles. Les réseaux de neurones de graphes sont confrontés à des problèmes spécifiques aux graphes. À l'inverse des modèles développés pour les données tabulaires, les réseaux de neurones de graphes doivent prendre en compte aussi bien les attributs des nœuds que leur interdépendance. À cause de ces liens, l'apprentissage d'un réseau de neurones sur des graphes peut se faire de deux manières : en apprentissage transductif, où le modèle a accès aux attributs des données de test pendant l'entraînement ; en apprentissage inductif, où les données de test restent cachées. Nous étudions les différences en termes de performance entre l'apprentissage transductif et inductif pour la classification de nœuds. De plus, les attributs des nœuds peuvent être bruités ou manquants. Dans cette thèse, nous évaluons ces défis sur des jeux de données réels, et nous proposons une nouvelle architecture de réseau de neurones de graphes pour imputer les attributs manquants des nœuds d'un graphe. Enfin, si les graphes sont le moyen privilégié de décrire les interactions, d'autres types de données peuvent aussi bénéficier d'une conversion sous forme de graphes. Dans cette thèse, nous effectuons un travail préliminaire sur l'extraction des parties les plus importantes d'images de lésions de la peau. Ces patches pourraient être utilisés pour créer des graphes et découvrir des relations latentes dans la donnée
Graphs are used everywhere to represent interactions between entities, whether physical such as atoms, molecules or people, or more abstract such as cities, friendships, ideas, etc. Amongst all the methods of machine learning that can be used, the recent advances in deep learning have made graph neural networks the de facto standard for graph representation learning. This thesis can be divided in two parts. First, we review the theoretical underpinnings of the most powerful graph neural networks. Second, we explore the challenges faced by the existing models when training on real world graph data. The powerfulness of a graph neural network is defined in terms of its expressiveness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent manner, its ability to approximate permutation invariant and equivariant functions. We distinguish two broad families of the most powerful models. We summarise the mathematical properties as well as the advantages and disadvantages of these models in practical situations. Apart from the choice of the architecture, the quality of the graph data plays a crucial role in the ability to learn useful representations. Several challenges are faced by graph neural networks given the intrinsic nature of graph data. In contrast to typical machine learning methods that deal with tabular data, graph neural networks need to consider not only the features of the nodes but also the interconnectedness between them. Due to the connections between nodes, training neural networks on graphs can be done in two settings: in transductive learning, the model can have access to the test features in the training phase; in the inductive setting, the test data remains unseen. We study the differences in terms of performance between inductive and transductive learning for the node classification task. Additionally, the features that are fed to a model can be noisy or even missing. In this thesis we evaluate these challenges on real world datasets, and we propose a novel architecture to perform missing data imputation on graphs. Finally, while graphs can be the natural way to describe interactions, other types of data can benefit from being converted into graphs. In this thesis, we perform preliminary work on how to extract the most important parts of skin lesion images that could be used to create graphs and learn hidden relations in the data
APA, Harvard, Vancouver, ISO, and other styles
2

Badr, Bellaj. "Securing P2P resource sharing via blockchain and GNN-based trust." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS005.

Full text
Abstract:
L'émergence de la technologie blockchain et des cryptomonnaies a ouvert la possibilité de créer de nouveaux modèles de gestion, de partage et de monétisation de ressources en pair-à-pair (P2P). Étant donné que ces modèles P2P sont sans confiance (trustless), des mécanismes de confiance et de réputation fiables et efficaces sont nécessaires pour minimiser le risque d'accès ou d'interaction avec des pairs malveillants. Plusieurs systèmes de gestion de confiance basés sur la réputation (RTMS) ont été proposés pour garantir la confiance dans les réseaux P2P, aider à choisir des ressources fiables et empêcher les comportements malveillants des pairs. Ces RTMS établissent la confiance en s'appuyant sur des réputations basées sur la communauté. Ils aident les pairs à évaluer la fiabilité des autres et à évaluer la qualité de service (QoS) en fonction de leur réputation et de leurs expériences passées mutuelles. Dans ces schémas, un réseau de confiance en surcouche pair-à-pair est établi.Cette thèse présente BTrust, un nouveau système de gestion de confiance décentralisé et modulaire pour les réseaux P2P à grande échelle, exploitant la technologie blockchain et les GNN (Graph Neural Network) pour l'évaluation de la confiance. BTrust introduit un modèle de confiance et de réputation multidimensionnel pour évaluer la fiabilité des pairs, dérivant dynamiquement une valeur unique à partir de plusieurs paramètres. La blockchain garantit un calcul, une diffusion et un stockage fiables de la confiance sans gestionnaire de confiance centralisé, tandis que les GNN capturent efficacement les relations complexes entre les pairs, conduisant à des évaluations de confiance précises et robustes.Une avancée importante dans notre protocole est la résolution du "problème de démarrage à froid" ou du "problème du score de confiance initial". Pour y parvenir, le pair d'amorçage adopte des marches aléatoires pour sélectionner des pairs fiables parmi ses voisins, garantissant une approche décentralisée sans dépendre d'une entité centralisée ou de pairs prédéfinis. Contrairement aux solutions existantes, cette méthode évite de submerger les pairs les plus dignes de confiance du réseau.Un autre défi abordé dans les systèmes de réputation est la réticence des pairs à fournir des rétroactions négatives, souvent par peur de représailles ou simplement en ne fournissant pas de rétroaction du tout. Pour résoudre ces problèmes, nous introduisons un mécanisme d'incitation qui encourage les rétroactions sincères et nous mettons en œuvre des mécanismes spécialisés pour sanctionner les comportements mauvais ou paresseux. Ces innovations favorisent un processus d'évaluation de confiance plus fiable et équilibré au sein du système.De plus, nous proposons une variante de BTrust appelée GBTrust, qui améliore le protocole original en incorporant des Graph Neural Networks (GNN) et un nouveau mécanisme basé sur l'attention spécifiquement conçu pour la gestion de la confiance. Cette variante permet d'améliorer la détection des pairs malveillants dynamiques et renforce la robustesse et la précision globale de l'évaluation de la confiance. En utilisant les GNN, GBTrust capture efficacement les relations complexes et les comportements dynamiques des pairs dans le réseau, permettant ainsi une identification plus précise des activités malveillantes et une meilleure adaptabilité aux dynamiques de confiance changeantes. Le mécanisme basé sur l'attention renforce également la capacité du modèle à prioriser et à pondérer différents facteurs de confiance, conduisant à des évaluations de confiance plus fiables et précises.Nous démontrons l'efficacité du système GBTrust proposé dans des réseaux P2P à grande échelle en utilisant des simulations d'un réseau P2P, et nous montrons que BTrust est hautement résilient aux pannes et robuste contre les nœuds malveillants
The emergence of blockchain technology and cryptocurrencies has enabled the development of innovative peer-to-peer (P2P) models for resource allocation, sharing, and monetization. As these P2P models operate without inherent trust, the need for reliable trust and reputation mechanisms becomes crucial to minimize potential risks associated with engaging with malicious peers. Several trust management systems (TMS) have been proposed to establish trust in traditional P2P networks, aiming to facilitate the selection of dependable resources and deter peer misbehavior, with a significant focus on utilizing reputation as a guiding factor.Reputation-based trust systems (RTMS) play a fundamental role by leveraging community-based reputations to establish trust. They enable peers to assess the trustworthiness of others and evaluate the Quality of Service (QoS) based on shared reputations and past interactions. While these systems establish a peer-to-peer overlay trust network, the majority of these protocols are not tailored to suit Blockchain-based networks, resulting in various shortcomings due to their outdated design.This thesis presents our protocol BTrust, a novel decentralized and modular trust management system for large-scale P2P networks, leveraging blockchain technology and (Graph Neural Network) GNN for trust evaluation. BTrust introduces a multi-dimensional trust and reputation model to assess peer trustworthiness, dynamically deriving a single value from multiple parameters. The blockchain ensures reliable trust computation, dissemination, and storage without a central trust manager.An important breakthrough in our protocol is the resolution of the "cold start" or "initial trust score problem". To achieve this, the bootstrapping peer adopts random walks to select trustworthy peers among its neighbors, ensuring a decentralized approach without relying on any centralized entity or predefined peers. Unlike existing solutions, this method prevents overwhelming the most trusted peers in the network.Another challenge addressed in reputation systems is the reluctance of peers to provide negative feedback, often due to fear of retaliation or simply not providing feedback at all. To tackle these issues, we introduce an incentive mechanism that encourages truthful feedback and implement specialized mechanisms to penalize bad or lazy behavior. These innovations promote a more reliable and balanced trust evaluation process within the system.Furthermore, we propose a variant of BTrust called GBTrust, which improves upon the original protocol by incorporating Graph Neural Networks (GNNs) and a novel attention-based mechanism specifically designed for trust management. This variant enhances the detection of dynamic malicious peers and strengthens the overall robustness and accuracy of trust evaluation. By leveraging GNNs, GBTrust effectively captures the complex relationships and dynamic behavior of peers in the network, enabling more accurate identification of malicious activities and better adaptability to changing trust dynamics. The attention-based mechanism further enhances the model's ability to prioritize and weigh different trust factors, leading to more reliable and precise trust assessments.We demonstrate the efficiency of the proposed protocol in large-scale P2P networks using simulations of a P2P network and show that BTrust and its variant (GBTrust) are highly resilient to failures and robust against malicious nodes
APA, Harvard, Vancouver, ISO, and other styles
3

Hafidi, Hakim. "Robust machine learning for Graphs/Networks." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT004.

Full text
Abstract:
Cette thèse aborde les progrès de l’apprentissage des représentation des nœuds d’ungraphe, en se concentrant sur les défis et les opportunités présentées par les réseaux de neuronespour graphe (GNN). Elle met en évidence l’importance des graphes dans la représentation dessystèmes complexes et la nécessité d’apprendre des représentations de nœuds qui capturent à la fois les caractéristiques des nœuds et la structure des graphes. L’ étude identifie les problèmes clés des réseaux de neurones pour graphe, tels que leur dépendance à l’ ´égard de données étiquetées de haute qualité, l’incohérence des performances dansdivers ensembles de données et la vulnérabilité auxattaques adverses.Pour relever ces défis, la thèse introduit plusieursapproches innovantes. Tout d’abord, elle utilise l’apprentissage contrastif pour la représentation des nœuds, permettant un apprentissage auto-supervisé qui réduit la dépendance aux données étiquetées.Deuxièmement, un classificateur bayésien est proposé pour la classification des nœuds, qui prenden compte la structure du graphe pour améliorer la précision. Enfin, la thèse aborde la vulnérabilité des GNN aux attaques adversariaux en évaluant la robustesse du classificateur proposé et en introduisant des mécanismes de défense efficaces. Ces contributionsvisent à améliorer à la fois la performance et la résilience des GNN dans l’apprentissage de lareprésentation des nœuds
This thesis addresses advancements in graph representation learning, focusing on the challengesand opportunities presented by Graph Neural Networks (GNNs). It highlights the significanceof graphs in representing complex systems and the necessity of learning node embeddings that capture both node features and graph structure. The study identifies key issues in GNNs, such as their dependence on high-quality labeled data, inconsistent performanceacross various datasets, and susceptibility to adversarial attacks.To tackle these challenges, the thesis introduces several innovative approaches. Firstly, it employs contrastive learning for node representation, enabling self-supervised learning that reduces reliance on labeled data. Secondly, a Bayesian-based classifier isproposed for node classification, which considers the graph’s structure to enhance accuracy. Lastly, the thesis addresses the vulnerability of GNNs to adversarialattacks by assessing the robustness of the proposed classifier and introducing effective defense mechanisms.These contributions aim to improve both the performance and resilience of GNNs in graph representation learning
APA, Harvard, Vancouver, ISO, and other styles
4

Akakzia, Ahmed. "Teaching Predicate-based Autotelic Agents." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS415.pdf.

Full text
Abstract:
Dans la quête de concevoir des machines incarnées qui explorent leurs environnements en autonomie, découvrent des nouveaux comportements et apprennent des répertoires non-bornés de compétences, l'intelligence artificielle s'est longuement inspirée des domaines de psychologie du développement et des sciences cognitives qui étudient la capacité remarquable des humains à apprendre tout au long de leur vie. Ceci a donné naissance au domaine de la robotique du développement qui a pour but de concevoir des agents artificiels autonomes capables d'auto-organiser leurs trajectoires d'apprentissage en se basant sur leurs motivations intrinsèques. Ce domaine combine les processus d'exploration de but intrinsèquement motivés (IMGEPs) et l'apprentissage par renforcement (RL). Cette combinaison est connue sous le nom d'apprentissage par renforcement autotélique, où des agents autotéliques sont intrinsèquement motivés pour représenter, organiser et apprendre leurs propres buts. Naturellement, ces agents doivent démontrer de bonnes capacités d'exploration puisqu'ils ont besoin de découvrir physiquement les buts pour pouvoir les apprendre. Malheureusement, découvrir des comportements intéressants peut être compliqué, surtout dans les environnements d'exploration difficile où les signaux de récompenses sont parcimonieux, déceptifs ou contradictoires. Dans ces scénarios, la situation physique des agents semble insuffisante. Heureusement, la recherche en psychologie du développement et les sciences de l'éducation soulignent le rôle important des signaux socio-culturels dans le développement des enfants humains. Cette situation sociale améliore les capacités d'exploration des enfants, leur créativité et leur développement. Cependant, l'apprentissage par renforcement profond considère l'apprentissage social comme une imposition d'instructions aux agents, ce qui les prive de leur autonomie. Dans ce document, nous introduisons les agents autotéliques enseignables, une nouvelle famille de machines autonomes qui peuvent apprendre à la fois toutes seules et à travers des signaux sociaux externes. Nous formalisons cette famille en tant que processus d'exploration de but hybride (HGEPs), où les agents autotéliques sont augmentés d'un mécanisme d'internalisation leur permettant de rejouer les signaux sociaux et d'un sélecteur de source de buts pour demander activement de l'aide sociale. Ce document est organisé en deux parties. Dans la première partie, nous nous concentrons sur la conception d'agents autotéliques enseignables et nous essayons d'implémenter des propriétés qui faciliteraient l'interaction sociale. Notamment, nous introduisons les agents autotéliques basés sur les prédicats, une nouvelle famille d'agents autotéliques qui représentent leurs buts en utilisant des prédicats binaires spatiaux. Nous montrons que l'espace de représentation sémantique sous-jacent joue le rôle de pivot entre la représentation sensorimotrice et le langage, permettant un découplage entre l'apprentissage sensorimoteur et l'ancrage du langage. Nous étudions également la conception des politiques et des fonctions valeurs état-action et nous soutenons que la combinaison des réseaux de neurones graphiques (GNNs) et des buts en prédicats relationnels permet l'utilisation de schémas computationnels légers qui transfèrent bien entre les tâches. Dans la deuxième partie, nous formalisons les interactions sociales en tant que processus d'exploration de buts. Nous introduisons Help Me Explore (HME), un nouveau protocole d'interaction sociale où un partenaire social expert guide progressivement l'agent au-delà de sa zone de développement proximale (ZPD). L'agent choisit activement de lancer des requêtes à son partenaire social dès qu'il estime qu'il ne progresse plus sur les buts qu'il connait déjà. Il finit éventuellement par internaliser ces signaux sociaux, devient moins dépendant envers son partenaire social et arrive à maximiser son contrôle de son espace de buts
As part of the quest for designing embodied machines that autonomously explore their environments, discover new behaviors and acquire open-ended repertoire of skills, artificial intelligence has been taking long looks at the inspiring fields of developmental psychology and cognitive sciences which investigate the remarkable continuous and unbounded learning of humans. This gave birth to the field of developmental robotics which aims at designing autonomous artificial agents capable of self-organizing their own learning trajectories based on their intrinsic motivations. It bakes the developmental framework of intrinsically motivated goal exploration processes (IMGEPs) into reinforcement learning (RL). This combination has been recently introduced as autotelic reinforcement learning, where autotelic agents are intrinsically motivated to self-represent, self-organize and autonomously learn about their own goals. Naturally, such agents need to be endowed with good exploration capabilities as they need to first physically encounter a certain goal in order to take ownership of and learn about it. Unfortunately, discovering interesting behavior is usually tricky, especially in hard exploration setups where the rewarding signals are parsimonious, deceptive or adversarial. In such scenarios, the agents’ physical situatedness-in the Piagetian sense of the term-seems insufficient. Luckily, research in developmental psychology and education sciences have been praising the remarkable role of socio-cultural signals in the development of human children. This social situatedness-in the Vygotskyan sense of the term-enhances the toddlers’ exploration capabilities, creativity and development. However, deep \rl considers social interactions as dictating instructions to the agents, depriving them from their autonomy. This research introduces \textit{teachable autotelic agents}, a novel family of autonomous machines that can learn both alone and from external social signals. We formalize such a family as a hybrid goal exploration process (HGEPs), where autotelic agents are endowed with an internalization mechanism to rehearse social signals and with a goal source selector to actively query for social guidance. The present manuscript is organized in two parts. In the first part, we focus on the design of teachable autotelic agents and attempt to leverage the most important properties that would later serve the social interaction. Namely, we introduce predicate-based autotelic agents, a novel family of autotelic agents that represent their goals using spatial binary predicates. These insights were based on the Mandlerian view on the prelinguistic concept acquisition suggesting that toddlers are endowed with some innate mechanisms enabling them to translate spatio-temporal information into an iconic static form. We show that the underlying semantic representation plays a pivotal role between raw sensory inputs and language inputs, enabling the decoupling of sensorimotor learning and language grounding. We also investigate the design of such agents' policies and state-action value functions, and argue that combining Graph Neural Networks (GNNs) with relational predicates provides a light computational scheme to transfer efficiently between skills. In the second part, we formalize social interactions as a goal exploration process. We introduce Help Me Explore (HME), a novel social interaction protocol where an expert social partner progressively guides the learning agent beyond its zone of proximal development (ZPD). The agent actively selects to query its social partner whenever it estimates that it is not progressing enough alone. It eventually internalizes the social signals, becomes less dependent on its social partner and maximizes its control over its goal space
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Wenzhuo. "Deep Graph Neural Networks for Numerical Simulation of PDEs." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG032.

Full text
Abstract:
Les équations aux dérivées partielles (EDP) sont un outil essentiel de la simulation numérique pour modéliser des systèmes complexes. Cependant, la résolution de ces équations avec une grande précision nécessite généralement un coût de calcul élevé. Ces dernières années, les algorithmes d'apprentissage profond ont reçu un intérêt croissant pour l'apprentissage à partir d'exemples, et pourraient être utilisés comme substituts des méthodes d'analyse numérique, en appliquant directement les techniques d'apprentissage supervisé à des bases de données de solutions connues, car une fois le modèle neuronal appris, l'inférence des solutions a un coût marginal. De nombreux problèmes subsistent cependant, que cette thèse de doctorat tente de résoudre. La thèse se concentre en particulier sur trois défis majeurs dans l'application des méthodes d'apprentissage profond aux EDP : la gestion des maillages non structurés, qui peut difficilement se faire en utilisant les techniques de traitement d'images, sources d'immenses succès en apprentissage profond ; les problèmes de généralisation, en particulier pour des données hors-distribution par rapport aux données d'apprentissage ; et les coûts de calcul élevés pour générer ces données d'apprentissage. Nos trois contributions sont fondées sur les Réseaux de Neurones sur Graphes (GNNs) : un modèle hiérarchique inspirées des méthodes multi-grilles de l'analyse numérique ; le méta-apprentissage pour améliorer les performances sur les données hors distribution ; et l'apprentissage par transfert entre des ensembles de données multifidélité pour réduire le temps de génération des données d'apprentissage. Ces approches sont validées expérimentalement sur différents systèmes physiques
Partial differential equations (PDEs) are an essential modeling tool for the numerical simulation of complex systems. However, their accurate numerical resolution usually requires a high computational cost. In recent years, deep Learning algorithms have demonstrated impressive successes in learning from examples, and their direct application to databases of existing solutions of a PDE could be a way to tackle the excessive computational cost of classical numerical approaches: Once a neural model has been learned, the computational cost of inference of the solution on new example is very low. However, many issues remain that this Ph.D. thesis investigates, focusing on three major hurdles: handling unstructured meshes, which can hardly be done accurately by simply porting the neural successes on image processing tasks; generalization issues, in particular for Out-of-Distribution examples; and the too high computational costs for generating the training data. We propose three contributions, based on Graph Neural Networks, to tackle these problems: A hierarchical model inspired by the multi-grid techniques of Numerical Analysis; The use of Meta-Learning to improve the performance of Out-of-Distribution data; and Transfer Learning between multi-fidelity datasets to reduce the computational cost of data generation. The proposed approaches are experimentally validated on different physical systems
APA, Harvard, Vancouver, ISO, and other styles
6

Sourty, Raphael. "Apprentissage de représentation de graphes de connaissances et enrichissement de modèles de langue pré-entraînés par les graphes de connaissances : approches basées sur les modèles de distillation." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30337.

Full text
Abstract:
Le traitement du langage naturel (NLP) est un domaine en pleine expansion axé sur le développement d'algorithmes et de systèmes permettant de comprendre et de manipuler les données du langage naturel. La capacité à traiter et à analyser efficacement les données du langage naturel est devenue de plus en plus importante ces dernières années, car le volume de données textuelles générées par les individus, les organisations et la société dans son ensemble continue de croître de façon significative. Les graphes de connaissances sont des structures qui encodent des informations sur les entités et les relations entre elles. Ils constituent un outil puissant qui permet de représenter les connaissances de manière structurée et formalisée, et de fournir une compréhension globale des concepts sous-jacents et de leurs relations. La capacité d'apprendre des représentations de graphes de connaissances a le potentiel de transformer le traitement automatique du langage et d'autres domaines qui reposent sur de grandes quantités de données structurées. Les travaux menés dans cette thèse visent à explorer le concept de distillation des connaissances et, plus particulièrement, l'apprentissage mutuel pour l'apprentissage de représentations d'espace distincts et complémentaires. Notre première contribution est de proposer un nouveau cadre pour l'apprentissage d'entités et de relations sur des bases de connaissances multiples appelé KD-MKB. L'objectif clé de l'apprentissage de représentations multigraphes est d'améliorer les modèles d'entités et de relations avec différents contextes de graphes qui peuvent potentiellement faire le lien entre des contextes sémantiques distincts. Notre approche est basée sur le cadre théorique de la distillation des connaissances et de l'apprentissage mutuel. Elle permet un transfert de connaissances efficace entre les KBs tout en préservant la structure relationnelle de chaque graphe de connaissances. Nous formalisons l'inférence d'entités et de relations entre les bases de connaissances comme un objectif de distillation sur les distributions de probabilité postérieures à partir des connaissances alignées. Sur la base de ces résultats, nous proposons et formalisons un cadre de distillation coopératif dans lequel un ensemble de modèles de KB sont appris conjointement en utilisant les connaissances de leur propre contexte et les softs labels fournies par leurs pairs. Notre deuxième contribution est une méthode permettant d'incorporer des informations riches sur les entités provenant de bases de connaissances dans des modèles de langage pré-entraînés (PLM). Nous proposons un cadre original de distillation coopératif des connaissances pour aligner la tâche de pré-entraînement de modèles de langage masqués et l'objectif de prédiction de liens des modèles de représentation de KB. En exploitant les informations encodées dans les bases de connaissances et les modèles de langage pré-entraînés, notre approche offre une nouvelle direction de recherche pour améliorer la capacité à traiter les entités des systèmes de slot filling basés sur les PLMs
Natural language processing (NLP) is a rapidly growing field focusing on developing algorithms and systems to understand and manipulate natural language data. The ability to effectively process and analyze natural language data has become increasingly important in recent years as the volume of textual data generated by individuals, organizations, and society as a whole continues to grow significantly. One of the main challenges in NLP is the ability to represent and process knowledge about the world. Knowledge graphs are structures that encode information about entities and the relationships between them, they are a powerful tool that allows to represent knowledge in a structured and formalized way, and provide a holistic understanding of the underlying concepts and their relationships. The ability to learn knowledge graph representations has the potential to transform NLP and other domains that rely on large amounts of structured data. The work conducted in this thesis aims to explore the concept of knowledge distillation and, more specifically, mutual learning for learning distinct and complementary space representations. Our first contribution is proposing a new framework for learning entities and relations on multiple knowledge bases called KD-MKB. The key objective of multi-graph representation learning is to empower the entity and relation models with different graph contexts that potentially bridge distinct semantic contexts. Our approach is based on the theoretical framework of knowledge distillation and mutual learning. It allows for efficient knowledge transfer between KBs while preserving the relational structure of each knowledge graph. We formalize entity and relation inference between KBs as a distillation loss over posterior probability distributions on aligned knowledge. Grounded on this finding, we propose and formalize a cooperative distillation framework where a set of KB models are jointly learned by using hard labels from their own context and soft labels provided by peers. Our second contribution is a method for incorporating rich entity information from knowledge bases into pre-trained language models (PLM). We propose an original cooperative knowledge distillation framework to align the masked language modeling pre-training task of language models and the link prediction objective of KB embedding models. By leveraging the information encoded in knowledge bases, our proposed approach provides a new direction to improve the ability of PLM-based slot-filling systems to handle entities
APA, Harvard, Vancouver, ISO, and other styles
7

Ferré, Paul. "Adéquation algorithme-architecture de réseaux de neurones à spikes pour les architectures matérielles massivement parallèles." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30318/document.

Full text
Abstract:
Cette dernière décennie a donné lieu à la réémergence des méthodes d'apprentissage machine basées sur les réseaux de neurones formels sous le nom d'apprentissage profond. Bien que ces méthodes aient permis des avancées majeures dans le domaine de l'apprentissage machine, plusieurs obstacles à la possibilité d'industrialiser ces méthodes persistent, notamment la nécessité de collecter et d'étiqueter une très grande quantité de données ainsi que la puissance de calcul nécessaire pour effectuer l'apprentissage et l'inférence avec ce type de réseau neuronal. Dans cette thèse, nous proposons d'étudier l'adéquation entre des algorithmes d'inférence et d'apprentissage issus des réseaux de neurones biologiques pour des architectures matérielles massivement parallèles. Nous montrons avec trois contributions que de telles adéquations permettent d'accélérer drastiquement les temps de calculs inhérents au réseaux de neurones. Dans notre premier axe, nous réalisons l'étude d'adéquation du moteur BCVision de Brainchip SAS pour les plate-formes GPU. Nous proposons également l'introduction d'une architecture hiérarchique basée sur des cellules complexes. Nous montrons que l'adéquation pour GPU accélère les traitements par un facteur sept, tandis que l'architecture hiérarchique atteint un facteur mille. La deuxième contribution présente trois algorithmes de propagation de décharges neuronales adaptés aux architectures parallèles. Nous réalisons une étude complète des modèles computationels de ces algorithmes, permettant de sélectionner ou de concevoir un système matériel adapté aux paramètres du réseau souhaité. Dans notre troisième axe nous présentons une méthode pour appliquer la règle Spike-Timing-Dependent-Plasticity à des données images afin d'apprendre de manière non-supervisée des représentations visuelles. Nous montrons que notre approche permet l'apprentissage d'une hiérarchie de représentations pertinente pour des problématiques de classification d'images, tout en nécessitant dix fois moins de données que les autres approches de la littérature
The last decade has seen the re-emergence of machine learning methods based on formal neural networks under the name of deep learning. Although these methods have enabled a major breakthrough in machine learning, several obstacles to the possibility of industrializing these methods persist, notably the need to collect and label a very large amount of data as well as the computing power necessary to perform learning and inference with this type of neural network. In this thesis, we propose to study the adequacy between inference and learning algorithms derived from biological neural networks and massively parallel hardware architectures. We show with three contribution that such adequacy drastically accelerates computation times inherent to neural networks. In our first axis, we study the adequacy of the BCVision software engine developed by Brainchip SAS for GPU platforms. We also propose the introduction of a coarse-to-fine architecture based on complex cells. We show that GPU portage accelerates processing by a factor of seven, while the coarse-to-fine architecture reaches a factor of one thousand. The second contribution presents three algorithms for spike propagation adapted to parallel architectures. We study exhaustively the computational models of these algorithms, allowing the selection or design of the hardware system adapted to the parameters of the desired network. In our third axis we present a method to apply the Spike-Timing-Dependent-Plasticity rule to image data in order to learn visual representations in an unsupervised manner. We show that our approach allows the effective learning a hierarchy of representations relevant to image classification issues, while requiring ten times less data than other approaches in the literature
APA, Harvard, Vancouver, ISO, and other styles
8

Giraldo, Zuluaga Jhony Heriberto. "Graph-based Algorithms in Computer Vision, Machine Learning, and Signal Processing." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS037.

Full text
Abstract:
L'apprentissage de la représentation graphique et ses applications ont suscité une attention considérable ces dernières années. En particulier, les Réseaux Neuronaux Graphiques (RNG) et le Traitement du Signal Graphique (TSG) ont été largement étudiés. Les RNGs étendent les concepts des réseaux neuronaux convolutionnels aux données non euclidiennes modélisées sous forme de graphes. De même, le TSG étend les concepts du traitement classique des signaux numériques aux signaux supportés par des graphes. Les RNGs et TSG ont de nombreuses applications telles que l'apprentissage semi-supervisé, la segmentation sémantique de nuages de points, la prédiction de relations individuelles dans les réseaux sociaux, la modélisation de protéines pour la découverte de médicaments, le traitement d'images et de vidéos. Dans cette thèse, nous proposons de nouvelles approches pour le traitement des images et des vidéos, les RNGs, et la récupération des signaux de graphes variant dans le temps. Notre principale motivation est d'utiliser l'information géométrique que nous pouvons capturer à partir des données pour éviter les méthodes avides de données, c'est-à-dire l'apprentissage avec une supervision minimale. Toutes nos contributions s'appuient fortement sur les développements de la TSG et de la théorie spectrale des graphes. En particulier, la théorie de l'échantillonnage et de la reconstruction des signaux de graphes joue un rôle central dans cette thèse. Les principales contributions de cette thèse sont résumées comme suit : 1) nous proposons de nouveaux algorithmes pour la segmentation d'objets en mouvement en utilisant les concepts de la TSG et des RNGs, 2) nous proposons un nouvel algorithme pour la segmentation sémantique faiblement supervisée en utilisant des réseaux de neurones hypergraphiques, 3) nous proposons et analysons les RNGs en utilisant les concepts de la TSG et de la théorie des graphes spectraux, et 4) nous introduisons un nouvel algorithme basé sur l'extension d'une fonction de lissage de Sobolev pour la reconstruction de signaux graphiques variant dans le temps à partir d'échantillons discrets
Graph representation learning and its applications have gained significant attention in recent years. Notably, Graph Neural Networks (GNNs) and Graph Signal Processing (GSP) have been extensively studied. GNNs extend the concepts of convolutional neural networks to non-Euclidean data modeled as graphs. Similarly, GSP extends the concepts of classical digital signal processing to signals supported on graphs. GNNs and GSP have numerous applications such as semi-supervised learning, point cloud semantic segmentation, prediction of individual relations in social networks, modeling proteins for drug discovery, image, and video processing. In this thesis, we propose novel approaches in video and image processing, GNNs, and recovery of time-varying graph signals. Our main motivation is to use the geometrical information that we can capture from the data to avoid data hungry methods, i.e., learning with minimal supervision. All our contributions rely heavily on the developments of GSP and spectral graph theory. In particular, the sampling and reconstruction theory of graph signals play a central role in this thesis. The main contributions of this thesis are summarized as follows: 1) we propose new algorithms for moving object segmentation using concepts of GSP and GNNs, 2) we propose a new algorithm for weakly-supervised semantic segmentation using hypergraph neural networks, 3) we propose and analyze GNNs using concepts from GSP and spectral graph theory, and 4) we introduce a novel algorithm based on the extension of a Sobolev smoothness function for the reconstruction of time-varying graph signals from discrete samples
APA, Harvard, Vancouver, ISO, and other styles
9

Tiano, Donato. "Learning models on healthcare data with quality indicators." Electronic Thesis or Diss., Lyon 1, 2022. http://www.theses.fr/2022LYO10182.

Full text
Abstract:
Les séries temporelles sont des collections de données obtenues par des mesures dans le temps. Cette données vise à fournir des éléments de réflexion pour l'extraction d'événements et à les représenter dans une configuration compréhensible pour une utilisation ultérieure. L'ensemble du processus de découverte et d'extraction de modèles à partir de l'ensemble de données s'effectue avec plusieurs techniques d'extraction, notamment l'apprentissage automatique, les statistiques et les clusters. Ce domaine est ensuite divisé par le nombre de sources adoptées pour surveiller un phénomène. Les séries temporelles univariées lorsque la source de données est unique, et les séries temporelles multivariées lorsque la source de données est multiple. La série chronologique n'est pas une structure simple. Chaque observation de la série a une relation forte avec les autres observations. Cette interrelation est la caractéristique principale des séries temporelles, et toute opération d'extraction de séries temporelles doit y faire face. La solution adoptée pour gérer l'interrelation est liée aux opérations d'extraction. Le principal problème de ces techniques est de ne pas adopter d'opération de prétraitement sur les séries temporelles. Les séries temporelles brutes comportent de nombreux effets indésirables, tels que des points bruyants ou l'énorme espace mémoire requis pour les longues séries. Nous proposons de nouvelles techniques d'exploration de données basées sur l'adoption des caractéristiques plus représentatives des séries temporelles pour obtenir de nouveaux modèles à partir des données. L'adoption des caractéristiques a un impact profond sur la scalabilité des systèmes. En effet, l'extraction d'une caractéristique de la série temporelle permet de réduire une série entière en une seule valeur. Par conséquent, cela permet d'améliorer la gestion des séries temporelles, en réduisant la complexité des solutions en termes de temps et d'espace. FeatTS propose une méthode de clustering pour les séries temporelles univariées qui extrait les caractéristiques les plus représentatives de la série. FeatTS vise à adopter les particularités en les convertissant en réseaux de graphes pour extraire les interrelations entre les signaux. Une matrice de cooccurrence fusionne toutes les communautés détectées. L'intuition est que si deux séries temporelles sont similaires, elles appartiennent souvent à la même communauté, et la matrice de cooccurrence permet de le révéler. Dans Time2Feat, nous créons un nouveau clustering de séries temporelles multivariées. Time2Feat propose deux extractions différentes pour améliorer la qualité des caractéristiques. Le premier type d'extraction est appelé extraction de caractéristiques intra-signal et permet d'obtenir des caractéristiques à partir de chaque signal de la série temporelle multivariée. Inter-Signal Features Extraction permet d'obtenir des caractéristiques en considérant des couples de signaux appartenant à la même série temporelle multivariée. Les deux méthodes fournissent des caractéristiques interprétables, ce qui rend possible une analyse ultérieure. L'ensemble du processus de clustering des séries temporelles est plus léger, ce qui réduit le temps nécessaire pour obtenir le cluster final. Les deux solutions représentent l'état de l'art dans leur domaine. Dans AnomalyFeat, nous proposons un algorithme pour révéler des anomalies à partir de séries temporelles univariées. La caractéristique de cet algorithme est la capacité de travailler parmi des séries temporelles en ligne, c'est-à-dire que chaque valeur de la série est obtenue en streaming. Dans la continuité des solutions précédentes, nous adoptons les fonctionnalités de révélation des anomalies dans les séries. Avec AnomalyFeat, nous unifions les deux algorithmes les plus populaires pour la détection des anomalies : le clustering et le réseau neuronal récurrent. Nous cherchons à découvrir la zone de densité du nouveau point obtenu avec le clustering
Time series are collections of data obtained through measurements over time. The purpose of this data is to provide food for thought for event extraction and to represent them in an understandable pattern for later use. The whole process of discovering and extracting patterns from the dataset is carried out with several extraction techniques, including machine learning, statistics, and clustering. This domain is then divided by the number of sources adopted to monitor a phenomenon. Univariate time series when the data source is single and multivariate time series when the data source is multiple. The time series is not a simple structure. Each observation in the series has a strong relationship with the other observations. This interrelationship is the main characteristic of time series, and any time series extraction operation has to deal with it. The solution adopted to manage the interrelationship is related to the extraction operations. The main problem with these techniques is that they do not adopt any pre-processing operation on the time series. Raw time series have many undesirable effects, such as noisy points or the huge memory space required for long series. We propose new data mining techniques based on the adoption of the most representative features of time series to obtain new models from the data. The adoption of features has a profound impact on the scalability of systems. Indeed, the extraction of a feature from the time series allows for the reduction of an entire series to a single value. Therefore, it allows for improving the management of time series, reducing the complexity of solutions in terms of time and space. FeatTS proposes a clustering method for univariate time series that extracts the most representative features of the series. FeatTS aims to adopt the features by converting them into graph networks to extract interrelationships between signals. A co-occurrence matrix merges all detected communities. The intuition is that if two time series are similar, they often belong to the same community, and the co-occurrence matrix reveals this. In Time2Feat, we create a new multivariate time series clustering. Time2Feat offers two different extractions to improve the quality of the features. The first type of extraction is called Intra-Signal Features Extraction and allows to obtain of features from each signal of the multivariate time series. Inter-Signal Features Extraction is used to obtain features by considering pairs of signals belonging to the same multivariate time series. Both methods provide interpretable features, which makes further analysis possible. The whole time series clustering process is lighter, which reduces the time needed to obtain the final cluster. Both solutions represent the state of the art in their field. In AnomalyFeat, we propose an algorithm to reveal anomalies from univariate time series. The characteristic of this algorithm is the ability to work among online time series, i.e. each value of the series is obtained in streaming. In the continuity of previous solutions, we adopt the functionality of revealing anomalies in the series. With AnomalyFeat, we unify the two most popular algorithms for anomaly detection: clustering and recurrent neural network. We seek to discover the density area of the new point obtained with clustering
APA, Harvard, Vancouver, ISO, and other styles
10

Mekemeza, Ona Keshia. "Photonic spiking neuron network." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD052.

Full text
Abstract:
Les réseaux neuromorphiques pour le traitement d'informations ont pris une placeimportante aujourd'hui notamment du fait de la montée en complexité des tâches à effectuer : reconnaissance vocale, corrélation d'images dynamiques, prise de décision rapide multidimensionnelle, fusion de données, optimisation comportementale, etc... Il existe plusieurs types de tels réseaux et parmi ceux- ci les réseaux impulsionnels, c'est-à-dire, ceux dont le fonctionnement est calqué sur celui des neurones corticaux. Ce sont ceux qui devraient offrir le meilleur rendement énergétique donc le meilleur passage à l'échelle. Plusieurs démonstrations de neurones artificielles ont été menées avec des circuits électroniques et plus récemment photoniques. La densité d'intégration de la filière photonique sur silicium est un atout pour créer des circuits suffisamment complexes pour espérer réaliser des démonstrations complètes. Le but de la thèse est donc d'exploiter une architecture de réseau neuromorphique impulsionnel à base de lasers à bascule de gain (Q switch) intégrés sur silicium et d'un circuit d'interconnexion ultra-dense et reconfigurable apte à imiter les poids synaptiques. Une modélisation complète ducircuit est attendue avec, à la clé la démonstration pratique d'une application dans la résolution d'un problème mathématique à définir
Today, neuromorphic networks play a crucial role in information processing,particularly as tasks become increasingly complex: voice recognition, dynamic image correlation, rapid multidimensional decision- making, data merging, behavioral optimization, etc... Neuromorphic networks come in several types; spiking networks are one of them. The latter's modus operandi is based on that of cortical neurons. As spiking networks are the most energy-efficient neuromorphic networks, they offer the greatest potential for scaling. Several demonstrations of artificial neurons have been conducted with electronic and more recently photonic circuits. The integration density of silicon photonics is an asset to create circuits that are complex enough to hopefully carry out a complete demonstration. Therefore, this thesis aims to exploit an architecture of a photonic spiking neural network based on Q-switched lasers integrated into silicon and an ultra-dense and reconfigurable interconnection circuit that can simulate synaptic weights. A complete modeling of the circuit is expected with a practical demonstration of an application in solving a mathematical problem to be defined
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography